Skip to main content
Top
Published in: Molecular Cancer 1/2014

Open Access 01-12-2014 | Research

Epidithiodiketopiperazines (ETPs) exhibit in vitro antiangiogenic and in vivo antitumor activity by disrupting the HIF-1α/p300 complex in a preclinical model of prostate cancer

Authors: Kelie M Reece, Emily D Richardson, Kristina M Cook, Tessa J Campbell, Stephen T Pisle, Alesia J Holly, David J Venzon, David J Liewehr, Cindy H Chau, Douglas K Price, William D Figg

Published in: Molecular Cancer | Issue 1/2014

Login to get access

Abstract

The downstream targets of hypoxia inducible factor-1 alpha (HIF-1α) play an important role in tumor progression and angiogenesis. Therefore, inhibition of HIF-mediated transcription has potential in the treatment of cancer. One attractive strategy for inhibiting HIF activity is the disruption of the HIF-1α/p300 complex, as p300 is a crucial coactivator of hypoxia-inducible transcription. Several members of the epidithiodiketopiperazine (ETP) family of natural products have been shown to disrupt the HIF-1α/p300 complex in vitro; namely, gliotoxin, chaetocin, and chetomin. Here, we further characterized the molecular mechanisms underlying the antiangiogenic and antitumor effects of these ETPs using a preclinical model of prostate cancer. In the rat aortic ring angiogenesis assay, gliotoxin, chaetocin, and chetomin significantly inhibited microvessel outgrowth at a GI50 of 151, 8, and 20 nM, respectively. In vitro co-immunoprecipitation studies in prostate cancer cell extracts demonstrated that these compounds disrupted the HIF-1α/p300 complex. The downstream effects of inhibiting the HIF-1α/p300 interaction were evaluated by determining HIF-1α target gene expression at the mRNA and protein levels. Dose-dependent decreases in levels of secreted VEGF were detected by ELISA in the culture media of treated cells, and the subsequent downregulation of VEGFA, LDHA, and ENO1 HIF-1α target genes were confirmed by semi-quantitative real-time PCR. Finally, treatment with ETPs in mice bearing prostate tumor xenografts resulted in significant inhibition of tumor growth. These results suggest that directly targeting the HIF-1α/p300 complex with ETPs may be an effective approach for inhibiting angiogenesis and tumor growth.
Appendix
Available only for authorised users
Literature
1.
go back to reference Danquah MK, Zhang XA, Mahato RI: Extravasation of polymeric nanomedicines across tumor vasculature. Adv Drug Deliv Rev. 2011, 63: 623-639. 10.1016/j.addr.2010.11.005CrossRefPubMed Danquah MK, Zhang XA, Mahato RI: Extravasation of polymeric nanomedicines across tumor vasculature. Adv Drug Deliv Rev. 2011, 63: 623-639. 10.1016/j.addr.2010.11.005CrossRefPubMed
2.
go back to reference Dewhirst MW, Cao Y, Moeller B: Cycling hypoxia and free radicals regulate angiogenesis and radiotherapy response. Nat Rev Cancer. 2008, 8: 425-437. 10.1038/nrc2397PubMedCentralCrossRefPubMed Dewhirst MW, Cao Y, Moeller B: Cycling hypoxia and free radicals regulate angiogenesis and radiotherapy response. Nat Rev Cancer. 2008, 8: 425-437. 10.1038/nrc2397PubMedCentralCrossRefPubMed
3.
go back to reference Patiar S, Harris AL: Role of hypoxia-inducible factor-1alpha as a cancer therapy target. Endocr Relat Cancer. 2006, 13 (Suppl 1): S61-S75.CrossRefPubMed Patiar S, Harris AL: Role of hypoxia-inducible factor-1alpha as a cancer therapy target. Endocr Relat Cancer. 2006, 13 (Suppl 1): S61-S75.CrossRefPubMed
4.
5.
6.
go back to reference Powis G, Kirkpatrick L: Hypoxia inducible factor-1alpha as a cancer drug target. Mol Cancer Ther. 2004, 3: 647-654.PubMed Powis G, Kirkpatrick L: Hypoxia inducible factor-1alpha as a cancer drug target. Mol Cancer Ther. 2004, 3: 647-654.PubMed
7.
go back to reference Xia Y, Choi HK, Lee K: Recent advances in hypoxia-inducible factor (HIF)-1 inhibitors. Eur J Med Chem. 2012, 49: 24-40.CrossRefPubMed Xia Y, Choi HK, Lee K: Recent advances in hypoxia-inducible factor (HIF)-1 inhibitors. Eur J Med Chem. 2012, 49: 24-40.CrossRefPubMed
8.
go back to reference Otrock ZK, Hatoum HA, Awada AH, Ishak RS, Shamseddine AI: Hypoxia-inducible factor in cancer angiogenesis: structure, regulation and clinical perspectives. Crit Rev Oncol Hematol. 2009, 70: 93-102. 10.1016/j.critrevonc.2009.01.001CrossRefPubMed Otrock ZK, Hatoum HA, Awada AH, Ishak RS, Shamseddine AI: Hypoxia-inducible factor in cancer angiogenesis: structure, regulation and clinical perspectives. Crit Rev Oncol Hematol. 2009, 70: 93-102. 10.1016/j.critrevonc.2009.01.001CrossRefPubMed
9.
go back to reference Lee JW, Bae SH, Jeong JW, Kim SH, Kim KW: Hypoxia-inducible factor (HIF-1) alpha: its protein stability and biological functions. Exp Mol Med. 2004, 36: 1-12. 10.1038/emm.2004.1CrossRefPubMed Lee JW, Bae SH, Jeong JW, Kim SH, Kim KW: Hypoxia-inducible factor (HIF-1) alpha: its protein stability and biological functions. Exp Mol Med. 2004, 36: 1-12. 10.1038/emm.2004.1CrossRefPubMed
10.
go back to reference Wang R, Zhou S, Li S: Cancer therapeutic agents targeting hypoxia-inducible factor-1. Curr Med Chem. 2011, 18: 3168-3189. 10.2174/092986711796391606CrossRefPubMed Wang R, Zhou S, Li S: Cancer therapeutic agents targeting hypoxia-inducible factor-1. Curr Med Chem. 2011, 18: 3168-3189. 10.2174/092986711796391606CrossRefPubMed
11.
go back to reference Pugh CW, Ratcliffe PJ: Regulation of angiogenesis by hypoxia: role of the HIF system. Nat Med. 2003, 9: 677-684. 10.1038/nm0603-677CrossRefPubMed Pugh CW, Ratcliffe PJ: Regulation of angiogenesis by hypoxia: role of the HIF system. Nat Med. 2003, 9: 677-684. 10.1038/nm0603-677CrossRefPubMed
12.
13.
go back to reference Folkman J: Angiogenesis in cancer, vascular, rheumatoid and other disease. Nat Med. 1995, 1: 27-31. 10.1038/nm0195-27CrossRefPubMed Folkman J: Angiogenesis in cancer, vascular, rheumatoid and other disease. Nat Med. 1995, 1: 27-31. 10.1038/nm0195-27CrossRefPubMed
14.
15.
go back to reference Rey S, Semenza GL: Hypoxia-inducible factor-1-dependent mechanisms of vascularization and vascular remodelling. Cardiovasc Res. 2010, 86: 236-242. 10.1093/cvr/cvq045PubMedCentralCrossRefPubMed Rey S, Semenza GL: Hypoxia-inducible factor-1-dependent mechanisms of vascularization and vascular remodelling. Cardiovasc Res. 2010, 86: 236-242. 10.1093/cvr/cvq045PubMedCentralCrossRefPubMed
16.
go back to reference Onnis B, Rapisarda A, Melillo G: Development of HIF-1 inhibitors for cancer therapy. J Cell Mol Med. 2009, 13: 2780-2786. 10.1111/j.1582-4934.2009.00876.xPubMedCentralCrossRefPubMed Onnis B, Rapisarda A, Melillo G: Development of HIF-1 inhibitors for cancer therapy. J Cell Mol Med. 2009, 13: 2780-2786. 10.1111/j.1582-4934.2009.00876.xPubMedCentralCrossRefPubMed
17.
18.
19.
go back to reference Cook KM, Hilton ST, Mecinovic J, Motherwell WB, Figg WD, Schofield CJ: Epidithiodiketopiperazines block the interaction between hypoxia-inducible factor-1alpha (HIF-1alpha) and p300 by a zinc ejection mechanism. J Biol Chem. 2009, 284: 26831-26838. 10.1074/jbc.M109.009498PubMedCentralCrossRefPubMed Cook KM, Hilton ST, Mecinovic J, Motherwell WB, Figg WD, Schofield CJ: Epidithiodiketopiperazines block the interaction between hypoxia-inducible factor-1alpha (HIF-1alpha) and p300 by a zinc ejection mechanism. J Biol Chem. 2009, 284: 26831-26838. 10.1074/jbc.M109.009498PubMedCentralCrossRefPubMed
20.
go back to reference Henchey LK, Kushal S, Dubey R, Chapman RN, Olenyuk BZ, Arora PS: Inhibition of hypoxia inducible factor 1-transcription coactivator interaction by a hydrogen bond surrogate alpha-helix. J Am Chem Soc. 2009, 132: 941-943.CrossRef Henchey LK, Kushal S, Dubey R, Chapman RN, Olenyuk BZ, Arora PS: Inhibition of hypoxia inducible factor 1-transcription coactivator interaction by a hydrogen bond surrogate alpha-helix. J Am Chem Soc. 2009, 132: 941-943.CrossRef
21.
go back to reference Lepper ER, Ng SS, Gutschow M, Weiss M, Hauschildt S, Hecker TK, Luzzio FA, Eger K, Figg WD: Comparative molecular field analysis and comparative molecular similarity indices analysis of thalidomide analogues as angiogenesis inhibitors. J Med Chem. 2004, 47: 2219-2227. 10.1021/jm0304820CrossRefPubMed Lepper ER, Ng SS, Gutschow M, Weiss M, Hauschildt S, Hecker TK, Luzzio FA, Eger K, Figg WD: Comparative molecular field analysis and comparative molecular similarity indices analysis of thalidomide analogues as angiogenesis inhibitors. J Med Chem. 2004, 47: 2219-2227. 10.1021/jm0304820CrossRefPubMed
22.
go back to reference Kushal S, Wang H, Laszlo CF, Szabo LZ, Olenyuk BZ: Inhibition of hypoxia-inducible transcription factor complex with designed epipolythiodiketopiperazine. Biopolymers. 2009, 95: 8-16.CrossRef Kushal S, Wang H, Laszlo CF, Szabo LZ, Olenyuk BZ: Inhibition of hypoxia-inducible transcription factor complex with designed epipolythiodiketopiperazine. Biopolymers. 2009, 95: 8-16.CrossRef
23.
go back to reference Kung AL, Zabludoff SD, France DS, Freedman SJ, Tanner EA, Vieira A, Cornell-Kennon S, Lee J, Wang B, Wang J, Memmert K, Naegeli HU, Petersen F, Eck MJ, Bair KW, Wood AW, Livingston DM: Small molecule blockade of transcriptional coactivation of the hypoxia-inducible factor pathway. Cancer Cell. 2004, 6: 33-43. 10.1016/j.ccr.2004.06.009CrossRefPubMed Kung AL, Zabludoff SD, France DS, Freedman SJ, Tanner EA, Vieira A, Cornell-Kennon S, Lee J, Wang B, Wang J, Memmert K, Naegeli HU, Petersen F, Eck MJ, Bair KW, Wood AW, Livingston DM: Small molecule blockade of transcriptional coactivation of the hypoxia-inducible factor pathway. Cancer Cell. 2004, 6: 33-43. 10.1016/j.ccr.2004.06.009CrossRefPubMed
24.
go back to reference Kung AL, Wang S, Klco JM, Kaelin WG, Livingston DM: Suppression of tumor growth through disruption of hypoxia-inducible transcription. Nat Med. 2000, 6: 1335-1340. 10.1038/82146CrossRefPubMed Kung AL, Wang S, Klco JM, Kaelin WG, Livingston DM: Suppression of tumor growth through disruption of hypoxia-inducible transcription. Nat Med. 2000, 6: 1335-1340. 10.1038/82146CrossRefPubMed
25.
go back to reference Li M, Liu C, Bin J, Wang Y, Chen J, Xiu J, Pei J, Lai Y, Chen D, Fan C, Xie J, Tao Y, Wu P: Mutant hypoxia inducible factor-1alpha improves angiogenesis and tissue perfusion in ischemic rabbit skeletal muscle. Microvasc Res. 2011, 81: 26-33. 10.1016/j.mvr.2010.09.008CrossRefPubMed Li M, Liu C, Bin J, Wang Y, Chen J, Xiu J, Pei J, Lai Y, Chen D, Fan C, Xie J, Tao Y, Wu P: Mutant hypoxia inducible factor-1alpha improves angiogenesis and tissue perfusion in ischemic rabbit skeletal muscle. Microvasc Res. 2011, 81: 26-33. 10.1016/j.mvr.2010.09.008CrossRefPubMed
26.
go back to reference Lee YM, Lim JH, Yoon H, Chun YS, Park JW: Antihepatoma activity of chaetocin due to deregulated splicing of hypoxia-inducible factor 1alpha pre-mRNA in mice and in vitro. Hepatology. 2011, 53: 171-180. 10.1002/hep.24010CrossRefPubMed Lee YM, Lim JH, Yoon H, Chun YS, Park JW: Antihepatoma activity of chaetocin due to deregulated splicing of hypoxia-inducible factor 1alpha pre-mRNA in mice and in vitro. Hepatology. 2011, 53: 171-180. 10.1002/hep.24010CrossRefPubMed
27.
go back to reference Olsson AK, Dimberg A, Kreuger J, Claesson-Welsh L: VEGF receptor signalling - in control of vascular function. Nat Rev Mol Cell Biol. 2006, 7: 359-371. 10.1038/nrm1911CrossRefPubMed Olsson AK, Dimberg A, Kreuger J, Claesson-Welsh L: VEGF receptor signalling - in control of vascular function. Nat Rev Mol Cell Biol. 2006, 7: 359-371. 10.1038/nrm1911CrossRefPubMed
28.
go back to reference Pages G, Pouyssegur J: Transcriptional regulation of the Vascular Endothelial Growth Factor gene–a concert of activating factors. Cardiovasc Res. 2005, 65: 564-573. 10.1016/j.cardiores.2004.09.032CrossRefPubMed Pages G, Pouyssegur J: Transcriptional regulation of the Vascular Endothelial Growth Factor gene–a concert of activating factors. Cardiovasc Res. 2005, 65: 564-573. 10.1016/j.cardiores.2004.09.032CrossRefPubMed
29.
go back to reference Semenza GL, Jiang BH, Leung SW, Passantino R, Concordet JP, Maire P, Giallongo A: Hypoxia response elements in the aldolase A, enolase 1, and lactate dehydrogenase A gene promoters contain essential binding sites for hypoxia-inducible factor 1. J Biol Chem. 1996, 271: 32529-32537. 10.1074/jbc.271.51.32529CrossRefPubMed Semenza GL, Jiang BH, Leung SW, Passantino R, Concordet JP, Maire P, Giallongo A: Hypoxia response elements in the aldolase A, enolase 1, and lactate dehydrogenase A gene promoters contain essential binding sites for hypoxia-inducible factor 1. J Biol Chem. 1996, 271: 32529-32537. 10.1074/jbc.271.51.32529CrossRefPubMed
30.
go back to reference Zetter BR: Angiogenesis and tumor metastasis. Annu Rev Med. 1998, 49: 407-424. 10.1146/annurev.med.49.1.407CrossRefPubMed Zetter BR: Angiogenesis and tumor metastasis. Annu Rev Med. 1998, 49: 407-424. 10.1146/annurev.med.49.1.407CrossRefPubMed
31.
go back to reference Isham CR, Tibodeau JD, Jin W, Xu R, Timm MM, Bible KC: Chaetocin: a promising new antimyeloma agent with in vitro and in vivo activity mediated via imposition of oxidative stress. Blood. 2007, 109: 2579-2588. 10.1182/blood-2006-07-027326PubMedCentralCrossRefPubMed Isham CR, Tibodeau JD, Jin W, Xu R, Timm MM, Bible KC: Chaetocin: a promising new antimyeloma agent with in vitro and in vivo activity mediated via imposition of oxidative stress. Blood. 2007, 109: 2579-2588. 10.1182/blood-2006-07-027326PubMedCentralCrossRefPubMed
32.
go back to reference Vigushin DM, Mirsaidi N, Brooke G, Sun C, Pace P, Inman L, Moody CJ, Coombes RC: Gliotoxin is a dual inhibitor of farnesyltransferase and geranylgeranyltransferase I with antitumor activity against breast cancer in vivo. Med Oncol. 2004, 21: 21-30. 10.1385/MO:21:1:21CrossRefPubMed Vigushin DM, Mirsaidi N, Brooke G, Sun C, Pace P, Inman L, Moody CJ, Coombes RC: Gliotoxin is a dual inhibitor of farnesyltransferase and geranylgeranyltransferase I with antitumor activity against breast cancer in vivo. Med Oncol. 2004, 21: 21-30. 10.1385/MO:21:1:21CrossRefPubMed
33.
go back to reference Nicosia RF, Ottinetti A: Growth of microvessels in serum-free matrix culture of rat aorta. A quantitative assay of angiogenesis in vitro. Lab Invest. 1990, 63: 115-122.PubMed Nicosia RF, Ottinetti A: Growth of microvessels in serum-free matrix culture of rat aorta. A quantitative assay of angiogenesis in vitro. Lab Invest. 1990, 63: 115-122.PubMed
34.
go back to reference Lee HJ, Lee JH, Hwang BY, Kim HS, Lee JJ: Anti-angiogenic activities of gliotoxin and its methylthioderivative, fungal metabolites. Arch Pharm Res. 2001, 24: 397-401. 10.1007/BF02975182CrossRefPubMed Lee HJ, Lee JH, Hwang BY, Kim HS, Lee JJ: Anti-angiogenic activities of gliotoxin and its methylthioderivative, fungal metabolites. Arch Pharm Res. 2001, 24: 397-401. 10.1007/BF02975182CrossRefPubMed
35.
go back to reference Peng G, Ren Y, Sun X, Zhou J, Li D: Inhibition of farnesyltransferase reduces angiogenesis by interrupting endothelial cell migration. Biochem Pharmacol. 2012, 83: 1374-1382. 10.1016/j.bcp.2012.02.008CrossRefPubMed Peng G, Ren Y, Sun X, Zhou J, Li D: Inhibition of farnesyltransferase reduces angiogenesis by interrupting endothelial cell migration. Biochem Pharmacol. 2012, 83: 1374-1382. 10.1016/j.bcp.2012.02.008CrossRefPubMed
36.
go back to reference Semenza GL, Roth PH, Fang HM, Wang GL: Transcriptional regulation of genes encoding glycolytic enzymes by hypoxia-inducible factor 1. J Biol Chem. 1994, 269: 23757-23763.PubMed Semenza GL, Roth PH, Fang HM, Wang GL: Transcriptional regulation of genes encoding glycolytic enzymes by hypoxia-inducible factor 1. J Biol Chem. 1994, 269: 23757-23763.PubMed
Metadata
Title
Epidithiodiketopiperazines (ETPs) exhibit in vitro antiangiogenic and in vivo antitumor activity by disrupting the HIF-1α/p300 complex in a preclinical model of prostate cancer
Authors
Kelie M Reece
Emily D Richardson
Kristina M Cook
Tessa J Campbell
Stephen T Pisle
Alesia J Holly
David J Venzon
David J Liewehr
Cindy H Chau
Douglas K Price
William D Figg
Publication date
01-12-2014
Publisher
BioMed Central
Published in
Molecular Cancer / Issue 1/2014
Electronic ISSN: 1476-4598
DOI
https://doi.org/10.1186/1476-4598-13-91

Other articles of this Issue 1/2014

Molecular Cancer 1/2014 Go to the issue
Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine