Skip to main content
Top
Published in: Virology Journal 1/2018

Open Access 01-12-2018 | Research

Differences in genome characters and cell tropisms between two chikungunya isolates of Asian lineage and Indian Ocean lineage

Authors: Xiaomin Zhang, Yalan Huang, Miao Wang, Fan Yang, Chunli Wu, Dana Huang, Linghong Xiong, Chengsong Wan, Jinquan Cheng, Renli Zhang

Published in: Virology Journal | Issue 1/2018

Login to get access

Abstract

Background

Chikungunya virus (CHIKV) is a mosquito-transmitted alphavirus within the family Togaviridae, which has attracted global attention due to its recent re-emergence. In one of our previous studies, we successfully isolated two CHIKV virus strains, SZ1050 and SZ1239, from the serum samples of two imported patients in 2010 and 2012, respectively. However, the differences in their genome characters and cell tropisms remain undefined.

Methods

We extracted the RNA of two CHIKV isolates and performed PCR to determine the sequence of the whole viral genomes. The genotypes were classified by phylogenetic analysis using the Mega 6.0 software. Furthermore, the cell tropisms of the two CHIKV isolates were evaluated in 13 cell lines.

Results

The lengths of the whole genomes for SZ1050 and SZ1239 were 11,844 nt and 12,000 nt, respectively. Phylogenetic analysis indicated that SZ1050 belonged to the Indian Ocean lineage (IOL), while SZ1239 was of the Asian lineage. Comparing to the prototype strain S27, a gap of 7 aa in the nsP3 gene and missing of one repeated sequence element (RSE) in the 3’ UTR were observed in SZ1239. The E1-A226V mutation was not detected in both strains. SZ1050 and SZ1239 could infect most of the evaluated mammalian epithelial cells. The K562 cells were permissive for both SZ1050 and SZ1239 while the U937 cells were refractory to both viruses. For Aedes cell lines C6/36 and Aag-2, both SZ1050 and SZ1239 were able to infect and replicate efficiently.

Conclusions

Compared to the prototype S27 virus, some deletions and mutations were found in the genomes of SZ1050 and SZ1239. Both viruses were susceptible to most evaluated epithelia or fibroblast cells and Aedes cell lines including C6/36 and Aag-2 in spite of marginal difference.
Appendix
Available only for authorised users
Literature
1.
go back to reference Teo TH, Her ZS, JJL T, Lum FM, Lee WW, Chan YH, Ong RY, Kam YW, Leparc-Goffart I, Gallian P, Rénia L, de Lamballerie X, Ng LF. Caribbean and La Reunion chikungunya virus isolates differ in their capacity to induce proinflammatory Th1 and NK cell responses and acute joint pathology. J Virol. 2015;89(15):7955–69.CrossRefPubMedPubMedCentral Teo TH, Her ZS, JJL T, Lum FM, Lee WW, Chan YH, Ong RY, Kam YW, Leparc-Goffart I, Gallian P, Rénia L, de Lamballerie X, Ng LF. Caribbean and La Reunion chikungunya virus isolates differ in their capacity to induce proinflammatory Th1 and NK cell responses and acute joint pathology. J Virol. 2015;89(15):7955–69.CrossRefPubMedPubMedCentral
2.
go back to reference Schwartz O, Albert ML. Biology and pathogenesis of chikungunya virus. Nat Rev Microbiol. 2010;8:491–500.CrossRefPubMed Schwartz O, Albert ML. Biology and pathogenesis of chikungunya virus. Nat Rev Microbiol. 2010;8:491–500.CrossRefPubMed
3.
go back to reference Gardner J, Anraku I, Le TT, Larcher T, Major L, Roques P, Schroder WA, Higgs S, Suhrbier A. Chikungunya virus arthritis in adult wild-type mice. J Virol. 2010;84:8021–32.CrossRefPubMedPubMedCentral Gardner J, Anraku I, Le TT, Larcher T, Major L, Roques P, Schroder WA, Higgs S, Suhrbier A. Chikungunya virus arthritis in adult wild-type mice. J Virol. 2010;84:8021–32.CrossRefPubMedPubMedCentral
4.
go back to reference Robin S, Ramful D, Le Seach F, Jaffar-Babarit C, Rigou G, Alessandri JL. Neurologic manifestations of pediatric chikungunya infection. J Child Neurol. 2008;23:1028–35.CrossRefPubMed Robin S, Ramful D, Le Seach F, Jaffar-Babarit C, Rigou G, Alessandri JL. Neurologic manifestations of pediatric chikungunya infection. J Child Neurol. 2008;23:1028–35.CrossRefPubMed
5.
go back to reference Duijl-Richter MKS, Hoornweg TE, Rodenhuis-Zybert IA, Smit JM. Early events in chikungunya virus infection-from virus cell binding to membrane fusion. Viruses. 2015;7:3647–74.CrossRefPubMedPubMedCentral Duijl-Richter MKS, Hoornweg TE, Rodenhuis-Zybert IA, Smit JM. Early events in chikungunya virus infection-from virus cell binding to membrane fusion. Viruses. 2015;7:3647–74.CrossRefPubMedPubMedCentral
6.
go back to reference Khan AH, Morita K, Parquet Md Mdel C, Hasebe F, Mathenge EG, Igarashi A. Complete nucleotide sequence of chikungunya virus and evidence for an internal polyadenylation site. J Gen Virol. 2002;83(Pt 12):3075–84. Khan AH, Morita K, Parquet Md Mdel C, Hasebe F, Mathenge EG, Igarashi A. Complete nucleotide sequence of chikungunya virus and evidence for an internal polyadenylation site. J Gen Virol. 2002;83(Pt 12):3075–84.
8.
go back to reference Volk SM, Chen R, Tsetsarkin KA, Adams AP, Garcia TI, Sall AA, Nasar F, Schuh AJ, Holmes EC, Higgs S, Maharaj PD, Brault AC, Weaver SC. Genome-scale phylogenetic analyses of chikungunya virus reveal independent emergences of recent epidemics and various evolutionary rates. J Virol. 2010;84(13):6497–504.CrossRefPubMedPubMedCentral Volk SM, Chen R, Tsetsarkin KA, Adams AP, Garcia TI, Sall AA, Nasar F, Schuh AJ, Holmes EC, Higgs S, Maharaj PD, Brault AC, Weaver SC. Genome-scale phylogenetic analyses of chikungunya virus reveal independent emergences of recent epidemics and various evolutionary rates. J Virol. 2010;84(13):6497–504.CrossRefPubMedPubMedCentral
9.
go back to reference Weaver SC, Forrester NL. Chikungunya: evolutionary history and recent epidemic spread. Antivir Res. 2015;120:32–9.CrossRefPubMed Weaver SC, Forrester NL. Chikungunya: evolutionary history and recent epidemic spread. Antivir Res. 2015;120:32–9.CrossRefPubMed
10.
go back to reference Ng LC, Hapuarachchi HC. Tracing the path of chikungunya virus--evolution and adaptation. Infect Genet Evol. 2010;10(7):876–85.CrossRefPubMed Ng LC, Hapuarachchi HC. Tracing the path of chikungunya virus--evolution and adaptation. Infect Genet Evol. 2010;10(7):876–85.CrossRefPubMed
11.
go back to reference Sam IC, Kümmerer BM, Chan YF, Roques P, Drosten C, AbuBakar S. Updates on chikungunya epidemiology, clinical disease, and diagnostics. Vector Borne Zoonotic Dis. 2015;15(4):223–30.CrossRefPubMed Sam IC, Kümmerer BM, Chan YF, Roques P, Drosten C, AbuBakar S. Updates on chikungunya epidemiology, clinical disease, and diagnostics. Vector Borne Zoonotic Dis. 2015;15(4):223–30.CrossRefPubMed
12.
go back to reference Alto BW, Wiggins K, Eastmond B, Velez D, Lounibos LP. Lord CC. Transmission risk of two chikungunya lineages by invasive mosquito vectors from Florida and the Dominican Republic. PLoS Negl Trop Dis. 2017;11(7):e0005724.CrossRefPubMedPubMedCentral Alto BW, Wiggins K, Eastmond B, Velez D, Lounibos LP. Lord CC. Transmission risk of two chikungunya lineages by invasive mosquito vectors from Florida and the Dominican Republic. PLoS Negl Trop Dis. 2017;11(7):e0005724.CrossRefPubMedPubMedCentral
13.
go back to reference Wikan N, Sakoonwatanyoo P, Ubol S, Yoksan S, Smith DR. Chikungunya virus infection of cell lines: analysis of the east, central and south African lineage. PLoS One. 2012;7(1):e31102.CrossRefPubMedPubMedCentral Wikan N, Sakoonwatanyoo P, Ubol S, Yoksan S, Smith DR. Chikungunya virus infection of cell lines: analysis of the east, central and south African lineage. PLoS One. 2012;7(1):e31102.CrossRefPubMedPubMedCentral
14.
go back to reference Chiam CW, Chan YF, Ong KC, Wong KT, Sam IC. Neurovirulence comparison of chikungunya virus isolates of the Asian and east/central/south African genotypes from Malaysia. J Gen Virol. 2015;96(11):3243–54.CrossRef Chiam CW, Chan YF, Ong KC, Wong KT, Sam IC. Neurovirulence comparison of chikungunya virus isolates of the Asian and east/central/south African genotypes from Malaysia. J Gen Virol. 2015;96(11):3243–54.CrossRef
15.
go back to reference Xu SJ, Luo M, Zhang Q, Yang F, Liu T, Huang DN, Wu CL, Hu ZL, Ke CW, Zhang RL. Morphological and molecular genetic characteristics of chikungunya virus. J Trop Med. 2012;12(11):1304–8. In Chinese Xu SJ, Luo M, Zhang Q, Yang F, Liu T, Huang DN, Wu CL, Hu ZL, Ke CW, Zhang RL. Morphological and molecular genetic characteristics of chikungunya virus. J Trop Med. 2012;12(11):1304–8. In Chinese
16.
go back to reference Yang F, Zhang RL, Huang DN, Wu CL, Li Y, Tang YJ. Molecular epidemiological analysis of an imported chikungunya fever in Shenzhen. Chin J Health Lab Tec. 2016;26(13):1909–12. In Chinese Yang F, Zhang RL, Huang DN, Wu CL, Li Y, Tang YJ. Molecular epidemiological analysis of an imported chikungunya fever in Shenzhen. Chin J Health Lab Tec. 2016;26(13):1909–12. In Chinese
17.
go back to reference Zheng K, Li JD, Zhang QF, Liang MF, Li C, Lin M, Huang JC, Li H, Xiang DP, Wang NL, Hong Y, Huang L, Li XB, Pan DG, Song W, Dai J, Guo BX, Li DX. Genetic analysis of chikungunya viruses imported to mainland China in 2008. Virol J. 2010;7:8.CrossRefPubMedPubMedCentral Zheng K, Li JD, Zhang QF, Liang MF, Li C, Lin M, Huang JC, Li H, Xiang DP, Wang NL, Hong Y, Huang L, Li XB, Pan DG, Song W, Dai J, Guo BX, Li DX. Genetic analysis of chikungunya viruses imported to mainland China in 2008. Virol J. 2010;7:8.CrossRefPubMedPubMedCentral
18.
go back to reference Wu D, Zhang YH, Qiong ZH, Kou J, Liang W, Zhang H, Monagin C, Zhang Q, Li W, Zhong H, He J, Li H, Cai S, Ke C, Lin J. Chikungunya virus with E1-A226V mutation causing two outbreaks in 2010, Guangdong, China. Virol J. 2013(10):174. Wu D, Zhang YH, Qiong ZH, Kou J, Liang W, Zhang H, Monagin C, Zhang Q, Li W, Zhong H, He J, Li H, Cai S, Ke C, Lin J. Chikungunya virus with E1-A226V mutation causing two outbreaks in 2010, Guangdong, China. Virol J. 2013(10):174.
19.
go back to reference Lu X, Li X, Mo Z, Jin F, Wang B, Huang J, Huang J, Zhao H, Shi L. Chikungunya emergency in China: microevolution and genetic analysis for a local outbreak. Virus Genes. 2014;48(1):15–22.CrossRefPubMed Lu X, Li X, Mo Z, Jin F, Wang B, Huang J, Huang J, Zhao H, Shi L. Chikungunya emergency in China: microevolution and genetic analysis for a local outbreak. Virus Genes. 2014;48(1):15–22.CrossRefPubMed
20.
go back to reference Wolfel S, Vollmar P, Poluda D, Zange S, Antwerpen MH, Loscher T, Dobler G. Complete genome sequence of a chikungunya virus imported from Bali to Germany. Genome Announc. 2015;3(2):e00164–15.CrossRefPubMedPubMedCentral Wolfel S, Vollmar P, Poluda D, Zange S, Antwerpen MH, Loscher T, Dobler G. Complete genome sequence of a chikungunya virus imported from Bali to Germany. Genome Announc. 2015;3(2):e00164–15.CrossRefPubMedPubMedCentral
21.
go back to reference Schuffenecher I, Iteman I, Michault A, Murri S, Frangeul L, Vaney MC, Lavenir R, Pardigon N, Reynes JM, Pettinelli F, Biscornet L, Diancourt L, Michel S, Duquerroy S, Guigon G, Frenkiel MP, Bréhin AC, Cubito N, Desprès P, Kunst F, Rey FA, Zeller H, Brisse S. Genome microevolution of chikungunya viruses causing the Indian Ocean outbreak. PLoS Med. 2006;3(7):1058–70. Schuffenecher I, Iteman I, Michault A, Murri S, Frangeul L, Vaney MC, Lavenir R, Pardigon N, Reynes JM, Pettinelli F, Biscornet L, Diancourt L, Michel S, Duquerroy S, Guigon G, Frenkiel MP, Bréhin AC, Cubito N, Desprès P, Kunst F, Rey FA, Zeller H, Brisse S. Genome microevolution of chikungunya viruses causing the Indian Ocean outbreak. PLoS Med. 2006;3(7):1058–70.
22.
go back to reference Sahadeo NSD, Allicock OM, De Salazar PM, Auguste AJ, Widen S, Olowokure B, Gutierrez C, Valadere AM, Polson-Edwards K, Weaver SC, Carrington CVF. Understanding the evolution and spread of chikungunya virus in the Americas using complete genome sequences. Virus Evol. 2017;3(1):vex010.CrossRefPubMedPubMedCentral Sahadeo NSD, Allicock OM, De Salazar PM, Auguste AJ, Widen S, Olowokure B, Gutierrez C, Valadere AM, Polson-Edwards K, Weaver SC, Carrington CVF. Understanding the evolution and spread of chikungunya virus in the Americas using complete genome sequences. Virus Evol. 2017;3(1):vex010.CrossRefPubMedPubMedCentral
24.
go back to reference Sourisseau M, Schilte C, Casartelli N, Trouillet C, Guivel-Benhassine F, Rudnicka D, Sol-Foulon N, Roux KL, Prevost MC, Fsihi H, Frenkiel MP, Blanchet F, Afonso PV, Ceccaldi PE, Ozden S, Gessain A, Schuffenecker I, Verhasselt B, Zamborlini A, Saïb A, Rey FA, Arenzana-Seisdedos F, Desprès P, Michault A, Albert ML, Schwartz O. Characterization of reemerging chikungunya virus. PLoS Pathog. 2007;3(6):e89:0804–17.CrossRef Sourisseau M, Schilte C, Casartelli N, Trouillet C, Guivel-Benhassine F, Rudnicka D, Sol-Foulon N, Roux KL, Prevost MC, Fsihi H, Frenkiel MP, Blanchet F, Afonso PV, Ceccaldi PE, Ozden S, Gessain A, Schuffenecker I, Verhasselt B, Zamborlini A, Saïb A, Rey FA, Arenzana-Seisdedos F, Desprès P, Michault A, Albert ML, Schwartz O. Characterization of reemerging chikungunya virus. PLoS Pathog. 2007;3(6):e89:0804–17.CrossRef
25.
go back to reference Zeller H, Bortel WV, Sudre B. Chikungunya: its history in Africa and Asia and its spread to new regions on 2013-2014. J Infect Dis. 2016;214(S5):S436–40.CrossRefPubMed Zeller H, Bortel WV, Sudre B. Chikungunya: its history in Africa and Asia and its spread to new regions on 2013-2014. J Infect Dis. 2016;214(S5):S436–40.CrossRefPubMed
26.
go back to reference Kuhn R, Hong Z, Strauss JH. Mutagenesis of the 3′ nontranslated region of Sindbis virus RNA. J Virol. 1990;64:1465–76.PubMedPubMedCentral Kuhn R, Hong Z, Strauss JH. Mutagenesis of the 3′ nontranslated region of Sindbis virus RNA. J Virol. 1990;64:1465–76.PubMedPubMedCentral
27.
go back to reference Neuvonen M, Kazlauskas A, Martikainen M, Hinkkanen A, Ahola T, Saksela K. SH3 domain-mediated recruitment of host cell Amphiphysins by alphavirus nsP3 promotes viral RNA replication. PLoS Pathog. 2011;7(11):e1002383.CrossRefPubMedPubMedCentral Neuvonen M, Kazlauskas A, Martikainen M, Hinkkanen A, Ahola T, Saksela K. SH3 domain-mediated recruitment of host cell Amphiphysins by alphavirus nsP3 promotes viral RNA replication. PLoS Pathog. 2011;7(11):e1002383.CrossRefPubMedPubMedCentral
28.
go back to reference Tossavainen H, Aitio O, Hellman M, Saksela K, Permi P. Structural basis of the high affinity interaction between the alphavirus nonstructural protein-3 (nsP3) and the SH3 domain of amphiphysin-2. J Biol Chem. 2016;291(31):16307–17.CrossRefPubMedPubMedCentral Tossavainen H, Aitio O, Hellman M, Saksela K, Permi P. Structural basis of the high affinity interaction between the alphavirus nonstructural protein-3 (nsP3) and the SH3 domain of amphiphysin-2. J Biol Chem. 2016;291(31):16307–17.CrossRefPubMedPubMedCentral
29.
go back to reference Dupont-Rouzeyrol M, Caro V, Guillaumot L, Vazeille M, D'Ortenzio E, Thiberge JM, Baroux N, Gourinat AC, Grandadam M, Failloux AB. Chikungunya virus and the mosquito vector Aedes aegypti in New Caledonia (South Pacific region). Vector Borne Zoonotic Dis. 2012;12(12):1036–41.CrossRefPubMed Dupont-Rouzeyrol M, Caro V, Guillaumot L, Vazeille M, D'Ortenzio E, Thiberge JM, Baroux N, Gourinat AC, Grandadam M, Failloux AB. Chikungunya virus and the mosquito vector Aedes aegypti in New Caledonia (South Pacific region). Vector Borne Zoonotic Dis. 2012;12(12):1036–41.CrossRefPubMed
30.
go back to reference Sasmono RT, Perkasa A, Yohan B, Haryanto S, Yudhaputri FA, Hayati RF, Ma'roef CN, Ledermann JP, Aye Myint KS, Powers AM. Chikungunya detection during dengue outbreak in Sumatra, Indonesia: clinical manifestations and virological profile. Am J Trop Med Hyg. 2017;97(5):1393–8.CrossRefPubMed Sasmono RT, Perkasa A, Yohan B, Haryanto S, Yudhaputri FA, Hayati RF, Ma'roef CN, Ledermann JP, Aye Myint KS, Powers AM. Chikungunya detection during dengue outbreak in Sumatra, Indonesia: clinical manifestations and virological profile. Am J Trop Med Hyg. 2017;97(5):1393–8.CrossRefPubMed
32.
go back to reference Scholte FE, Tas A, Albulescu IC, Žusinaite E, Merits A, Snijder EJ, van Hemert MJ. Stress granule components G3BP1 and G3BP2 play a proviral role early in chikungunya virus replication. J Virol. 2015;89(8):4457–69.CrossRefPubMedPubMedCentral Scholte FE, Tas A, Albulescu IC, Žusinaite E, Merits A, Snijder EJ, van Hemert MJ. Stress granule components G3BP1 and G3BP2 play a proviral role early in chikungunya virus replication. J Virol. 2015;89(8):4457–69.CrossRefPubMedPubMedCentral
33.
go back to reference Fros JJ, Geertsema C, Zouache K, Baggen J, Domeradzka N, van Leeuwen DM, Flipse J, Vlak JM, Failloux AB, Pijlman GP. Mosquito rasputin interacts with chikungunya virus nsP3 and determines the infection rate in Aedes albopictus. Parasit Vectors. 2015;8:464.CrossRefPubMedPubMedCentral Fros JJ, Geertsema C, Zouache K, Baggen J, Domeradzka N, van Leeuwen DM, Flipse J, Vlak JM, Failloux AB, Pijlman GP. Mosquito rasputin interacts with chikungunya virus nsP3 and determines the infection rate in Aedes albopictus. Parasit Vectors. 2015;8:464.CrossRefPubMedPubMedCentral
34.
go back to reference Suthar MS, Shabman R, Madric K, Lambeth C, Heise MT. Identification of adult mouse neurovirulence determinants of the Sindbis virus strain AR86. J Virol. 2005;79(7):4219–28.CrossRefPubMedPubMedCentral Suthar MS, Shabman R, Madric K, Lambeth C, Heise MT. Identification of adult mouse neurovirulence determinants of the Sindbis virus strain AR86. J Virol. 2005;79(7):4219–28.CrossRefPubMedPubMedCentral
35.
go back to reference Tsetsarkin KA, Vanlandingham DL, McGee CE, Higgs S. A single mutation in chikungunya virus affects vector specificity and epidemic potential. PLoS Pathog. 2007;3(12):1895–906.CrossRef Tsetsarkin KA, Vanlandingham DL, McGee CE, Higgs S. A single mutation in chikungunya virus affects vector specificity and epidemic potential. PLoS Pathog. 2007;3(12):1895–906.CrossRef
36.
go back to reference Tsetsarkin KA, McGee CE, Volk SM, Vanlandingham DL, Weaver SC, Higgs S. Epistatic roles of E2 glycoprotein mutations in adaption of chikungunya virus to Aedes albopictus and Ae. aegypti mosquitoes. PLoS One. 2009;4:e6835.CrossRefPubMedPubMedCentral Tsetsarkin KA, McGee CE, Volk SM, Vanlandingham DL, Weaver SC, Higgs S. Epistatic roles of E2 glycoprotein mutations in adaption of chikungunya virus to Aedes albopictus and Ae. aegypti mosquitoes. PLoS One. 2009;4:e6835.CrossRefPubMedPubMedCentral
37.
go back to reference Wintachai P, Wikan N, Kuadkitkan A, Jaimipuk T, Ubol S, Pulmanausahakul R, Auewarakul P, Kasinrerk W, Weng WY, Panyasrivanit M, Paemanee A, Kittisenachai S, Roytrakul S, Smith DR. Identification of prohibitin as a chikungunya virus receptor protein. J Med Virol. 2012;84(11):1757–70.CrossRefPubMed Wintachai P, Wikan N, Kuadkitkan A, Jaimipuk T, Ubol S, Pulmanausahakul R, Auewarakul P, Kasinrerk W, Weng WY, Panyasrivanit M, Paemanee A, Kittisenachai S, Roytrakul S, Smith DR. Identification of prohibitin as a chikungunya virus receptor protein. J Med Virol. 2012;84(11):1757–70.CrossRefPubMed
38.
39.
go back to reference Brackney DE, Scott JC, Sagawa F, Woodward JE, Miller NA, Schilkey FD, Mudge J, Wilusz J, Olson KE, Blair CD, Ebel GD. C6/36 Aedes albopictus cells have a dysfunctional antiviral RNA interference response. PLoS Negl Trop Dis. 2010;4(10):e856. 1–9.CrossRef Brackney DE, Scott JC, Sagawa F, Woodward JE, Miller NA, Schilkey FD, Mudge J, Wilusz J, Olson KE, Blair CD, Ebel GD. C6/36 Aedes albopictus cells have a dysfunctional antiviral RNA interference response. PLoS Negl Trop Dis. 2010;4(10):e856. 1–9.CrossRef
40.
go back to reference Barletta ABF, Silva MCN, Sorgine MHF. Validation of Aedes aegypti Aag-2 cells as a model for insect immune studies. Parasites&Vectors. 2012;5:148. Barletta ABF, Silva MCN, Sorgine MHF. Validation of Aedes aegypti Aag-2 cells as a model for insect immune studies. Parasites&Vectors. 2012;5:148.
41.
go back to reference Khan AH, Morita K, del Carmen Parquet M, Hasebe F, Mathenge EG, Igarashi A. Complete nucleotide sequence of chikungunya virus and evidence for an internal polyadenylation site. J Gen Virol. 2002;83:3075–84.CrossRefPubMed Khan AH, Morita K, del Carmen Parquet M, Hasebe F, Mathenge EG, Igarashi A. Complete nucleotide sequence of chikungunya virus and evidence for an internal polyadenylation site. J Gen Virol. 2002;83:3075–84.CrossRefPubMed
42.
go back to reference Tamura K, Stecher G, Peterson D, Filipski A, Kumar S. MEGA6: molecular evolutionary genetics analysis version 6.0. Mol Biol Evol. 2013;30(12):2725–9.CrossRefPubMedPubMedCentral Tamura K, Stecher G, Peterson D, Filipski A, Kumar S. MEGA6: molecular evolutionary genetics analysis version 6.0. Mol Biol Evol. 2013;30(12):2725–9.CrossRefPubMedPubMedCentral
43.
go back to reference Gardner CL, Burke CW, Tesfay MZ, Glass PJ, Klimstra WB, Ryman KD. Eastern and venezuelan equine encephalitis viruses differ in their ability to infect dendritic cells and macrophages: impact of altered cell tropism on pathogenesis. J Virol. 2008;82(21):10634–46.CrossRefPubMedPubMedCentral Gardner CL, Burke CW, Tesfay MZ, Glass PJ, Klimstra WB, Ryman KD. Eastern and venezuelan equine encephalitis viruses differ in their ability to infect dendritic cells and macrophages: impact of altered cell tropism on pathogenesis. J Virol. 2008;82(21):10634–46.CrossRefPubMedPubMedCentral
Metadata
Title
Differences in genome characters and cell tropisms between two chikungunya isolates of Asian lineage and Indian Ocean lineage
Authors
Xiaomin Zhang
Yalan Huang
Miao Wang
Fan Yang
Chunli Wu
Dana Huang
Linghong Xiong
Chengsong Wan
Jinquan Cheng
Renli Zhang
Publication date
01-12-2018
Publisher
BioMed Central
Published in
Virology Journal / Issue 1/2018
Electronic ISSN: 1743-422X
DOI
https://doi.org/10.1186/s12985-018-1024-5

Other articles of this Issue 1/2018

Virology Journal 1/2018 Go to the issue
Live Webinar | 27-06-2024 | 18:00 (CEST)

Keynote webinar | Spotlight on medication adherence

Live: Thursday 27th June 2024, 18:00-19:30 (CEST)

WHO estimates that half of all patients worldwide are non-adherent to their prescribed medication. The consequences of poor adherence can be catastrophic, on both the individual and population level.

Join our expert panel to discover why you need to understand the drivers of non-adherence in your patients, and how you can optimize medication adherence in your clinics to drastically improve patient outcomes.

Prof. Kevin Dolgin
Prof. Florian Limbourg
Prof. Anoop Chauhan
Developed by: Springer Medicine
Obesity Clinical Trial Summary

At a glance: The STEP trials

A round-up of the STEP phase 3 clinical trials evaluating semaglutide for weight loss in people with overweight or obesity.

Developed by: Springer Medicine

Highlights from the ACC 2024 Congress

Year in Review: Pediatric cardiology

Watch Dr. Anne Marie Valente present the last year's highlights in pediatric and congenital heart disease in the official ACC.24 Year in Review session.

Year in Review: Pulmonary vascular disease

The last year's highlights in pulmonary vascular disease are presented by Dr. Jane Leopold in this official video from ACC.24.

Year in Review: Valvular heart disease

Watch Prof. William Zoghbi present the last year's highlights in valvular heart disease from the official ACC.24 Year in Review session.

Year in Review: Heart failure and cardiomyopathies

Watch this official video from ACC.24. Dr. Biykem Bozkurt discusses last year's major advances in heart failure and cardiomyopathies.