Skip to main content
Top
Published in: Basic Research in Cardiology 3/2016

01-05-2016 | Original Contribution

Dietary nitrate improves cardiac contractility via enhanced cellular Ca2+ signaling

Authors: Gianluigi Pironti, Niklas Ivarsson, Jiangning Yang, Alex Bersellini Farinotti, William Jonsson, Shi-Jin Zhang, Duygu Bas, Camilla I. Svensson, Håkan Westerblad, Eddie Weitzberg, Jon O. Lundberg, John Pernow, Johanna Lanner, Daniel C. Andersson

Published in: Basic Research in Cardiology | Issue 3/2016

Login to get access

Abstract

The inorganic anion nitrate (NO3 ), which is naturally enriched in certain vegetables (e.g., spinach and beetroot), has emerged as a dietary component that can regulate diverse bodily functions, including blood pressure, mitochondrial efficiency, and skeletal muscle force. It is not known if dietary nitrate improves cardiac contractility. To test this, mice were supplemented for 1–2 weeks with sodium nitrate in the drinking water at a dose similar to a green diet. The hearts from nitrate-treated mice showed increased left ventricular pressure and peak rate of pressure development as measured with the Langendorff heart technique. Cardiomyocytes from hearts of nitrate-treated and control animals were incubated with the fluorescent indicator Fluo-3 to measure cytoplasmic free [Ca2+] and fractional shortening. Cardiomyocytes from nitrate-treated mice displayed increased fractional shortening, which was linked to larger Ca2+ transients. Moreover, nitrate hearts displayed increased protein expression of the l-type Ca2+ channel/dihydropyridine receptor and peak l-type Ca2+ channel currents. The nitrate-treated hearts displayed increased concentration of cAMP but unchanged levels of cGMP compared with controls. These findings provide the first evidence that dietary nitrate can affect the expression of important Ca2+ handling proteins in the heart, resulting in increased cardiomyocyte Ca2+ signaling and improved left ventricular contractile function. Our observation shows that dietary nitrate impacts cardiac function and adds understanding to inorganic nitrate as a physiological modulator.
Literature
1.
go back to reference Andersson DC, Betzenhauser MJ, Marks AR (2012) Cardiac excitation–contraction coupling. In: Hill JA, Olson EN (eds) Muscle: fundamental biology and mechanisms of disease. Academic Press, Burlington Andersson DC, Betzenhauser MJ, Marks AR (2012) Cardiac excitation–contraction coupling. In: Hill JA, Olson EN (eds) Muscle: fundamental biology and mechanisms of disease. Academic Press, Burlington
3.
go back to reference Andersson DC, Fauconnier J, Park CB, Zhang SJ, Thireau J, Ivarsson N, Larsson NG, Westerblad H (2011) Enhanced cardiomyocyte Ca2+ cycling precedes terminal AV-block in mitochondrial cardiomyopathy Mterf3 KO mice. Antioxid Redox Signal 15:2455–2464. doi:10.1089/ars.2011.3915 CrossRefPubMed Andersson DC, Fauconnier J, Park CB, Zhang SJ, Thireau J, Ivarsson N, Larsson NG, Westerblad H (2011) Enhanced cardiomyocyte Ca2+ cycling precedes terminal AV-block in mitochondrial cardiomyopathy Mterf3 KO mice. Antioxid Redox Signal 15:2455–2464. doi:10.​1089/​ars.​2011.​3915 CrossRefPubMed
6.
7.
go back to reference Bass A, Brdiczka D, Eyer P, Hofer S, Pette D (1969) Metabolic differentiation of distinct muscle types at the level of enzymatic organization. Eur J Biochem 10:198–206CrossRefPubMed Bass A, Brdiczka D, Eyer P, Hofer S, Pette D (1969) Metabolic differentiation of distinct muscle types at the level of enzymatic organization. Eur J Biochem 10:198–206CrossRefPubMed
8.
go back to reference Bers DM (2001) Excitation–contraction coupling and cardiac contractile force. Kluwer Academic Publishers, DordrechtCrossRef Bers DM (2001) Excitation–contraction coupling and cardiac contractile force. Kluwer Academic Publishers, DordrechtCrossRef
9.
go back to reference Blaustein MP, Lederer WJ (1999) Sodium/calcium exchange: its physiological implications. Physiol Rev 79:763–854PubMed Blaustein MP, Lederer WJ (1999) Sodium/calcium exchange: its physiological implications. Physiol Rev 79:763–854PubMed
11.
go back to reference Campbell DL, Stamler JS, Strauss HC (1996) Redox modulation of l-type calcium channels in ferret ventricular myocytes. Dual mechanism regulation by nitric oxide and S-nitrosothiols. J Gen Physiol 108:277–293CrossRefPubMed Campbell DL, Stamler JS, Strauss HC (1996) Redox modulation of l-type calcium channels in ferret ventricular myocytes. Dual mechanism regulation by nitric oxide and S-nitrosothiols. J Gen Physiol 108:277–293CrossRefPubMed
12.
go back to reference Carlstrom M, Liu M, Yang T, Zollbrecht C, Huang L, Peleli M, Borniquel S, Kishikawa H, Hezel M, Persson AE, Weitzberg E, Lundberg JO (2015) Cross-talk between nitrate-nitrite-NO and NO synthase pathways in control of vascular NO homeostasis. Antioxid Redox Signal 23:295–306. doi:10.1089/ars.2013.5481 CrossRefPubMedPubMedCentral Carlstrom M, Liu M, Yang T, Zollbrecht C, Huang L, Peleli M, Borniquel S, Kishikawa H, Hezel M, Persson AE, Weitzberg E, Lundberg JO (2015) Cross-talk between nitrate-nitrite-NO and NO synthase pathways in control of vascular NO homeostasis. Antioxid Redox Signal 23:295–306. doi:10.​1089/​ars.​2013.​5481 CrossRefPubMedPubMedCentral
13.
go back to reference Carlstrom M, Persson AE, Larsson E, Hezel M, Scheffer PG, Teerlink T, Weitzberg E, Lundberg JO (2011) Dietary nitrate attenuates oxidative stress, prevents cardiac and renal injuries, and reduces blood pressure in salt-induced hypertension. Cardiovasc Res 89:574–585. doi:10.1093/cvr/cvq366 CrossRefPubMed Carlstrom M, Persson AE, Larsson E, Hezel M, Scheffer PG, Teerlink T, Weitzberg E, Lundberg JO (2011) Dietary nitrate attenuates oxidative stress, prevents cardiac and renal injuries, and reduces blood pressure in salt-induced hypertension. Cardiovasc Res 89:574–585. doi:10.​1093/​cvr/​cvq366 CrossRefPubMed
14.
16.
go back to reference Heinzel FR, Gres P, Boengler K, Duschin A, Konietzka I, Rassaf T, Snedovskaya J, Meyer S, Skyschally A, Kelm M, Heusch G, Schulz R (2008) Inducible nitric oxide synthase expression and cardiomyocyte dysfunction during sustained moderate ischemia in pigs. Circ Res 103:1120–1127. doi:10.1161/CIRCRESAHA.108.186015 CrossRefPubMed Heinzel FR, Gres P, Boengler K, Duschin A, Konietzka I, Rassaf T, Snedovskaya J, Meyer S, Skyschally A, Kelm M, Heusch G, Schulz R (2008) Inducible nitric oxide synthase expression and cardiomyocyte dysfunction during sustained moderate ischemia in pigs. Circ Res 103:1120–1127. doi:10.​1161/​CIRCRESAHA.​108.​186015 CrossRefPubMed
18.
go back to reference Heusch G, Post H, Michel MC, Kelm M, Schulz R (2000) Endogenous nitric oxide and myocardial adaptation to ischemia. Circ Res 87:146–152CrossRefPubMed Heusch G, Post H, Michel MC, Kelm M, Schulz R (2000) Endogenous nitric oxide and myocardial adaptation to ischemia. Circ Res 87:146–152CrossRefPubMed
20.
go back to reference Hoydal MA, Wisloff U, Kemi OJ, Britton SL, Koch LG, Smith GL, Ellingsen O (2007) Nitric oxide synthase type-1 modulates cardiomyocyte contractility and calcium handling: association with low intrinsic aerobic capacity. Eur J Cardiovasc Prev Rehabil 14:319–325. doi:10.1097/HJR.0b013e3280128bef CrossRefPubMed Hoydal MA, Wisloff U, Kemi OJ, Britton SL, Koch LG, Smith GL, Ellingsen O (2007) Nitric oxide synthase type-1 modulates cardiomyocyte contractility and calcium handling: association with low intrinsic aerobic capacity. Eur J Cardiovasc Prev Rehabil 14:319–325. doi:10.​1097/​HJR.​0b013e3280128bef​ CrossRefPubMed
21.
go back to reference Kamp TJ, Hell JW (2000) Regulation of cardiac l-type calcium channels by protein kinase A and protein kinase C. Circ Res 87:1095–1102CrossRefPubMed Kamp TJ, Hell JW (2000) Regulation of cardiac l-type calcium channels by protein kinase A and protein kinase C. Circ Res 87:1095–1102CrossRefPubMed
23.
go back to reference Kojda G, Kottenberg K, Nix P, Schluter KD, Piper HM, Noack E (1996) Low increase in cGMP induced by organic nitrates and nitrovasodilators improves contractile response of rat ventricular myocytes. Circ Res 78:91–101CrossRefPubMed Kojda G, Kottenberg K, Nix P, Schluter KD, Piper HM, Noack E (1996) Low increase in cGMP induced by organic nitrates and nitrovasodilators improves contractile response of rat ventricular myocytes. Circ Res 78:91–101CrossRefPubMed
29.
go back to reference Lunz W, Natali AJ, Carneiro MA, Dos Santos Aggum Capettini L, Baldo MP, de Souza MO, Quintao JF, Bozi LH, Lemos VS, Mill JG (2011) Short-term in vivo inhibition of nitric oxide synthase with L-NAME influences the contractile function of single left ventricular myocytes in rats. Can J Physiol Pharmacol 89:305–310. doi:10.1139/Y11-015 CrossRefPubMed Lunz W, Natali AJ, Carneiro MA, Dos Santos Aggum Capettini L, Baldo MP, de Souza MO, Quintao JF, Bozi LH, Lemos VS, Mill JG (2011) Short-term in vivo inhibition of nitric oxide synthase with L-NAME influences the contractile function of single left ventricular myocytes in rats. Can J Physiol Pharmacol 89:305–310. doi:10.​1139/​Y11-015 CrossRefPubMed
31.
go back to reference Post H, Schulz R, Gres P, Heusch G (2001) No involvement of nitric oxide in the limitation of beta-adrenergic inotropic responsiveness during ischemia. Am J Physiol Heart Circ Physiol 281:H2392–H2397PubMed Post H, Schulz R, Gres P, Heusch G (2001) No involvement of nitric oxide in the limitation of beta-adrenergic inotropic responsiveness during ischemia. Am J Physiol Heart Circ Physiol 281:H2392–H2397PubMed
33.
go back to reference Schindelin J, Arganda-Carreras I, Frise E, Kaynig V, Longair M, Pietzsch T, Preibisch S, Rueden C, Saalfeld S, Schmid B, Tinevez JY, White DJ, Hartenstein V, Eliceiri K, Tomancak P, Cardona A (2012) Fiji: an open-source platform for biological-image analysis. Nat Methods 9:676–682. doi:10.1038/nmeth.2019 CrossRefPubMed Schindelin J, Arganda-Carreras I, Frise E, Kaynig V, Longair M, Pietzsch T, Preibisch S, Rueden C, Saalfeld S, Schmid B, Tinevez JY, White DJ, Hartenstein V, Eliceiri K, Tomancak P, Cardona A (2012) Fiji: an open-source platform for biological-image analysis. Nat Methods 9:676–682. doi:10.​1038/​nmeth.​2019 CrossRefPubMed
35.
go back to reference Shiva S, Sack MN, Greer JJ, Duranski M, Ringwood LA, Burwell L, Wang X, MacArthur PH, Shoja A, Raghavachari N, Calvert JW, Brookes PS, Lefer DJ, Gladwin MT (2007) Nitrite augments tolerance to ischemia/reperfusion injury via the modulation of mitochondrial electron transfer. J Exp Med 204:2089–2102. doi:10.1084/jem.20070198 CrossRefPubMedPubMedCentral Shiva S, Sack MN, Greer JJ, Duranski M, Ringwood LA, Burwell L, Wang X, MacArthur PH, Shoja A, Raghavachari N, Calvert JW, Brookes PS, Lefer DJ, Gladwin MT (2007) Nitrite augments tolerance to ischemia/reperfusion injury via the modulation of mitochondrial electron transfer. J Exp Med 204:2089–2102. doi:10.​1084/​jem.​20070198 CrossRefPubMedPubMedCentral
36.
37.
go back to reference St Pierre J, Drori S, Uldry M, Silvaggi JM, Rhee J, Jager S, Handschin C, Zheng K, Lin J, Yang W, Simon DK, Bachoo R, Spiegelman BM (2006) Suppression of reactive oxygen species and neurodegeneration by the PGC-1 transcriptional coactivators. Cell 127:397–408CrossRefPubMed St Pierre J, Drori S, Uldry M, Silvaggi JM, Rhee J, Jager S, Handschin C, Zheng K, Lin J, Yang W, Simon DK, Bachoo R, Spiegelman BM (2006) Suppression of reactive oxygen species and neurodegeneration by the PGC-1 transcriptional coactivators. Cell 127:397–408CrossRefPubMed
38.
go back to reference Taguchi K, Ueda M, Kubo T (1997) Effects of cAMP and cGMP on l-type calcium channel currents in rat mesenteric artery cells. Jpn J Pharmacol 74:179–186CrossRefPubMed Taguchi K, Ueda M, Kubo T (1997) Effects of cAMP and cGMP on l-type calcium channel currents in rat mesenteric artery cells. Jpn J Pharmacol 74:179–186CrossRefPubMed
39.
go back to reference Tang M, Zhang X, Li Y, Guan Y, Ai X, Szeto C, Nakayama H, Zhang H, Ge S, Molkentin JD, Houser SR, Chen X (2010) Enhanced basal contractility but reduced excitation–contraction coupling efficiency and beta-adrenergic reserve of hearts with increased Cav1.2 activity. Am J Physiol Heart Circ Physiol 299:H519–H528. doi:10.1152/ajpheart.00265.2010 CrossRefPubMedPubMedCentral Tang M, Zhang X, Li Y, Guan Y, Ai X, Szeto C, Nakayama H, Zhang H, Ge S, Molkentin JD, Houser SR, Chen X (2010) Enhanced basal contractility but reduced excitation–contraction coupling efficiency and beta-adrenergic reserve of hearts with increased Cav1.2 activity. Am J Physiol Heart Circ Physiol 299:H519–H528. doi:10.​1152/​ajpheart.​00265.​2010 CrossRefPubMedPubMedCentral
40.
42.
go back to reference Vila-Petroff MG, Younes A, Egan J, Lakatta EG, Sollott SJ (1999) Activation of distinct cAMP-dependent and cGMP-dependent pathways by nitric oxide in cardiac myocytes. Circ Res 84:1020–1031CrossRefPubMed Vila-Petroff MG, Younes A, Egan J, Lakatta EG, Sollott SJ (1999) Activation of distinct cAMP-dependent and cGMP-dependent pathways by nitric oxide in cardiac myocytes. Circ Res 84:1020–1031CrossRefPubMed
43.
go back to reference Yamada T, Fedotovskaya O, Cheng AJ, Cornachione AS, Minozzo FC, Aulin C, Friden C, Turesson C, Andersson DC, Glenmark B, Lundberg IE, Rassier DE, Westerblad H, Lanner JT (2014) Nitrosative modifications of the Ca2+ release complex and actin underlie arthritis-induced muscle weakness. Ann Rheum Dis. doi:10.1136/annrheumdis-2013-205007 PubMedPubMedCentral Yamada T, Fedotovskaya O, Cheng AJ, Cornachione AS, Minozzo FC, Aulin C, Friden C, Turesson C, Andersson DC, Glenmark B, Lundberg IE, Rassier DE, Westerblad H, Lanner JT (2014) Nitrosative modifications of the Ca2+ release complex and actin underlie arthritis-induced muscle weakness. Ann Rheum Dis. doi:10.​1136/​annrheumdis-2013-205007 PubMedPubMedCentral
45.
go back to reference Zamani P, Rawat D, Shiva-Kumar P, Geraci S, Bhuva R, Konda P, Doulias PT, Ischiropoulos H, Townsend RR, Margulies KB, Cappola TP, Poole DC, Chirinos JA (2015) Effect of inorganic nitrate on exercise capacity in heart failure with preserved ejection fraction. Circulation 131:371–380. doi:10.1161/CIRCULATIONAHA.114.012957 CrossRefPubMed Zamani P, Rawat D, Shiva-Kumar P, Geraci S, Bhuva R, Konda P, Doulias PT, Ischiropoulos H, Townsend RR, Margulies KB, Cappola TP, Poole DC, Chirinos JA (2015) Effect of inorganic nitrate on exercise capacity in heart failure with preserved ejection fraction. Circulation 131:371–380. doi:10.​1161/​CIRCULATIONAHA.​114.​012957 CrossRefPubMed
Metadata
Title
Dietary nitrate improves cardiac contractility via enhanced cellular Ca2+ signaling
Authors
Gianluigi Pironti
Niklas Ivarsson
Jiangning Yang
Alex Bersellini Farinotti
William Jonsson
Shi-Jin Zhang
Duygu Bas
Camilla I. Svensson
Håkan Westerblad
Eddie Weitzberg
Jon O. Lundberg
John Pernow
Johanna Lanner
Daniel C. Andersson
Publication date
01-05-2016
Publisher
Springer Berlin Heidelberg
Published in
Basic Research in Cardiology / Issue 3/2016
Print ISSN: 0300-8428
Electronic ISSN: 1435-1803
DOI
https://doi.org/10.1007/s00395-016-0551-8

Other articles of this Issue 3/2016

Basic Research in Cardiology 3/2016 Go to the issue