Skip to main content
Top
Published in: Calcified Tissue International 1/2017

01-01-2017 | Original Research

Diets High in Fat or Fructose Differentially Modulate Bone Health and Lipid Metabolism

Authors: Aditi Jatkar, Irwin J. Kurland, Stefan Judex

Published in: Calcified Tissue International | Issue 1/2017

Login to get access

Abstract

Diets high in fat or carbohydrates can lead to obesity and diabetes, two interrelated conditions that have been associated with osteoporosis. Here, we contrasted the effects of a high fat (HF) versus fructose-enriched carbohydrate (CH) versus regular chow (SC) diet on bone morphology, fat content and metabolic balance in BALB/cByJ mice over a 15-week period. For 13 weeks, there were no differences in body mass between groups with small differences in the last 2 weeks. Even without the potentially confounding factor of altered body mass and levels of load bearing, HF consumption was detrimental to bone in the distal femur with lower trabecular bone volume fraction and thinner cortices than controls. These differences in bone were accompanied by twofold greater abdominal fat content and fourfold greater plasma leptin concentrations. High-fat feeding caused a decrease in de-novo lipid synthesis in the liver, kidney, white adipose and brown adipose tissue. In contrast to HF, the fructose diet did not significantly impact bone quantity or architecture. Fructose consumption also did not significantly alter leptin levels or de-novo lipid synthesis but reduced epididymal adipose tissue and increased brown adipose tissue. Cortical stiffness was lower in the CH than in HF mice. There were no differences in glucose or insulin levels between groups. Together, a diet high in fat had a negative influence on bone structure, adipose tissue deposition and lipid synthesis, changes that were largely avoided with a fructose-enriched diet.
Literature
1.
go back to reference Hill JO, Peters JC (1998) Environmental contributions to the obesity epidemic. Science (New York, N.Y.) 280:1371–1374CrossRef Hill JO, Peters JC (1998) Environmental contributions to the obesity epidemic. Science (New York, N.Y.) 280:1371–1374CrossRef
2.
go back to reference Asomaning K, Bertone-Johnson ER, Nasca PC, Hooven F, Pekow PS (2006) The association between body mass index and osteoporosis in patients referred for a bone mineral density examination. J Women’s Health 15:1028–1034CrossRef Asomaning K, Bertone-Johnson ER, Nasca PC, Hooven F, Pekow PS (2006) The association between body mass index and osteoporosis in patients referred for a bone mineral density examination. J Women’s Health 15:1028–1034CrossRef
3.
go back to reference Viapiana O, Gatti D, Dalle Grave R, Todesco T, Rossini M, Braga V, Idolazzi L, Fracassi E, Adami S (2007) Marked increases in bone mineral density and biochemical markers of bone turnover in patients with anorexia nervosa gaining weight. Bone 40:1073–1077CrossRefPubMed Viapiana O, Gatti D, Dalle Grave R, Todesco T, Rossini M, Braga V, Idolazzi L, Fracassi E, Adami S (2007) Marked increases in bone mineral density and biochemical markers of bone turnover in patients with anorexia nervosa gaining weight. Bone 40:1073–1077CrossRefPubMed
4.
go back to reference Yancy WS Jr, Olsen MK, Guyton JR, Bakst RP, Westman EC (2004) A low-carbohydrate, ketogenic diet versus a low-fat diet to treat obesity and hyperlipidemia: a randomized, controlled trial. Ann Intern Med 140:769–777CrossRefPubMed Yancy WS Jr, Olsen MK, Guyton JR, Bakst RP, Westman EC (2004) A low-carbohydrate, ketogenic diet versus a low-fat diet to treat obesity and hyperlipidemia: a randomized, controlled trial. Ann Intern Med 140:769–777CrossRefPubMed
5.
go back to reference McLaughlin T, Carter S, Lamendola C, Abbasi F, Yee G, Schaaf P, Basina M, Reaven G (2006) Effects of moderate variations in macronutrient composition on weight loss and reduction in cardiovascular disease risk in obese, insulin-resistant adults. Am J Clin Nutr 84:813–821PubMed McLaughlin T, Carter S, Lamendola C, Abbasi F, Yee G, Schaaf P, Basina M, Reaven G (2006) Effects of moderate variations in macronutrient composition on weight loss and reduction in cardiovascular disease risk in obese, insulin-resistant adults. Am J Clin Nutr 84:813–821PubMed
6.
go back to reference Sacks FM, Bray GA, Carey VJ, Smith SR, Ryan DH, Anton SD, McManus K, Champagne CM, Bishop LM, Laranjo N, Leboff MS, Rood JC, de Jonge L, Greenway FL, Loria CM, Obarzanek E, Williamson DA (2009) Comparison of weight-loss diets with different compositions of fat, protein, and carbohydrates. N Engl J Med 360:859–873CrossRefPubMedPubMedCentral Sacks FM, Bray GA, Carey VJ, Smith SR, Ryan DH, Anton SD, McManus K, Champagne CM, Bishop LM, Laranjo N, Leboff MS, Rood JC, de Jonge L, Greenway FL, Loria CM, Obarzanek E, Williamson DA (2009) Comparison of weight-loss diets with different compositions of fat, protein, and carbohydrates. N Engl J Med 360:859–873CrossRefPubMedPubMedCentral
7.
go back to reference Softic S, Cohen DE, Kahn CR (2016) Role of dietary fructose and hepatic de novo lipogenesis in fatty liver disease. Dig Dis Sci 61:1282–1293CrossRefPubMed Softic S, Cohen DE, Kahn CR (2016) Role of dietary fructose and hepatic de novo lipogenesis in fatty liver disease. Dig Dis Sci 61:1282–1293CrossRefPubMed
8.
go back to reference Chen Q, Shou P, Zheng C, Jiang M, Cao G, Yang Q, Cao J, Xie N, Velletri T, Zhang X (2016) Fate decision of mesenchymal stem cells: adipocytes or osteoblasts? Cell Death Differ 23:1128–1139CrossRefPubMedPubMedCentral Chen Q, Shou P, Zheng C, Jiang M, Cao G, Yang Q, Cao J, Xie N, Velletri T, Zhang X (2016) Fate decision of mesenchymal stem cells: adipocytes or osteoblasts? Cell Death Differ 23:1128–1139CrossRefPubMedPubMedCentral
9.
go back to reference Styner M, Thompson WR, Galior K, Uzer G, Wu X, Kadari S, Case N, Xie Z, Sen B, Romaine A, Pagnotti GM, Rubin CT, Styner MA, Horowitz MC, Rubin J (2014) Bone marrow fat accumulation accelerated by high fat diet is suppressed by exercise. Bone 64:39–46CrossRefPubMedPubMedCentral Styner M, Thompson WR, Galior K, Uzer G, Wu X, Kadari S, Case N, Xie Z, Sen B, Romaine A, Pagnotti GM, Rubin CT, Styner MA, Horowitz MC, Rubin J (2014) Bone marrow fat accumulation accelerated by high fat diet is suppressed by exercise. Bone 64:39–46CrossRefPubMedPubMedCentral
10.
go back to reference Halade GV, El Jamali A, Williams PJ, Fajardo RJ, Fernandes G (2011) Obesity-mediated inflammatory microenvironment stimulates osteoclastogenesis and bone loss in mice. Exp Gerontol 46:43–52CrossRefPubMed Halade GV, El Jamali A, Williams PJ, Fajardo RJ, Fernandes G (2011) Obesity-mediated inflammatory microenvironment stimulates osteoclastogenesis and bone loss in mice. Exp Gerontol 46:43–52CrossRefPubMed
11.
go back to reference Chan ME, Adler BJ, Green DE, Rubin CT (2012) Bone structure and B-cell populations, crippled by obesity, are partially rescued by brief daily exposure to low-magnitude mechanical signals. FASEB J 26:4855–4863CrossRefPubMedPubMedCentral Chan ME, Adler BJ, Green DE, Rubin CT (2012) Bone structure and B-cell populations, crippled by obesity, are partially rescued by brief daily exposure to low-magnitude mechanical signals. FASEB J 26:4855–4863CrossRefPubMedPubMedCentral
12.
go back to reference Shu L, Beier E, Sheu T, Zhang H, Zuscik MJ, Puzas EJ, Boyce BF, Mooney RA, Xing L (2015) High-fat diet causes bone loss in young mice by promoting osteoclastogenesis through alteration of the bone marrow environment. Calcif Tissue Int 96:313–323CrossRefPubMedPubMedCentral Shu L, Beier E, Sheu T, Zhang H, Zuscik MJ, Puzas EJ, Boyce BF, Mooney RA, Xing L (2015) High-fat diet causes bone loss in young mice by promoting osteoclastogenesis through alteration of the bone marrow environment. Calcif Tissue Int 96:313–323CrossRefPubMedPubMedCentral
13.
go back to reference Cao JJ, Gregoire BR, Gao H (2009) High-fat diet decreases cancellous bone mass but has no effect on cortical bone mass in the tibia in mice. Bone 44:1097–1104CrossRefPubMed Cao JJ, Gregoire BR, Gao H (2009) High-fat diet decreases cancellous bone mass but has no effect on cortical bone mass in the tibia in mice. Bone 44:1097–1104CrossRefPubMed
14.
go back to reference Patsch JM, Kiefer FW, Varga P, Pail P, Rauner M, Stupphann D, Resch H, Moser D, Zysset PK, Stulnig TM, Pietschmann P (2011) Increased bone resorption and impaired bone microarchitecture in short-term and extended high-fat diet-induced obesity. Metab Clin Exp 60:243–249CrossRefPubMed Patsch JM, Kiefer FW, Varga P, Pail P, Rauner M, Stupphann D, Resch H, Moser D, Zysset PK, Stulnig TM, Pietschmann P (2011) Increased bone resorption and impaired bone microarchitecture in short-term and extended high-fat diet-induced obesity. Metab Clin Exp 60:243–249CrossRefPubMed
15.
go back to reference Lecka-Czernik B, Stechschulte LA, Czernik PJ, Dowling AR (2015) High bone mass in adult mice with diet-induced obesity results from a combination of initial increase in bone mass followed by attenuation in bone formation; implications for high bone mass and decreased bone quality in obesity. Mol Cell Endocrinol 410:35–41CrossRefPubMed Lecka-Czernik B, Stechschulte LA, Czernik PJ, Dowling AR (2015) High bone mass in adult mice with diet-induced obesity results from a combination of initial increase in bone mass followed by attenuation in bone formation; implications for high bone mass and decreased bone quality in obesity. Mol Cell Endocrinol 410:35–41CrossRefPubMed
16.
go back to reference Upadhyay J, Farr OM, Mantzoros CS (2015) The role of leptin in regulating bone metabolism. Metab Clin Exp 64:105–113CrossRefPubMed Upadhyay J, Farr OM, Mantzoros CS (2015) The role of leptin in regulating bone metabolism. Metab Clin Exp 64:105–113CrossRefPubMed
17.
go back to reference Lozano I, Van der Werf R, Bietiger W, Seyfritz E, Peronet C, Pinget M, Jeandidier N, Maillard E, Marchioni E, Sigrist S, Dal S (2016) High-fructose and high-fat diet-induced disorders in rats: impact on diabetes risk, hepatic and vascular complications. Nutr Metab 13:1–13CrossRef Lozano I, Van der Werf R, Bietiger W, Seyfritz E, Peronet C, Pinget M, Jeandidier N, Maillard E, Marchioni E, Sigrist S, Dal S (2016) High-fructose and high-fat diet-induced disorders in rats: impact on diabetes risk, hepatic and vascular complications. Nutr Metab 13:1–13CrossRef
18.
go back to reference Whiting SJ, Healey A, Psiuk S, Mirwald R, Kowalski K, Bailey DA (2001) Relationship between carbonated and other low nutrient dense beverages and bone mineral content of adolescents. Nutr Res 21:1107–1115CrossRef Whiting SJ, Healey A, Psiuk S, Mirwald R, Kowalski K, Bailey DA (2001) Relationship between carbonated and other low nutrient dense beverages and bone mineral content of adolescents. Nutr Res 21:1107–1115CrossRef
19.
go back to reference Tjäderhane L, Larmas M (1998) A high sucrose diet decreases the mechanical strength of bones in growing rats. J Nutr 128:1807–1810PubMed Tjäderhane L, Larmas M (1998) A high sucrose diet decreases the mechanical strength of bones in growing rats. J Nutr 128:1807–1810PubMed
20.
go back to reference Lorincz C, Reimer RA, Boyd SK, Zernicke RF (2010) High-fat, sucrose diet impairs geometrical and mechanical properties of cortical bone in mice. Br J Nutr 103:1302–1308CrossRefPubMed Lorincz C, Reimer RA, Boyd SK, Zernicke RF (2010) High-fat, sucrose diet impairs geometrical and mechanical properties of cortical bone in mice. Br J Nutr 103:1302–1308CrossRefPubMed
21.
go back to reference Bass EF, Baile CA, Lewis RD, Giraudo SQ (2013) Bone quality and strength are greater in growing male rats fed fructose compared with glucose. Nutr Res 33:1063–1071CrossRefPubMed Bass EF, Baile CA, Lewis RD, Giraudo SQ (2013) Bone quality and strength are greater in growing male rats fed fructose compared with glucose. Nutr Res 33:1063–1071CrossRefPubMed
22.
go back to reference Yarrow JF, Toklu HZ, Balaez A, Phillips EG, Otzel DM, Chen C, Wronski TJ, Aguirre JI, Sakarya Y, Tümer N, Scarpace PJ (2016) Fructose consumption does not worsen bone deficits resulting from high-fat feeding in young male rats. Bone 85:99–106CrossRefPubMed Yarrow JF, Toklu HZ, Balaez A, Phillips EG, Otzel DM, Chen C, Wronski TJ, Aguirre JI, Sakarya Y, Tümer N, Scarpace PJ (2016) Fructose consumption does not worsen bone deficits resulting from high-fat feeding in young male rats. Bone 85:99–106CrossRefPubMed
23.
go back to reference Vos MB, Kimmons JE, Gillespie C, Welsh J, Blanck HM (2008) Dietary fructose consumption among US children and adults: the Third National Health and Nutrition Examination Survey. Medscape J Med 10:160PubMedPubMedCentral Vos MB, Kimmons JE, Gillespie C, Welsh J, Blanck HM (2008) Dietary fructose consumption among US children and adults: the Third National Health and Nutrition Examination Survey. Medscape J Med 10:160PubMedPubMedCentral
24.
go back to reference Folch J, Lees M, Sloane Stanley GH (1957) A simple method for the isolation and purification of total lipides from animal tissues. J Biol Chem 226:497–509PubMed Folch J, Lees M, Sloane Stanley GH (1957) A simple method for the isolation and purification of total lipides from animal tissues. J Biol Chem 226:497–509PubMed
25.
go back to reference Leavens KF, Easton RM, Shulman GI, Previs SF, Birnbaum MJ (2009) Akt2 is required for hepatic lipid accumulation in models of insulin resistance. Cell Metab 10:405–418CrossRefPubMedPubMedCentral Leavens KF, Easton RM, Shulman GI, Previs SF, Birnbaum MJ (2009) Akt2 is required for hepatic lipid accumulation in models of insulin resistance. Cell Metab 10:405–418CrossRefPubMedPubMedCentral
26.
go back to reference Haas JT, Miao J, Chanda D, Wang Y, Zhao E, Haas ME, Hirschey M, Vaitheesvaran B, Farese RV Jr, Kurland IJ, Graham M, Crooke R, Foufelle F, Biddinger SB (2012) Hepatic insulin signaling is required for obesity-dependent expression of SREBP-1c mRNA but not for feeding-dependent expression. Cell Metab 15:873–884CrossRefPubMedPubMedCentral Haas JT, Miao J, Chanda D, Wang Y, Zhao E, Haas ME, Hirschey M, Vaitheesvaran B, Farese RV Jr, Kurland IJ, Graham M, Crooke R, Foufelle F, Biddinger SB (2012) Hepatic insulin signaling is required for obesity-dependent expression of SREBP-1c mRNA but not for feeding-dependent expression. Cell Metab 15:873–884CrossRefPubMedPubMedCentral
27.
go back to reference Luu YK, Lublinsky S, Ozcivici E, Capilla E, Pessin JE, Rubin CT, Judex S (2009) In vivo quantification of subcutaneous and visceral adiposity by micro-computed tomography in a small animal model. Med Eng Phys 31:34–41CrossRefPubMed Luu YK, Lublinsky S, Ozcivici E, Capilla E, Pessin JE, Rubin CT, Judex S (2009) In vivo quantification of subcutaneous and visceral adiposity by micro-computed tomography in a small animal model. Med Eng Phys 31:34–41CrossRefPubMed
28.
go back to reference Judex S, Luu YK, Ozcivici E, Adler B, Lublinsky S, Rubin CT (2010) Quantification of adiposity in small rodents using micro-CT. Methods 50:14–19CrossRefPubMed Judex S, Luu YK, Ozcivici E, Adler B, Lublinsky S, Rubin CT (2010) Quantification of adiposity in small rodents using micro-CT. Methods 50:14–19CrossRefPubMed
29.
go back to reference Lublinsky S, Luu YK, Rubin CT, Judex S (2009) Automated separation of visceral and subcutaneous adiposity in in vivo microcomputed tomographies of mice. J Digit Imaging 22:222–231CrossRefPubMed Lublinsky S, Luu YK, Rubin CT, Judex S (2009) Automated separation of visceral and subcutaneous adiposity in in vivo microcomputed tomographies of mice. J Digit Imaging 22:222–231CrossRefPubMed
30.
go back to reference Lublinsky S, Ozcivici E, Judex S (2007) An automated algorithm to detect the trabecular-cortical bone interface in micro-computed tomographic images. Calcif Tissue Int 81:285–293CrossRefPubMed Lublinsky S, Ozcivici E, Judex S (2007) An automated algorithm to detect the trabecular-cortical bone interface in micro-computed tomographic images. Calcif Tissue Int 81:285–293CrossRefPubMed
31.
go back to reference Busa B, Miller LM, Rubin CT, Qin YX, Judex S (2005) Rapid establishment of chemical and mechanical properties during lamellar bone formation. Calcif Tissue Int 77:386–394CrossRefPubMed Busa B, Miller LM, Rubin CT, Qin YX, Judex S (2005) Rapid establishment of chemical and mechanical properties during lamellar bone formation. Calcif Tissue Int 77:386–394CrossRefPubMed
32.
go back to reference Scheller EL, Khoury B, Moller KL, Wee NK, Khandaker S, Kozloff KM, Abrishami SH, Zamarron BF, Singer K (2016) Changes in skeletal integrity and marrow adiposity during high-fat diet and after weight loss. Front Endocrinol 7. doi:10.3389/fendo.2016.00102 Scheller EL, Khoury B, Moller KL, Wee NK, Khandaker S, Kozloff KM, Abrishami SH, Zamarron BF, Singer K (2016) Changes in skeletal integrity and marrow adiposity during high-fat diet and after weight loss. Front Endocrinol 7. doi:10.​3389/​fendo.​2016.​00102
33.
go back to reference Buie HR, Moore CP, Boyd SK (2008) Postpubertal architectural developmental patterns differ between the L3 vertebra and proximal tibia in three inbred strains of mice. J Bone Miner Res 23:2048–2059CrossRefPubMed Buie HR, Moore CP, Boyd SK (2008) Postpubertal architectural developmental patterns differ between the L3 vertebra and proximal tibia in three inbred strains of mice. J Bone Miner Res 23:2048–2059CrossRefPubMed
34.
go back to reference Zernicke RF, Salem GJ, Barnard RJ, Schramm E (1995) Long-term, high-fat-sucrose diet alters rat femoral neck and vertebral morphology, bone mineral content, and mechanical properties. Bone 16:25–31CrossRefPubMed Zernicke RF, Salem GJ, Barnard RJ, Schramm E (1995) Long-term, high-fat-sucrose diet alters rat femoral neck and vertebral morphology, bone mineral content, and mechanical properties. Bone 16:25–31CrossRefPubMed
36.
go back to reference Tsanzi E, Light HR, Tou JC (2008) The effect of feeding different sugar-sweetened beverages to growing female Sprague–Dawley rats on bone mass and strength. Bone 42:960–968CrossRefPubMed Tsanzi E, Light HR, Tou JC (2008) The effect of feeding different sugar-sweetened beverages to growing female Sprague–Dawley rats on bone mass and strength. Bone 42:960–968CrossRefPubMed
37.
go back to reference Bergstra AE, Lemmens AG, Beynen AC (1993) Dietary fructose vs. glucose stimulates nephrocalcinogenesis in female rats. J Nutr 123:1320–1327PubMed Bergstra AE, Lemmens AG, Beynen AC (1993) Dietary fructose vs. glucose stimulates nephrocalcinogenesis in female rats. J Nutr 123:1320–1327PubMed
38.
go back to reference Milne DB, Nielsen FH (2000) The interaction between dietary fructose and magnesium adversely affects macromineral homeostasis in men. J Am Coll Nutr 19:31–37CrossRefPubMed Milne DB, Nielsen FH (2000) The interaction between dietary fructose and magnesium adversely affects macromineral homeostasis in men. J Am Coll Nutr 19:31–37CrossRefPubMed
39.
go back to reference Miller LM, Little W, Schirmer A, Sheik F, Busa B, Judex S (2007) Accretion of bone quantity and quality in the developing mouse skeleton. J Bone Miner Res 22:1037–1045CrossRefPubMed Miller LM, Little W, Schirmer A, Sheik F, Busa B, Judex S (2007) Accretion of bone quantity and quality in the developing mouse skeleton. J Bone Miner Res 22:1037–1045CrossRefPubMed
40.
go back to reference Tommasini SM, Trinward A, Acerbo AS, De Carlo F, Miller LM, Judex S (2012) Changes in intracortical microporosities induced by pharmaceutical treatment of osteoporosis as detected by high resolution micro-CT. Bone 50:596–604CrossRefPubMed Tommasini SM, Trinward A, Acerbo AS, De Carlo F, Miller LM, Judex S (2012) Changes in intracortical microporosities induced by pharmaceutical treatment of osteoporosis as detected by high resolution micro-CT. Bone 50:596–604CrossRefPubMed
41.
go back to reference Acerbo AS, Carr GL, Judex S, Miller LM (2012) Imaging the material properties of bone specimens using reflection-based infrared microspectroscopy. Anal Chem 84:3607–3613CrossRefPubMedPubMedCentral Acerbo AS, Carr GL, Judex S, Miller LM (2012) Imaging the material properties of bone specimens using reflection-based infrared microspectroscopy. Anal Chem 84:3607–3613CrossRefPubMedPubMedCentral
42.
go back to reference Van Heek M, Compton DS, France CF, Tedesco RP, Fawzi AB, Graziano MP, Sybertz EJ, Strader CD, Davis HR Jr (1997) Diet-induced obese mice develop peripheral, but not central, resistance to leptin. J Clin Investig 99:385–390CrossRefPubMedPubMedCentral Van Heek M, Compton DS, France CF, Tedesco RP, Fawzi AB, Graziano MP, Sybertz EJ, Strader CD, Davis HR Jr (1997) Diet-induced obese mice develop peripheral, but not central, resistance to leptin. J Clin Investig 99:385–390CrossRefPubMedPubMedCentral
43.
go back to reference Montgomery MK, Hallahan NL, Brown SH, Liu M, Mitchell TW, Cooney GJ, Turner N (2013) Mouse strain-dependent variation in obesity and glucose homeostasis in response to high-fat feeding. Diabetologia 56:1129–1139CrossRefPubMed Montgomery MK, Hallahan NL, Brown SH, Liu M, Mitchell TW, Cooney GJ, Turner N (2013) Mouse strain-dependent variation in obesity and glucose homeostasis in response to high-fat feeding. Diabetologia 56:1129–1139CrossRefPubMed
44.
go back to reference Choi MS, Kim YJ, Kwon EY, Ryoo JY, Kim SR, Jung UJ (2015) High-fat diet decreases energy expenditure and expression of genes controlling lipid metabolism, mitochondrial function and skeletal system development in the adipose tissue, along with increased expression of extracellular matrix remodelling- and inflammation-related genes. Br J Nutr 113:867–877CrossRefPubMed Choi MS, Kim YJ, Kwon EY, Ryoo JY, Kim SR, Jung UJ (2015) High-fat diet decreases energy expenditure and expression of genes controlling lipid metabolism, mitochondrial function and skeletal system development in the adipose tissue, along with increased expression of extracellular matrix remodelling- and inflammation-related genes. Br J Nutr 113:867–877CrossRefPubMed
45.
go back to reference Hwa JJ, Fawzi AB, Graziano MP, Ghibaudi L, Williams P, Van Heek M, Davis H, Rudinski M, Sybertz E, Strader CD (1997) Leptin increases energy expenditure and selectively promotes fat metabolism in ob/ob mice. Am J Physiol 272:R1204–R1209PubMed Hwa JJ, Fawzi AB, Graziano MP, Ghibaudi L, Williams P, Van Heek M, Davis H, Rudinski M, Sybertz E, Strader CD (1997) Leptin increases energy expenditure and selectively promotes fat metabolism in ob/ob mice. Am J Physiol 272:R1204–R1209PubMed
46.
go back to reference Lin S, Thomas T, Storlien L, Huang X (2000) Development of high fat diet-induced obesity and leptin resistance in C 57 Bl/6 J mice. Int J Obes 24:639–646CrossRef Lin S, Thomas T, Storlien L, Huang X (2000) Development of high fat diet-induced obesity and leptin resistance in C 57 Bl/6 J mice. Int J Obes 24:639–646CrossRef
47.
go back to reference Delgado TC, Pinheiro D, Caldeira M, Castro MM, Geraldes CF, Lopez-Larrubia P, Cerdan S, Jones JG (2009) Sources of hepatic triglyceride accumulation during high-fat feeding in the healthy rat. NMR Biomed 22:310–317CrossRefPubMed Delgado TC, Pinheiro D, Caldeira M, Castro MM, Geraldes CF, Lopez-Larrubia P, Cerdan S, Jones JG (2009) Sources of hepatic triglyceride accumulation during high-fat feeding in the healthy rat. NMR Biomed 22:310–317CrossRefPubMed
48.
go back to reference Oosterveer MH, van Dijk TH, Tietge UJF, Boer T, Havinga R, Stellaard F, Groen AK, Kuipers F, Reijngoud D-J (2009) High fat feeding induces hepatic fatty acid elongation in mice. PLoS ONE 4:e6066CrossRefPubMedPubMedCentral Oosterveer MH, van Dijk TH, Tietge UJF, Boer T, Havinga R, Stellaard F, Groen AK, Kuipers F, Reijngoud D-J (2009) High fat feeding induces hepatic fatty acid elongation in mice. PLoS ONE 4:e6066CrossRefPubMedPubMedCentral
Metadata
Title
Diets High in Fat or Fructose Differentially Modulate Bone Health and Lipid Metabolism
Authors
Aditi Jatkar
Irwin J. Kurland
Stefan Judex
Publication date
01-01-2017
Publisher
Springer US
Published in
Calcified Tissue International / Issue 1/2017
Print ISSN: 0171-967X
Electronic ISSN: 1432-0827
DOI
https://doi.org/10.1007/s00223-016-0205-8

Other articles of this Issue 1/2017

Calcified Tissue International 1/2017 Go to the issue
Live Webinar | 27-06-2024 | 18:00 (CEST)

Keynote webinar | Spotlight on medication adherence

Live: Thursday 27th June 2024, 18:00-19:30 (CEST)

WHO estimates that half of all patients worldwide are non-adherent to their prescribed medication. The consequences of poor adherence can be catastrophic, on both the individual and population level.

Join our expert panel to discover why you need to understand the drivers of non-adherence in your patients, and how you can optimize medication adherence in your clinics to drastically improve patient outcomes.

Prof. Kevin Dolgin
Prof. Florian Limbourg
Prof. Anoop Chauhan
Developed by: Springer Medicine
Obesity Clinical Trial Summary

At a glance: The STEP trials

A round-up of the STEP phase 3 clinical trials evaluating semaglutide for weight loss in people with overweight or obesity.

Developed by: Springer Medicine

Highlights from the ACC 2024 Congress

Year in Review: Pediatric cardiology

Watch Dr. Anne Marie Valente present the last year's highlights in pediatric and congenital heart disease in the official ACC.24 Year in Review session.

Year in Review: Pulmonary vascular disease

The last year's highlights in pulmonary vascular disease are presented by Dr. Jane Leopold in this official video from ACC.24.

Year in Review: Valvular heart disease

Watch Prof. William Zoghbi present the last year's highlights in valvular heart disease from the official ACC.24 Year in Review session.

Year in Review: Heart failure and cardiomyopathies

Watch this official video from ACC.24. Dr. Biykem Bozkurt discusses last year's major advances in heart failure and cardiomyopathies.