Skip to main content
Top
Published in: Cardiovascular Diabetology 1/2020

Open Access 01-12-2020 | Diabetic Nephropathy | Original investigation

Global trend of diabetes mortality attributed to vascular complications, 2000–2016

Authors: Wei Ling, Yi Huang, Yan-Mei Huang, Rong-Rong Fan, Yi Sui, Hai-Lu Zhao

Published in: Cardiovascular Diabetology | Issue 1/2020

Login to get access

Abstract

Background

The global epidemic of diabetes mellitus continues to grow and affects developed and developing countries alike. Intensive glycemic control is thought to modify the risks for vascular complications, hence the risks for diabetes-related death. We investigated the trend of diabetic vascular complication-related deaths between 2000 and 2016 in the global diabetes landscape.

Methods

We collected 17 years of death certificates data from 108 countries in the World Health Organization mortality database between 2000 and 2016, with coding for diabetic complications. Crude and age-standardized proportions and rates were calculated. Trend analysis was done with annual average percentage change (AAPC) of rates computed by joinpoint regression.

Results

From 2000 through 2016, 7,108,145 deaths of diabetes were reported in the 108 countries. Among them, 26.8% (1,904,787 cases) were attributed to vascular complications in damaged organs, including the kidneys (1,355,085 cases, 71.1%), peripheral circulatory (515,293 cases, 27.1%), nerves (28,697 cases, 1.5%) and eyes (5751 cases, 0.3%). Overall, the age-standardized proportion of vascular complication-related mortality was 267.8 [95% confidence interval (95% CI), 267.5–268.1] cases per 1000 deaths and the rate was 53.6 (95% CI 53.5–53.7) cases per 100,000 person-years. Throughout the 17-year period, the overall age-standardized proportions of deaths attributable to vascular complications had increased 37.9%, while the overall age-standardized mortality rates related to vascular complications had increased 30.8% (AAPC = 1.9% [1.4–2.4%, p < 0.05]). These increases were predominantly driven by a 159.8% increase in the rate (AAPC = 2.7% [1.2–4.3%, p < 0.05]) from renal complications. Trends in the rates and AAPC of deaths varied by type of diabetes and of complications, as well as by countries, regions and domestic income.

Conclusion

Diabetic vascular complication-related deaths had increased substantially during 2000–2016, mainly driven by the increased mortality of renal complications.
Appendix
Available only for authorised users
Literature
1.
go back to reference Saeedi P, Petersohn I, Salpea P, et al. Global and regional diabetes prevalence estimates for 2019 and projections for 2030 and 2045: Results from the International Diabetes Federation Diabetes Atlas, 9 (th) edition. Diabetes Res Clin Pract. 2019;157:107843.PubMedCrossRef Saeedi P, Petersohn I, Salpea P, et al. Global and regional diabetes prevalence estimates for 2019 and projections for 2030 and 2045: Results from the International Diabetes Federation Diabetes Atlas, 9 (th) edition. Diabetes Res Clin Pract. 2019;157:107843.PubMedCrossRef
2.
go back to reference Zoungas S, Arima H, Gerstein HC, et al. Effects of intensive glucose control on microvascular outcomes in patients with type 2 diabetes: a meta-analysis of individual participant data from randomised controlled trials. Lancet Diabetes Endocrinol. 2017;5:431–7.PubMedCrossRef Zoungas S, Arima H, Gerstein HC, et al. Effects of intensive glucose control on microvascular outcomes in patients with type 2 diabetes: a meta-analysis of individual participant data from randomised controlled trials. Lancet Diabetes Endocrinol. 2017;5:431–7.PubMedCrossRef
3.
go back to reference Holman RR, Sourij H, Califf RM. Cardiovascular outcome trials of glucose-lowering drugs or strategies in type 2 diabetes. Lancet. 2014;383:2008–17.PubMedCrossRef Holman RR, Sourij H, Califf RM. Cardiovascular outcome trials of glucose-lowering drugs or strategies in type 2 diabetes. Lancet. 2014;383:2008–17.PubMedCrossRef
4.
go back to reference Gregg EW, Li Y, Wang J, et al. Changes in diabetes-related complications in the United States, 1990–2010. N Engl J Med. 2014;370:1514–23.PubMedCrossRef Gregg EW, Li Y, Wang J, et al. Changes in diabetes-related complications in the United States, 1990–2010. N Engl J Med. 2014;370:1514–23.PubMedCrossRef
5.
go back to reference Raghavan S, Vassy JL, Ho YL, et al. Diabetes mellitus-related all-cause and cardiovascular mortality in a national cohort of adults. J Am Heart Assoc. 2019;8:e011295.PubMedPubMedCentralCrossRef Raghavan S, Vassy JL, Ho YL, et al. Diabetes mellitus-related all-cause and cardiovascular mortality in a national cohort of adults. J Am Heart Assoc. 2019;8:e011295.PubMedPubMedCentralCrossRef
6.
go back to reference An Y, Zhang P, Wang J, et al. Cardiovascular and all-cause mortality over a 23-year period among chinese with newly diagnosed diabetes in the Da Qing IGT and diabetes study. Diabetes Care. 2015;38:1365–71.PubMedPubMedCentralCrossRef An Y, Zhang P, Wang J, et al. Cardiovascular and all-cause mortality over a 23-year period among chinese with newly diagnosed diabetes in the Da Qing IGT and diabetes study. Diabetes Care. 2015;38:1365–71.PubMedPubMedCentralCrossRef
7.
go back to reference Rao Kondapally Seshasai S, Kaptoge S, Thompson A, et al. Diabetes mellitus, fasting glucose, and risk of cause-specific death. N Engl J Med. 2011;364:829–41.PubMedPubMedCentralCrossRef Rao Kondapally Seshasai S, Kaptoge S, Thompson A, et al. Diabetes mellitus, fasting glucose, and risk of cause-specific death. N Engl J Med. 2011;364:829–41.PubMedPubMedCentralCrossRef
8.
go back to reference Yang JK, Feng Y, Yuan MY, et al. Plasma glucose levels and diabetes are independent predictors for mortality and morbidity in patients with SARS. Diabet Med. 2006;23:623–8.PubMedCrossRef Yang JK, Feng Y, Yuan MY, et al. Plasma glucose levels and diabetes are independent predictors for mortality and morbidity in patients with SARS. Diabet Med. 2006;23:623–8.PubMedCrossRef
9.
go back to reference Schoen K, Horvat N, Guerreiro NFC, de Castro I, de Giassi KS. Spectrum of clinical and radiographic findings in patients with diagnosis of H1N1 and correlation with clinical severity. BMC Infect Dis. 2019;19:964.PubMedPubMedCentralCrossRef Schoen K, Horvat N, Guerreiro NFC, de Castro I, de Giassi KS. Spectrum of clinical and radiographic findings in patients with diagnosis of H1N1 and correlation with clinical severity. BMC Infect Dis. 2019;19:964.PubMedPubMedCentralCrossRef
10.
11.
go back to reference Yang X, Yu Y, Xu J, et al. Clinical course and outcomes of critically ill patients with SARS-CoV-2 pneumonia in Wuhan, China: a single-centered, retrospective, observational study. Lancet Respir Med. 2020;8:475–81.PubMedPubMedCentralCrossRef Yang X, Yu Y, Xu J, et al. Clinical course and outcomes of critically ill patients with SARS-CoV-2 pneumonia in Wuhan, China: a single-centered, retrospective, observational study. Lancet Respir Med. 2020;8:475–81.PubMedPubMedCentralCrossRef
12.
go back to reference Guan WJ, Ni ZY, Hu Y, et al. Clinical characteristics of coronavirus disease 2019 in China. N Engl J Med. 2020;382:1708–20.CrossRefPubMed Guan WJ, Ni ZY, Hu Y, et al. Clinical characteristics of coronavirus disease 2019 in China. N Engl J Med. 2020;382:1708–20.CrossRefPubMed
17.
go back to reference Zhao XY, Xu XX, Yin HS, et al. Clinical characteristics of patients with 2019 coronavirus disease in a non-Wuhan area of Hubei Province, China: a retrospective study. BMC Infect Dis. 2020;20:311.PubMedPubMedCentralCrossRef Zhao XY, Xu XX, Yin HS, et al. Clinical characteristics of patients with 2019 coronavirus disease in a non-Wuhan area of Hubei Province, China: a retrospective study. BMC Infect Dis. 2020;20:311.PubMedPubMedCentralCrossRef
18.
go back to reference Yang S, Wu J, Ding C, et al. Epidemiological features of and changes in incidence of infectious diseases in China in the first decade after the SARS outbreak: an observational trend study. Lancet Infect Dis. 2017;17:716–25.PubMedPubMedCentralCrossRef Yang S, Wu J, Ding C, et al. Epidemiological features of and changes in incidence of infectious diseases in China in the first decade after the SARS outbreak: an observational trend study. Lancet Infect Dis. 2017;17:716–25.PubMedPubMedCentralCrossRef
19.
go back to reference Boussageon R, Bejan-Angoulvant T, Saadatian-Elahi M, et al. Effect of intensive glucose lowering treatment on all cause mortality, cardiovascular death, and microvascular events in type 2 diabetes: meta-analysis of randomised controlled trials. BMJ. 2011;343:d4169.PubMedPubMedCentralCrossRef Boussageon R, Bejan-Angoulvant T, Saadatian-Elahi M, et al. Effect of intensive glucose lowering treatment on all cause mortality, cardiovascular death, and microvascular events in type 2 diabetes: meta-analysis of randomised controlled trials. BMJ. 2011;343:d4169.PubMedPubMedCentralCrossRef
20.
go back to reference Gregg EW, Sattar N, Ali MK. The changing face of diabetes complications. Lancet Diabetes Endocrinol. 2016;4:537–47.PubMedCrossRef Gregg EW, Sattar N, Ali MK. The changing face of diabetes complications. Lancet Diabetes Endocrinol. 2016;4:537–47.PubMedCrossRef
21.
go back to reference Harding JL, Pavkov ME, Magliano DJ, Shaw JE, Gregg EW. Global trends in diabetes complications: a review of current evidence. Diabetologia. 2019;62:3–16.PubMedCrossRef Harding JL, Pavkov ME, Magliano DJ, Shaw JE, Gregg EW. Global trends in diabetes complications: a review of current evidence. Diabetologia. 2019;62:3–16.PubMedCrossRef
22.
go back to reference Kennon B, Leese GP, Cochrane L, et al. Reduced incidence of lower-extremity amputations in people with diabetes in Scotland: a nationwide study. Diabetes Care. 2012;35:2588–90.PubMedPubMedCentralCrossRef Kennon B, Leese GP, Cochrane L, et al. Reduced incidence of lower-extremity amputations in people with diabetes in Scotland: a nationwide study. Diabetes Care. 2012;35:2588–90.PubMedPubMedCentralCrossRef
23.
go back to reference Narres M, Kvitkina T, Claessen H, et al. Incidence of lower extremity amputations in the diabetic compared with the non-diabetic population: a systematic review. PLoS ONE. 2017;12:e0182081.PubMedPubMedCentralCrossRef Narres M, Kvitkina T, Claessen H, et al. Incidence of lower extremity amputations in the diabetic compared with the non-diabetic population: a systematic review. PLoS ONE. 2017;12:e0182081.PubMedPubMedCentralCrossRef
24.
go back to reference Wong TY, Mwamburi M, Klein R, et al. Rates of progression in diabetic retinopathy during different time periods: a systematic review and meta-analysis. Diabetes Care. 2009;32:2307–13.PubMedPubMedCentralCrossRef Wong TY, Mwamburi M, Klein R, et al. Rates of progression in diabetic retinopathy during different time periods: a systematic review and meta-analysis. Diabetes Care. 2009;32:2307–13.PubMedPubMedCentralCrossRef
25.
go back to reference Bullock A, Burrows NR, Narva AS, et al. Vital signs: decrease in incidence of diabetes-related end-stage renal disease among American Indians/Alaska Natives—United States, 1996–2013. MMWR Morb Mortal Wkly Rep. 2017;66:26–32.PubMedPubMedCentralCrossRef Bullock A, Burrows NR, Narva AS, et al. Vital signs: decrease in incidence of diabetes-related end-stage renal disease among American Indians/Alaska Natives—United States, 1996–2013. MMWR Morb Mortal Wkly Rep. 2017;66:26–32.PubMedPubMedCentralCrossRef
26.
go back to reference National KF. KDOQI clinical practice guideline for diabetes and CKD: 2012 update. Am J Kidney Dis. 2012;60:850–86.CrossRef National KF. KDOQI clinical practice guideline for diabetes and CKD: 2012 update. Am J Kidney Dis. 2012;60:850–86.CrossRef
27.
go back to reference de Boer IH, Rue TC, Hall YN, Heagerty PJ, Weiss NS, Himmelfarb J. Temporal trends in the prevalence of diabetic kidney disease in the United States. JAMA. 2011;305:2532–9.PubMedPubMedCentralCrossRef de Boer IH, Rue TC, Hall YN, Heagerty PJ, Weiss NS, Himmelfarb J. Temporal trends in the prevalence of diabetic kidney disease in the United States. JAMA. 2011;305:2532–9.PubMedPubMedCentralCrossRef
29.
go back to reference Babaliche P, Nadpara RA, Maldar A. Association between estimated glomerular filtration rate and microvascular complications in type II diabetes mellitus patients: a 1-year cross-sectional study. J Natl Med Assoc. 2019;111:83–7.PubMedCrossRef Babaliche P, Nadpara RA, Maldar A. Association between estimated glomerular filtration rate and microvascular complications in type II diabetes mellitus patients: a 1-year cross-sectional study. J Natl Med Assoc. 2019;111:83–7.PubMedCrossRef
30.
go back to reference Perkovic V, Heerspink HL, Chalmers J, et al. Intensive glucose control improves kidney outcomes in patients with type 2 diabetes. Kidney Int. 2013;83:517–23.PubMedCrossRef Perkovic V, Heerspink HL, Chalmers J, et al. Intensive glucose control improves kidney outcomes in patients with type 2 diabetes. Kidney Int. 2013;83:517–23.PubMedCrossRef
31.
go back to reference Duckworth W, Abraira C, Moritz T, et al. Glucose control and vascular complications in veterans with type 2 diabetes. N Engl J Med. 2009;360:129–39.PubMedCrossRef Duckworth W, Abraira C, Moritz T, et al. Glucose control and vascular complications in veterans with type 2 diabetes. N Engl J Med. 2009;360:129–39.PubMedCrossRef
33.
go back to reference Rodriguez-Gutierrez R, Gonzalez-Gonzalez JG, Zuniga-Hernandez JA, McCoy RG. Benefits and harms of intensive glycemic control in patients with type 2 diabetes. BMJ. 2019;367:l5887.PubMedCrossRef Rodriguez-Gutierrez R, Gonzalez-Gonzalez JG, Zuniga-Hernandez JA, McCoy RG. Benefits and harms of intensive glycemic control in patients with type 2 diabetes. BMJ. 2019;367:l5887.PubMedCrossRef
34.
go back to reference Currie CJ, Peters JR, Tynan A, et al. Survival as a function of HbA (1c) in people with type 2 diabetes: a retrospective cohort study. Lancet. 2010;375:481–9.PubMedCrossRef Currie CJ, Peters JR, Tynan A, et al. Survival as a function of HbA (1c) in people with type 2 diabetes: a retrospective cohort study. Lancet. 2010;375:481–9.PubMedCrossRef
35.
go back to reference Ray KK, Seshasai SR, Wijesuriya S, et al. Effect of intensive control of glucose on cardiovascular outcomes and death in patients with diabetes mellitus: a meta-analysis of randomised controlled trials. Lancet. 2009;373:1765–72.CrossRefPubMed Ray KK, Seshasai SR, Wijesuriya S, et al. Effect of intensive control of glucose on cardiovascular outcomes and death in patients with diabetes mellitus: a meta-analysis of randomised controlled trials. Lancet. 2009;373:1765–72.CrossRefPubMed
36.
go back to reference Zoungas S, Patel A, Chalmers J, et al. Severe hypoglycemia and risks of vascular events and death. N Engl J Med. 2010;363:1410–8.PubMedCrossRef Zoungas S, Patel A, Chalmers J, et al. Severe hypoglycemia and risks of vascular events and death. N Engl J Med. 2010;363:1410–8.PubMedCrossRef
37.
go back to reference Lee AK, Warren B, Lee CJ, et al. The association of severe hypoglycemia with incident cardiovascular events and mortality in adults with type 2 diabetes. Diabetes Care. 2018;41:104–11.PubMedCrossRef Lee AK, Warren B, Lee CJ, et al. The association of severe hypoglycemia with incident cardiovascular events and mortality in adults with type 2 diabetes. Diabetes Care. 2018;41:104–11.PubMedCrossRef
38.
39.
go back to reference Weir MA, Gomes T, Mamdani M, et al. Impaired renal function modifies the risk of severe hypoglycaemia among users of insulin but not glyburide: a population-based nested case-control study. Nephrol Dial Transplant. 2011;26:1888–94.PubMedCrossRef Weir MA, Gomes T, Mamdani M, et al. Impaired renal function modifies the risk of severe hypoglycaemia among users of insulin but not glyburide: a population-based nested case-control study. Nephrol Dial Transplant. 2011;26:1888–94.PubMedCrossRef
40.
go back to reference Nishino Y, Gilmour S, Shibuya K. Inequality in diabetes-related hospital admissions in England by socioeconomic deprivation and ethnicity: facility-based cross-sectional analysis. PLoS ONE. 2015;10:e0116689.PubMedPubMedCentralCrossRef Nishino Y, Gilmour S, Shibuya K. Inequality in diabetes-related hospital admissions in England by socioeconomic deprivation and ethnicity: facility-based cross-sectional analysis. PLoS ONE. 2015;10:e0116689.PubMedPubMedCentralCrossRef
42.
43.
go back to reference Roth GA, Huffman MD, Moran AE, et al. Global and regional patterns in cardiovascular mortality from 1990 to 2013. Circulation. 2015;132:1667–78.PubMedCrossRef Roth GA, Huffman MD, Moran AE, et al. Global and regional patterns in cardiovascular mortality from 1990 to 2013. Circulation. 2015;132:1667–78.PubMedCrossRef
44.
go back to reference Visaria J, Iyer NN, Raval A, et al. Incidence and prevalence of microvascular and macrovascular diseases and all-cause mortality in type 2 diabetes mellitus: a 10-year study in a US commercially insured and medicare advantage population. Clin Ther. 2019;41(1522–36):e1. Visaria J, Iyer NN, Raval A, et al. Incidence and prevalence of microvascular and macrovascular diseases and all-cause mortality in type 2 diabetes mellitus: a 10-year study in a US commercially insured and medicare advantage population. Clin Ther. 2019;41(1522–36):e1.
45.
go back to reference Muris DM, Houben AJ, Schram MT, Stehouwer CD. Microvascular dysfunction is associated with a higher incidence of type 2 diabetes mellitus: a systematic review and meta-analysis. Arterioscler Thromb Vasc Biol. 2012;32:3082–94.PubMedCrossRef Muris DM, Houben AJ, Schram MT, Stehouwer CD. Microvascular dysfunction is associated with a higher incidence of type 2 diabetes mellitus: a systematic review and meta-analysis. Arterioscler Thromb Vasc Biol. 2012;32:3082–94.PubMedCrossRef
46.
go back to reference Cardoso CRL, Salles GC, Leite NC, Salles GF. Prognostic impact of carotid intima-media thickness and carotid plaques on the development of micro- and macrovascular complications in individuals with type 2 diabetes: the Rio de Janeiro type 2 diabetes cohort study. Cardiovasc Diabetol. 2019;18:2.PubMedPubMedCentralCrossRef Cardoso CRL, Salles GC, Leite NC, Salles GF. Prognostic impact of carotid intima-media thickness and carotid plaques on the development of micro- and macrovascular complications in individuals with type 2 diabetes: the Rio de Janeiro type 2 diabetes cohort study. Cardiovasc Diabetol. 2019;18:2.PubMedPubMedCentralCrossRef
47.
go back to reference Zhang M, Wang B, Liu Y, et al. Cumulative increased risk of incident type 2 diabetes mellitus with increasing triglyceride glucose index in normal-weight people: the Rural Chinese Cohort Study. Cardiovasc Diabetol. 2017;16:30.PubMedPubMedCentralCrossRef Zhang M, Wang B, Liu Y, et al. Cumulative increased risk of incident type 2 diabetes mellitus with increasing triglyceride glucose index in normal-weight people: the Rural Chinese Cohort Study. Cardiovasc Diabetol. 2017;16:30.PubMedPubMedCentralCrossRef
48.
go back to reference Zhao S, Yu S, Chi C, et al. Association between macro- and microvascular damage and the triglyceride glucose index in community-dwelling elderly individuals: the Northern Shanghai Study. Cardiovasc Diabetol. 2019;18:95.PubMedPubMedCentralCrossRef Zhao S, Yu S, Chi C, et al. Association between macro- and microvascular damage and the triglyceride glucose index in community-dwelling elderly individuals: the Northern Shanghai Study. Cardiovasc Diabetol. 2019;18:95.PubMedPubMedCentralCrossRef
49.
go back to reference Garofolo M, Gualdani E, Giannarelli R, et al. Microvascular complications burden (nephropathy, retinopathy and peripheral polyneuropathy) affects risk of major vascular events and all-cause mortality in type 1 diabetes: a 10-year follow-up study. Cardiovasc Diabetol. 2019;18:159.PubMedPubMedCentralCrossRef Garofolo M, Gualdani E, Giannarelli R, et al. Microvascular complications burden (nephropathy, retinopathy and peripheral polyneuropathy) affects risk of major vascular events and all-cause mortality in type 1 diabetes: a 10-year follow-up study. Cardiovasc Diabetol. 2019;18:159.PubMedPubMedCentralCrossRef
50.
go back to reference Avogaro A, Fadini GP. Microvascular complications in diabetes: A growing concern for cardiologists. Int J Cardiol. 2019;291:29–35.PubMedCrossRef Avogaro A, Fadini GP. Microvascular complications in diabetes: A growing concern for cardiologists. Int J Cardiol. 2019;291:29–35.PubMedCrossRef
Metadata
Title
Global trend of diabetes mortality attributed to vascular complications, 2000–2016
Authors
Wei Ling
Yi Huang
Yan-Mei Huang
Rong-Rong Fan
Yi Sui
Hai-Lu Zhao
Publication date
01-12-2020
Publisher
BioMed Central
Published in
Cardiovascular Diabetology / Issue 1/2020
Electronic ISSN: 1475-2840
DOI
https://doi.org/10.1186/s12933-020-01159-5

Other articles of this Issue 1/2020

Cardiovascular Diabetology 1/2020 Go to the issue
Live Webinar | 27-06-2024 | 18:00 (CEST)

Keynote webinar | Spotlight on medication adherence

Live: Thursday 27th June 2024, 18:00-19:30 (CEST)

WHO estimates that half of all patients worldwide are non-adherent to their prescribed medication. The consequences of poor adherence can be catastrophic, on both the individual and population level.

Join our expert panel to discover why you need to understand the drivers of non-adherence in your patients, and how you can optimize medication adherence in your clinics to drastically improve patient outcomes.

Prof. Kevin Dolgin
Prof. Florian Limbourg
Prof. Anoop Chauhan
Developed by: Springer Medicine
Obesity Clinical Trial Summary

At a glance: The STEP trials

A round-up of the STEP phase 3 clinical trials evaluating semaglutide for weight loss in people with overweight or obesity.

Developed by: Springer Medicine