Skip to main content
Top
Published in: Respiratory Research 1/2011

Open Access 01-12-2011 | Research

Diacylglycerol regulates acute hypoxic pulmonary vasoconstriction via TRPC6

Authors: Beate Fuchs, Markus Rupp, Hossein A Ghofrani, Ralph T Schermuly, Werner Seeger, Friedrich Grimminger, Thomas Gudermann, Alexander Dietrich, Norbert Weissmann

Published in: Respiratory Research | Issue 1/2011

Login to get access

Abstract

Background

Hypoxic pulmonary vasoconstriction (HPV) is an essential mechanism of the lung that matches blood perfusion to alveolar ventilation to optimize gas exchange. Recently we have demonstrated that acute but not sustained HPV is critically dependent on the classical transient receptor potential 6 (TRPC6) channel. However, the mechanism of TRPC6 activation during acute HPV remains elusive. We hypothesize that a diacylglycerol (DAG)-dependent activation of TRPC6 regulates acute HPV.

Methods

We investigated the effect of the DAG analog 1-oleoyl-2-acetyl-sn-glycerol (OAG) on normoxic vascular tone in isolated perfused and ventilated mouse lungs from TRPC6-deficient and wild-type mice. Moreover, the effects of OAG, the DAG kinase inhibitor R59949 and the phospholipase C inhibitor U73122 on the strength of HPV were investigated compared to those on non-hypoxia-induced vasoconstriction elicited by the thromboxane mimeticum U46619.

Results

OAG increased normoxic vascular tone in lungs from wild-type mice, but not in lungs from TRPC6-deficient mice. Under conditions of repetitive hypoxic ventilation, OAG as well as R59949 dose-dependently attenuated the strength of acute HPV whereas U46619-induced vasoconstrictions were not reduced. Like OAG, R59949 mimicked HPV, since it induced a dose-dependent vasoconstriction during normoxic ventilation. In contrast, U73122, a blocker of DAG synthesis, inhibited acute HPV whereas U73343, the inactive form of U73122, had no effect on HPV.

Conclusion

These findings support the conclusion that the TRPC6-dependency of acute HPV is induced via DAG.
Appendix
Available only for authorised users
Literature
1.
go back to reference Weissmann N, Sommer N, Schermuly RT, Ghofrani HA, Seeger W, Grimminger F: Oxygen sensors in hypoxic pulmonary vasoconstriction. Cardiovasc Res. 2006, 71: 620-629. 10.1016/j.cardiores.2006.04.009.CrossRefPubMed Weissmann N, Sommer N, Schermuly RT, Ghofrani HA, Seeger W, Grimminger F: Oxygen sensors in hypoxic pulmonary vasoconstriction. Cardiovasc Res. 2006, 71: 620-629. 10.1016/j.cardiores.2006.04.009.CrossRefPubMed
2.
go back to reference Weigand L, Foxson J, Wang J, Shimoda LA, Sylvester JT: Inhibition of hypoxic pulmonary vasoconstriction by antagonists of store-operated Ca2+ and nonselective cation channels. Am J Physiol Lung Cell Mol Physiol. 2005, 289: L5-L13. 10.1152/ajplung.00044.2005.CrossRefPubMed Weigand L, Foxson J, Wang J, Shimoda LA, Sylvester JT: Inhibition of hypoxic pulmonary vasoconstriction by antagonists of store-operated Ca2+ and nonselective cation channels. Am J Physiol Lung Cell Mol Physiol. 2005, 289: L5-L13. 10.1152/ajplung.00044.2005.CrossRefPubMed
3.
go back to reference Wang J, Shimoda LA, Weigand L, Wang W, Sun D, Sylvester JT: Acute hypoxia increases intracellular [Ca2+] in pulmonary arterial smooth muscle by enhancing capacitative Ca2+ entry. Am J Physiol Lung Cell Mol Physiol. 2005, 288: L1059-L1069. 10.1152/ajplung.00448.2004.CrossRefPubMed Wang J, Shimoda LA, Weigand L, Wang W, Sun D, Sylvester JT: Acute hypoxia increases intracellular [Ca2+] in pulmonary arterial smooth muscle by enhancing capacitative Ca2+ entry. Am J Physiol Lung Cell Mol Physiol. 2005, 288: L1059-L1069. 10.1152/ajplung.00448.2004.CrossRefPubMed
4.
go back to reference McDaniel SS, Platoshyn O, Wang J, Yu Y, Sweeney M, Krick S, Rubin LJ, Yuan JX: Capacitative Ca(2+) entry in agonist-induced pulmonary vasoconstriction. Am J Physiol Lung Cell Mol Physiol. 2001, 280: L870-L880.PubMed McDaniel SS, Platoshyn O, Wang J, Yu Y, Sweeney M, Krick S, Rubin LJ, Yuan JX: Capacitative Ca(2+) entry in agonist-induced pulmonary vasoconstriction. Am J Physiol Lung Cell Mol Physiol. 2001, 280: L870-L880.PubMed
5.
go back to reference Ward JP, Robertson TP, Aaronson PI: Capacitative calcium entry: a central role in hypoxic pulmonary vasoconstriction?. Am J Physiol Lung Cell Mol Physiol. 2005, 289: L2-L4. 10.1152/ajplung.00101.2005.CrossRefPubMed Ward JP, Robertson TP, Aaronson PI: Capacitative calcium entry: a central role in hypoxic pulmonary vasoconstriction?. Am J Physiol Lung Cell Mol Physiol. 2005, 289: L2-L4. 10.1152/ajplung.00101.2005.CrossRefPubMed
6.
go back to reference Aaronson PI, Robertson TP, Knock GA, Becker S, Lewis TH, Snetkov V, Ward JP: Hypoxic pulmonary vasoconstriction: mechanisms and controversies. J Physiol. 2006, 570: 53-58. 10.1113/jphysiol.2005.098855.CrossRefPubMed Aaronson PI, Robertson TP, Knock GA, Becker S, Lewis TH, Snetkov V, Ward JP: Hypoxic pulmonary vasoconstriction: mechanisms and controversies. J Physiol. 2006, 570: 53-58. 10.1113/jphysiol.2005.098855.CrossRefPubMed
7.
go back to reference Dietrich A, Mederos YS, Gollasch M, Gross V, Storch U, Dubrovska G, Obst M, Yildirim E, Salanova B, Kalwa H, Essin K, Pinkenburg O, Luft FC, Gudermann T, Birnbaumer L: Increased vascular smooth muscle contractility in TRPC6-/- mice. Mol Cell Biol. 2005, 25: 6980-6989. 10.1128/MCB.25.16.6980-6989.2005.CrossRefPubMedPubMedCentral Dietrich A, Mederos YS, Gollasch M, Gross V, Storch U, Dubrovska G, Obst M, Yildirim E, Salanova B, Kalwa H, Essin K, Pinkenburg O, Luft FC, Gudermann T, Birnbaumer L: Increased vascular smooth muscle contractility in TRPC6-/- mice. Mol Cell Biol. 2005, 25: 6980-6989. 10.1128/MCB.25.16.6980-6989.2005.CrossRefPubMedPubMedCentral
8.
go back to reference Owsianik G, Talavera K, Voets T, Nilius B: Permeation and selectivity of TRP channels. Annu Rev Physiol. 2006, 68: 685-717. 10.1146/annurev.physiol.68.040204.101406.CrossRefPubMed Owsianik G, Talavera K, Voets T, Nilius B: Permeation and selectivity of TRP channels. Annu Rev Physiol. 2006, 68: 685-717. 10.1146/annurev.physiol.68.040204.101406.CrossRefPubMed
9.
go back to reference Weissmann N, Dietrich A, Fuchs B, Kalwa H, Ay M, Dumitrascu R, Olschewski A, Storch U, Schnitzler M, Ghofrani HA, Schermuly RT, Pinkenburg O, Seeger W, Grimminger F, Gudermann T: Classical transient receptor potential channel 6 (TRPC6) is essential for hypoxic pulmonary vasoconstriction and alveolar gas exchange. Proc Natl Acad Sci USA. 2006, 103: 19093-19098. 10.1073/pnas.0606728103.CrossRefPubMedPubMedCentral Weissmann N, Dietrich A, Fuchs B, Kalwa H, Ay M, Dumitrascu R, Olschewski A, Storch U, Schnitzler M, Ghofrani HA, Schermuly RT, Pinkenburg O, Seeger W, Grimminger F, Gudermann T: Classical transient receptor potential channel 6 (TRPC6) is essential for hypoxic pulmonary vasoconstriction and alveolar gas exchange. Proc Natl Acad Sci USA. 2006, 103: 19093-19098. 10.1073/pnas.0606728103.CrossRefPubMedPubMedCentral
10.
go back to reference Dietrich A, Chubanov V, Kalwa H, Rost BR, Gudermann T: Cation channels of the transient receptor potential superfamily: their role in physiological and pathophysiological processes of smooth muscle cells. Pharmacol Ther. 2006, 112: 744-760. 10.1016/j.pharmthera.2006.05.013.CrossRefPubMed Dietrich A, Chubanov V, Kalwa H, Rost BR, Gudermann T: Cation channels of the transient receptor potential superfamily: their role in physiological and pathophysiological processes of smooth muscle cells. Pharmacol Ther. 2006, 112: 744-760. 10.1016/j.pharmthera.2006.05.013.CrossRefPubMed
11.
go back to reference Wang J, Shimoda LA, Sylvester JT: Capacitative calcium entry and TRPC channel proteins are expressed in rat distal pulmonary arterial smooth muscle. Am J Physiol Lung Cell Mol Physiol. 2004, 286: L848-L858. 10.1152/ajplung.00319.2003.CrossRefPubMed Wang J, Shimoda LA, Sylvester JT: Capacitative calcium entry and TRPC channel proteins are expressed in rat distal pulmonary arterial smooth muscle. Am J Physiol Lung Cell Mol Physiol. 2004, 286: L848-L858. 10.1152/ajplung.00319.2003.CrossRefPubMed
12.
go back to reference Weissmann N, Grimminger F, Olschewski A, Seeger W: Hypoxic pulmonary vasoconstriction: a multifactorial response?. Am J Physiol Lung Cell Mol Physiol. 2001, 281: L314-L317.PubMed Weissmann N, Grimminger F, Olschewski A, Seeger W: Hypoxic pulmonary vasoconstriction: a multifactorial response?. Am J Physiol Lung Cell Mol Physiol. 2001, 281: L314-L317.PubMed
13.
go back to reference Ward JP, Aaronson PI: Mechanisms of hypoxic pulmonary vasoconstriction: can anyone be right?. Respir Physiol. 1999, 115: 261-271. 10.1016/S0034-5687(99)00025-0.CrossRefPubMed Ward JP, Aaronson PI: Mechanisms of hypoxic pulmonary vasoconstriction: can anyone be right?. Respir Physiol. 1999, 115: 261-271. 10.1016/S0034-5687(99)00025-0.CrossRefPubMed
14.
go back to reference Weissmann N, Zeller S, Schafer RU, Turowski C, Ay M, Quanz K, Ghofrani HA, Schermuly RT, Fink L, Seeger W, Grimminger F: Impact of mitochondria and NADPH oxidases on acute and sustained hypoxic pulmonary vasoconstriction. Am J Respir Cell Mol Biol. 2006, 34: 505-513. 10.1165/rcmb.2005-0337OC.CrossRefPubMed Weissmann N, Zeller S, Schafer RU, Turowski C, Ay M, Quanz K, Ghofrani HA, Schermuly RT, Fink L, Seeger W, Grimminger F: Impact of mitochondria and NADPH oxidases on acute and sustained hypoxic pulmonary vasoconstriction. Am J Respir Cell Mol Biol. 2006, 34: 505-513. 10.1165/rcmb.2005-0337OC.CrossRefPubMed
15.
go back to reference Robertson TP, Aaronson PI, Ward JP: Ca2+ sensitization during sustained hypoxic pulmonary vasoconstriction is endothelium dependent. Am J Physiol Lung Cell Mol Physiol. 2003, 284: L1121-L1126.CrossRefPubMed Robertson TP, Aaronson PI, Ward JP: Ca2+ sensitization during sustained hypoxic pulmonary vasoconstriction is endothelium dependent. Am J Physiol Lung Cell Mol Physiol. 2003, 284: L1121-L1126.CrossRefPubMed
16.
go back to reference Dipp M, Nye PC, Evans AM: Hypoxic release of calcium from the sarcoplasmic reticulum of pulmonary artery smooth muscle. Am J Physiol Lung Cell Mol Physiol. 2001, 281: L318-L325.PubMed Dipp M, Nye PC, Evans AM: Hypoxic release of calcium from the sarcoplasmic reticulum of pulmonary artery smooth muscle. Am J Physiol Lung Cell Mol Physiol. 2001, 281: L318-L325.PubMed
17.
go back to reference Aaronson PI, Robertson TP, Ward JP: Endothelium-derived mediators and hypoxic pulmonary vasoconstriction. Respir Physiol Neurobiol. 2002, 132: 107-120. 10.1016/S1569-9048(02)00053-8.CrossRefPubMed Aaronson PI, Robertson TP, Ward JP: Endothelium-derived mediators and hypoxic pulmonary vasoconstriction. Respir Physiol Neurobiol. 2002, 132: 107-120. 10.1016/S1569-9048(02)00053-8.CrossRefPubMed
18.
go back to reference Dietrich A, Kalwa H, Rost BR, Gudermann T: The diacylgylcerol-sensitive TRPC3/6/7 subfamily of cation channels: functional characterization and physiological relevance. Pflugers Arch. 2005, 451: 72-80. 10.1007/s00424-005-1460-0.CrossRefPubMed Dietrich A, Kalwa H, Rost BR, Gudermann T: The diacylgylcerol-sensitive TRPC3/6/7 subfamily of cation channels: functional characterization and physiological relevance. Pflugers Arch. 2005, 451: 72-80. 10.1007/s00424-005-1460-0.CrossRefPubMed
19.
go back to reference Helliwell RM, Large WA: Alpha 1-adrenoceptor activation of a non-selective cation current in rabbit portal vein by 1,2-diacyl-sn-glycerol. J Physiol. 1997, 499 (Pt 2): 417-428.CrossRefPubMedPubMedCentral Helliwell RM, Large WA: Alpha 1-adrenoceptor activation of a non-selective cation current in rabbit portal vein by 1,2-diacyl-sn-glycerol. J Physiol. 1997, 499 (Pt 2): 417-428.CrossRefPubMedPubMedCentral
20.
go back to reference Inoue R, Okada T, Onoue H, Hara Y, Shimizu S, Naitoh S, Ito Y, Mori Y: The transient receptor potential protein homologue TRP6 is the essential component of vascular alpha(1)-adrenoceptor-activated Ca(2+)-permeable cation channel. Circ Res. 2001, 88: 325-332.CrossRefPubMed Inoue R, Okada T, Onoue H, Hara Y, Shimizu S, Naitoh S, Ito Y, Mori Y: The transient receptor potential protein homologue TRP6 is the essential component of vascular alpha(1)-adrenoceptor-activated Ca(2+)-permeable cation channel. Circ Res. 2001, 88: 325-332.CrossRefPubMed
21.
go back to reference Freichel M, Vennekens R, Olausson J, Hoffmann M, Muller C, Stolz S, Scheunemann J, Weissgerber P, Flockerzi V: Functional role of TRPC proteins in vivo: lessons from TRPC-deficient mouse models. Biochem Biophys Res Commun. 2004, 322: 1352-1358. 10.1016/j.bbrc.2004.08.041.CrossRefPubMed Freichel M, Vennekens R, Olausson J, Hoffmann M, Muller C, Stolz S, Scheunemann J, Weissgerber P, Flockerzi V: Functional role of TRPC proteins in vivo: lessons from TRPC-deficient mouse models. Biochem Biophys Res Commun. 2004, 322: 1352-1358. 10.1016/j.bbrc.2004.08.041.CrossRefPubMed
22.
go back to reference Merida I, vila-Flores A, Merino E: Diacylglycerol kinases: at the hub of cell signalling. Biochem J. 2008, 409: 1-18. 10.1042/BJ20071040.CrossRefPubMed Merida I, vila-Flores A, Merino E: Diacylglycerol kinases: at the hub of cell signalling. Biochem J. 2008, 409: 1-18. 10.1042/BJ20071040.CrossRefPubMed
23.
go back to reference Weissmann N, Akkayagil E, Quanz K, Schermuly RT, Ghofrani HA, Fink L, Hanze J, Rose F, Seeger W, Grimminger F: Basic features of hypoxic pulmonary vasoconstriction in mice. Respir Physiol Neurobiol. 2004, 139: 191-202. 10.1016/j.resp.2003.10.003.CrossRefPubMed Weissmann N, Akkayagil E, Quanz K, Schermuly RT, Ghofrani HA, Fink L, Hanze J, Rose F, Seeger W, Grimminger F: Basic features of hypoxic pulmonary vasoconstriction in mice. Respir Physiol Neurobiol. 2004, 139: 191-202. 10.1016/j.resp.2003.10.003.CrossRefPubMed
24.
go back to reference Weissmann N, Grimminger F, Walmrath D, Seeger W: Hypoxic vasoconstriction in buffer-perfused rabbit lungs. Respir Physiol. 1995, 100: 159-169. 10.1016/0034-5687(94)00133-K.CrossRefPubMed Weissmann N, Grimminger F, Walmrath D, Seeger W: Hypoxic vasoconstriction in buffer-perfused rabbit lungs. Respir Physiol. 1995, 100: 159-169. 10.1016/0034-5687(94)00133-K.CrossRefPubMed
25.
go back to reference Bolla M, You D, Loufrani L, Levy BI, Levy-Toledano S, Habib A, Henrion D: Cyclooxygenase involvement in thromboxane-dependent contraction in rat mesenteric resistance arteries. Hypertension. 2004, 43: 1264-1269. 10.1161/01.HYP.0000127438.39744.07.CrossRefPubMedPubMedCentral Bolla M, You D, Loufrani L, Levy BI, Levy-Toledano S, Habib A, Henrion D: Cyclooxygenase involvement in thromboxane-dependent contraction in rat mesenteric resistance arteries. Hypertension. 2004, 43: 1264-1269. 10.1161/01.HYP.0000127438.39744.07.CrossRefPubMedPubMedCentral
26.
go back to reference Bennie RE, Packer CS, Powell DR, Jin N, Rhoades RA: Biphasic contractile response of pulmonary artery to hypoxia. Am J Physiol. 1991, 261: L156-L163.PubMed Bennie RE, Packer CS, Powell DR, Jin N, Rhoades RA: Biphasic contractile response of pulmonary artery to hypoxia. Am J Physiol. 1991, 261: L156-L163.PubMed
27.
go back to reference Rebecchi MJ, Pentyala SN: Structure, function, and control of phosphoinositide-specific phospholipase C. Physiol Rev. 2000, 80: 1291-1335.PubMed Rebecchi MJ, Pentyala SN: Structure, function, and control of phosphoinositide-specific phospholipase C. Physiol Rev. 2000, 80: 1291-1335.PubMed
28.
go back to reference Domino KB, Chen L, Alexander CM, Williams JJ, Marshall C, Marshall BE: Time course and responses of sustained hypoxic pulmonary vasoconstriction in the dog. Anesthesiology. 1984, 60: 562-566. 10.1097/00000542-198406000-00007.CrossRefPubMed Domino KB, Chen L, Alexander CM, Williams JJ, Marshall C, Marshall BE: Time course and responses of sustained hypoxic pulmonary vasoconstriction in the dog. Anesthesiology. 1984, 60: 562-566. 10.1097/00000542-198406000-00007.CrossRefPubMed
29.
go back to reference Welling KL, Sanchez R, Ravn JB, Larsen B, Amtorp O: Effect of prolonged alveolar hypoxia on pulmonary arterial pressure and segmental vascular resistance. J Appl Physiol. 1993, 75: 1194-1200.PubMed Welling KL, Sanchez R, Ravn JB, Larsen B, Amtorp O: Effect of prolonged alveolar hypoxia on pulmonary arterial pressure and segmental vascular resistance. J Appl Physiol. 1993, 75: 1194-1200.PubMed
30.
go back to reference Woodmansey PA, Zhang F, Channer KS, Morice AH: Effect of the calcium antagonist amlodipine on the two phases of hypoxic pulmonary vasoconstriction in rat large and small isolated pulmonary arteries. J Cardiovasc Pharmacol. 1995, 25: 324-329. 10.1097/00005344-199502000-00019.CrossRefPubMed Woodmansey PA, Zhang F, Channer KS, Morice AH: Effect of the calcium antagonist amlodipine on the two phases of hypoxic pulmonary vasoconstriction in rat large and small isolated pulmonary arteries. J Cardiovasc Pharmacol. 1995, 25: 324-329. 10.1097/00005344-199502000-00019.CrossRefPubMed
31.
go back to reference Ozaki M, Marshall C, Amaki Y, Marshall BE: Role of wall tension in hypoxic responses of isolated rat pulmonary arteries. Am J Physiol. 1998, 275: L1069-L1077.PubMed Ozaki M, Marshall C, Amaki Y, Marshall BE: Role of wall tension in hypoxic responses of isolated rat pulmonary arteries. Am J Physiol. 1998, 275: L1069-L1077.PubMed
32.
go back to reference Hofmann T, Obukhov AG, Schaefer M, Harteneck C, Gudermann T, Schultz G: Direct activation of human TRPC6 and TRPC3 channels by diacylglycerol. Nature. 1999, 397: 259-263. 10.1038/16711.CrossRefPubMed Hofmann T, Obukhov AG, Schaefer M, Harteneck C, Gudermann T, Schultz G: Direct activation of human TRPC6 and TRPC3 channels by diacylglycerol. Nature. 1999, 397: 259-263. 10.1038/16711.CrossRefPubMed
33.
go back to reference Trebak M, Vazquez G, Bird GS, Putney JW: The TRPC3/6/7 subfamily of cation channels. Cell Calcium. 2003, 33: 451-461. 10.1016/S0143-4160(03)00056-3.CrossRefPubMed Trebak M, Vazquez G, Bird GS, Putney JW: The TRPC3/6/7 subfamily of cation channels. Cell Calcium. 2003, 33: 451-461. 10.1016/S0143-4160(03)00056-3.CrossRefPubMed
34.
go back to reference Friedlander G, Le GC, Sraer J, Amiel C: 12-HETE modulates Na-coupled uptakes in proximal tubular cells: role of diacylglycerol kinase inhibition. Am J Physiol. 1990, 259: F816-F822.PubMed Friedlander G, Le GC, Sraer J, Amiel C: 12-HETE modulates Na-coupled uptakes in proximal tubular cells: role of diacylglycerol kinase inhibition. Am J Physiol. 1990, 259: F816-F822.PubMed
35.
go back to reference Patterson RL, van Rossum DB, Nikolaidis N, Gill DL, Snyder SH: Phospholipase C-gamma: diverse roles in receptor-mediated calcium signaling. Trends Biochem Sci. 2005, 30: 688-697. 10.1016/j.tibs.2005.10.005.CrossRefPubMed Patterson RL, van Rossum DB, Nikolaidis N, Gill DL, Snyder SH: Phospholipase C-gamma: diverse roles in receptor-mediated calcium signaling. Trends Biochem Sci. 2005, 30: 688-697. 10.1016/j.tibs.2005.10.005.CrossRefPubMed
36.
go back to reference Wynne BM, Chiao CW, Webb RC: Vascular Smooth Muscle Cell Signaling Mechanisms for Contraction to Angiotensin II and Endothelin-1. J Am Soc Hypertens. 2009, 3: 84-95. 10.1016/j.jash.2008.09.002.CrossRefPubMedPubMedCentral Wynne BM, Chiao CW, Webb RC: Vascular Smooth Muscle Cell Signaling Mechanisms for Contraction to Angiotensin II and Endothelin-1. J Am Soc Hypertens. 2009, 3: 84-95. 10.1016/j.jash.2008.09.002.CrossRefPubMedPubMedCentral
37.
go back to reference Thompson AK, Mostafapour SP, Denlinger LC, Bleasdale JE, Fisher SK: The aminosteroid U-73122 inhibits muscarinic receptor sequestration and phosphoinositide hydrolysis in SK-N-SH neuroblastoma cells. A role for Gp in receptor compartmentation. J Biol Chem. 1991, 266: 23856-23862.PubMed Thompson AK, Mostafapour SP, Denlinger LC, Bleasdale JE, Fisher SK: The aminosteroid U-73122 inhibits muscarinic receptor sequestration and phosphoinositide hydrolysis in SK-N-SH neuroblastoma cells. A role for Gp in receptor compartmentation. J Biol Chem. 1991, 266: 23856-23862.PubMed
38.
go back to reference Alapati VR, McKenzie C, Blair A, Kenny D, MacDonald A, Shaw AM: Mechanisms of U46619- and 5-HT-induced contraction of bovine pulmonary arteries: role of chloride ions. Br J Pharmacol. 2007, 151: 1224-1234. 10.1038/sj.bjp.0707338.CrossRefPubMedPubMedCentral Alapati VR, McKenzie C, Blair A, Kenny D, MacDonald A, Shaw AM: Mechanisms of U46619- and 5-HT-induced contraction of bovine pulmonary arteries: role of chloride ions. Br J Pharmacol. 2007, 151: 1224-1234. 10.1038/sj.bjp.0707338.CrossRefPubMedPubMedCentral
39.
go back to reference Archer SL, Reeve HL, Michelakis E, Puttagunta L, Waite R, Nelson DP, Dinauer MC, Weir EK: O2 sensing is preserved in mice lacking the gp91 phox subunit of NADPH oxidase. Proc Natl Acad Sci USA. 1999, 96: 7944-7949. 10.1073/pnas.96.14.7944.CrossRefPubMedPubMedCentral Archer SL, Reeve HL, Michelakis E, Puttagunta L, Waite R, Nelson DP, Dinauer MC, Weir EK: O2 sensing is preserved in mice lacking the gp91 phox subunit of NADPH oxidase. Proc Natl Acad Sci USA. 1999, 96: 7944-7949. 10.1073/pnas.96.14.7944.CrossRefPubMedPubMedCentral
40.
go back to reference Sutendra G, Bonnet S, Rochefort G, Haromy A, Folmes KD, Lopaschuk GD, Dyck JR, Michelakis ED: Fatty acid oxidation and malonyl-CoA decarboxylase in the vascular remodeling of pulmonary hypertension. Sci Transl Med. 2010, 2: 44ra58-CrossRefPubMed Sutendra G, Bonnet S, Rochefort G, Haromy A, Folmes KD, Lopaschuk GD, Dyck JR, Michelakis ED: Fatty acid oxidation and malonyl-CoA decarboxylase in the vascular remodeling of pulmonary hypertension. Sci Transl Med. 2010, 2: 44ra58-CrossRefPubMed
41.
go back to reference Fuchs B, Sommer N, Dietrich A, Schermuly RT, Ghofrani HA, Grimminger F, Seeger W, Gudermann T, Weissmann N: Redox signaling and reactive oxygen species in hypoxic pulmonary vasoconstriction. Respir Physiol Neurobiol. 2010, 174: 282-291. 10.1016/j.resp.2010.08.013.CrossRefPubMed Fuchs B, Sommer N, Dietrich A, Schermuly RT, Ghofrani HA, Grimminger F, Seeger W, Gudermann T, Weissmann N: Redox signaling and reactive oxygen species in hypoxic pulmonary vasoconstriction. Respir Physiol Neurobiol. 2010, 174: 282-291. 10.1016/j.resp.2010.08.013.CrossRefPubMed
42.
go back to reference Sommer N, Dietrich A, Schermuly RT, Ghofrani HA, Gudermann T, Schulz R, Seeger W, Grimminger F, Weissmann N: Regulation of hypoxic pulmonary vasoconstriction: basic mechanisms. Eur Respir J. 2008, 32: 1639-1651. 10.1183/09031936.00013908.CrossRefPubMed Sommer N, Dietrich A, Schermuly RT, Ghofrani HA, Gudermann T, Schulz R, Seeger W, Grimminger F, Weissmann N: Regulation of hypoxic pulmonary vasoconstriction: basic mechanisms. Eur Respir J. 2008, 32: 1639-1651. 10.1183/09031936.00013908.CrossRefPubMed
43.
go back to reference Waypa GB, Schumacker PT: Hypoxic pulmonary vasoconstriction: redox events in oxygen sensing. J Appl Physiol. 2005, 98: 404-414. 10.1152/japplphysiol.00722.2004.CrossRefPubMed Waypa GB, Schumacker PT: Hypoxic pulmonary vasoconstriction: redox events in oxygen sensing. J Appl Physiol. 2005, 98: 404-414. 10.1152/japplphysiol.00722.2004.CrossRefPubMed
44.
go back to reference Archer SL, London B, Hampl V, Wu X, Nsair A, Puttagunta L, Hashimoto K, Waite RE, Michelakis ED: Impairment of hypoxic pulmonary vasoconstriction in mice lacking the voltage-gated potassium channel Kv1.5. FASEB J. 2001, 15: 1801-1803.PubMed Archer SL, London B, Hampl V, Wu X, Nsair A, Puttagunta L, Hashimoto K, Waite RE, Michelakis ED: Impairment of hypoxic pulmonary vasoconstriction in mice lacking the voltage-gated potassium channel Kv1.5. FASEB J. 2001, 15: 1801-1803.PubMed
45.
go back to reference Archer SL, Souil E, nh-Xuan AT, Schremmer B, Mercier JC, El YA, Nguyen-Huu L, Reeve HL, Hampl V: Molecular identification of the role of voltage-gated K+ channels, Kv1.5 and Kv2.1, in hypoxic pulmonary vasoconstriction and control of resting membrane potential in rat pulmonary artery myocytes. J Clin Invest. 1998, 101: 2319-2330. 10.1172/JCI333.CrossRefPubMedPubMedCentral Archer SL, Souil E, nh-Xuan AT, Schremmer B, Mercier JC, El YA, Nguyen-Huu L, Reeve HL, Hampl V: Molecular identification of the role of voltage-gated K+ channels, Kv1.5 and Kv2.1, in hypoxic pulmonary vasoconstriction and control of resting membrane potential in rat pulmonary artery myocytes. J Clin Invest. 1998, 101: 2319-2330. 10.1172/JCI333.CrossRefPubMedPubMedCentral
46.
go back to reference Dietrich A, Kalwa H, Fuchs B, Grimminger F, Weissmann N, Gudermann T: In vivo TRPC functions in the cardiopulmonary vasculature. Cell Calcium. 2007, 42: 233-244. 10.1016/j.ceca.2007.02.009.CrossRefPubMed Dietrich A, Kalwa H, Fuchs B, Grimminger F, Weissmann N, Gudermann T: In vivo TRPC functions in the cardiopulmonary vasculature. Cell Calcium. 2007, 42: 233-244. 10.1016/j.ceca.2007.02.009.CrossRefPubMed
47.
go back to reference Cornfield DN, Stevens T, McMurtry IF, Abman SH, Rodman DM: Acute hypoxia increases cytosolic calcium in fetal pulmonary artery smooth muscle cells. Am J Physiol. 1993, 265: L53-L56.PubMed Cornfield DN, Stevens T, McMurtry IF, Abman SH, Rodman DM: Acute hypoxia increases cytosolic calcium in fetal pulmonary artery smooth muscle cells. Am J Physiol. 1993, 265: L53-L56.PubMed
48.
go back to reference Salvaterra CG, Goldman WF: Acute hypoxia increases cytosolic calcium in cultured pulmonary arterial myocytes. Am J Physiol. 1993, 264: L323-L328.PubMed Salvaterra CG, Goldman WF: Acute hypoxia increases cytosolic calcium in cultured pulmonary arterial myocytes. Am J Physiol. 1993, 264: L323-L328.PubMed
49.
go back to reference Vadula MS, Kleinman JG, Madden JA: Effect of hypoxia and norepinephrine on cytoplasmic free Ca2+ in pulmonary and cerebral arterial myocytes. Am J Physiol. 1993, 265: L591-L597.PubMed Vadula MS, Kleinman JG, Madden JA: Effect of hypoxia and norepinephrine on cytoplasmic free Ca2+ in pulmonary and cerebral arterial myocytes. Am J Physiol. 1993, 265: L591-L597.PubMed
50.
go back to reference Zhang F, Carson RC, Zhang H, Gibson G, Thomas HM III: Pulmonary artery smooth muscle cell [Ca2+]i and contraction: responses to diphenyleneiodonium and hypoxia. Am J Physiol. 1997, 273: L603-L611.PubMed Zhang F, Carson RC, Zhang H, Gibson G, Thomas HM III: Pulmonary artery smooth muscle cell [Ca2+]i and contraction: responses to diphenyleneiodonium and hypoxia. Am J Physiol. 1997, 273: L603-L611.PubMed
51.
go back to reference Ward JP, Robertson TP: The role of the endothelium in hypoxic pulmonary vasoconstriction. Exp Physiol. 1995, 80: 793-801.CrossRefPubMed Ward JP, Robertson TP: The role of the endothelium in hypoxic pulmonary vasoconstriction. Exp Physiol. 1995, 80: 793-801.CrossRefPubMed
52.
go back to reference Waypa GB, Chandel NS, Schumacker PT: Model for hypoxic pulmonary vasoconstriction involving mitochondrial oxygen sensing. Circ Res. 2001, 88: 1259-1266. 10.1161/hh1201.091960.CrossRefPubMed Waypa GB, Chandel NS, Schumacker PT: Model for hypoxic pulmonary vasoconstriction involving mitochondrial oxygen sensing. Circ Res. 2001, 88: 1259-1266. 10.1161/hh1201.091960.CrossRefPubMed
53.
go back to reference Sham JS, Crenshaw BR, Deng LH, Shimoda LA, Sylvester JT: Effects of hypoxia in porcine pulmonary arterial myocytes: roles of K(V) channel and endothelin-1. Am J Physiol Lung Cell Mol Physiol. 2000, 279: L262-L272.PubMed Sham JS, Crenshaw BR, Deng LH, Shimoda LA, Sylvester JT: Effects of hypoxia in porcine pulmonary arterial myocytes: roles of K(V) channel and endothelin-1. Am J Physiol Lung Cell Mol Physiol. 2000, 279: L262-L272.PubMed
54.
go back to reference Leach RM, Hill HM, Snetkov VA, Robertson TP, Ward JP: Divergent roles of glycolysis and the mitochondrial electron transport chain in hypoxic pulmonary vasoconstriction of the rat: identity of the hypoxic sensor. J Physiol. 2001, 536: 211-224. 10.1111/j.1469-7793.2001.00211.x.CrossRefPubMedPubMedCentral Leach RM, Hill HM, Snetkov VA, Robertson TP, Ward JP: Divergent roles of glycolysis and the mitochondrial electron transport chain in hypoxic pulmonary vasoconstriction of the rat: identity of the hypoxic sensor. J Physiol. 2001, 536: 211-224. 10.1111/j.1469-7793.2001.00211.x.CrossRefPubMedPubMedCentral
Metadata
Title
Diacylglycerol regulates acute hypoxic pulmonary vasoconstriction via TRPC6
Authors
Beate Fuchs
Markus Rupp
Hossein A Ghofrani
Ralph T Schermuly
Werner Seeger
Friedrich Grimminger
Thomas Gudermann
Alexander Dietrich
Norbert Weissmann
Publication date
01-12-2011
Publisher
BioMed Central
Published in
Respiratory Research / Issue 1/2011
Electronic ISSN: 1465-993X
DOI
https://doi.org/10.1186/1465-9921-12-20

Other articles of this Issue 1/2011

Respiratory Research 1/2011 Go to the issue
Live Webinar | 27-06-2024 | 18:00 (CEST)

Keynote webinar | Spotlight on medication adherence

Live: Thursday 27th June 2024, 18:00-19:30 (CEST)

WHO estimates that half of all patients worldwide are non-adherent to their prescribed medication. The consequences of poor adherence can be catastrophic, on both the individual and population level.

Join our expert panel to discover why you need to understand the drivers of non-adherence in your patients, and how you can optimize medication adherence in your clinics to drastically improve patient outcomes.

Prof. Kevin Dolgin
Prof. Florian Limbourg
Prof. Anoop Chauhan
Developed by: Springer Medicine
Obesity Clinical Trial Summary

At a glance: The STEP trials

A round-up of the STEP phase 3 clinical trials evaluating semaglutide for weight loss in people with overweight or obesity.

Developed by: Springer Medicine