Skip to main content
Top

23-04-2024 | Diabetic Nephropathy | Nephrology - Original Paper

Astragalus polysaccharide attenuates diabetic nephropathy by reducing apoptosis and enhancing autophagy through activation of Sirt1/FoxO1 pathway

Authors: Yanmei Xu, Chen Xu, Jie Huang, Chuanwen Xu, Yan Xiong

Published in: International Urology and Nephrology

Login to get access

Abstract

Objective

Diabetic nephropathy (DN) is the leading cause of end-stage renal disease in diabetic patients. Astragalus polysaccharide (APS) is a natural active ingredient in Astragalus membranaceus with anti-hypertensive and anti-oxidative properties. This study aimed to explore the protective roles of APS and its underlying mechanisms in DN.

Methods

After the establishment of a rat model of DN by a high-fat diet and treatment with 30 mg/kg streptozotocin (STZ), the effects of 100 mg/kg APS on the levels of serum creatinine, blood urea nitrogen, blood glucose, and urinary albumin-to-creatinine ratio were measured. Histopathological alterations in renal tissues, renal cell apoptosis, renal inflammation, and oxidative stress were examined. The impacts of 0–200 μg/mL APS on the viability and apoptosis in high glucose (HG)-stimulated podocytes were measured by Cell Counting Kit-8 assays and flow cytometry, respectively. The expression of genes was tested by immunoblotting, quantitative real-time PCR, and immunofluorescence staining.

Results

APS enhanced the expression of podocin and nephrin, increased viability, and reduced apoptosis in HG-induced podocytes. APS treatment abrogated high glucose-mediate suppression of autophagy in podocytes by activating the Sirt1/FoxO1 pathway. The Sirt1 inhibitor EX-527 eliminated the ameliorative effects of APS on renal dysfunction and renal tissue damage, as well as the inhibitory effects of APS on oxidative stress, inflammation, and apoptosis in DN rats. Moreover, EX-527 inhibited APS-induced autophagy activation in DN rats.

Conclusion

APS mitigated DN under hyperglycemic conditions by activating the Sirt1/FoxO1 autophagy pathway, suggesting that APS is a promising agent for DN treatment.
Appendix
Available only for authorised users
Literature
1.
go back to reference Wang J et al (2022) Association between globulin and diabetic nephropathy in type2 diabetes mellitus patients: a cross-sectional study. Front Endocrinol (Lausanne) 13:890273PubMedCrossRef Wang J et al (2022) Association between globulin and diabetic nephropathy in type2 diabetes mellitus patients: a cross-sectional study. Front Endocrinol (Lausanne) 13:890273PubMedCrossRef
2.
go back to reference Du L et al (2021) Sirt1 inhibits renal tubular cell epithelial-mesenchymal transition through YY1 deacetylation in diabetic nephropathy. Acta Pharmacol Sin 42(2):242–251PubMedCrossRef Du L et al (2021) Sirt1 inhibits renal tubular cell epithelial-mesenchymal transition through YY1 deacetylation in diabetic nephropathy. Acta Pharmacol Sin 42(2):242–251PubMedCrossRef
3.
go back to reference Li X et al (2023) Podocyte injury of diabetic nephropathy: Novel mechanism discovery and therapeutic prospects. Biomed Pharmacother 168:115670PubMedCrossRef Li X et al (2023) Podocyte injury of diabetic nephropathy: Novel mechanism discovery and therapeutic prospects. Biomed Pharmacother 168:115670PubMedCrossRef
5.
go back to reference Miceli C et al (2023) Autophagy-related proteins: potential diagnostic and prognostic biomarkers of aging-related diseases. Ageing Res Rev 89:101967PubMedCrossRef Miceli C et al (2023) Autophagy-related proteins: potential diagnostic and prognostic biomarkers of aging-related diseases. Ageing Res Rev 89:101967PubMedCrossRef
6.
go back to reference Bhatia D, Choi ME (2023) Autophagy and mitophagy: physiological implications in kidney inflammation and diseases. Am J Physiol Renal Physiol 325(1):F1-f21PubMedCrossRef Bhatia D, Choi ME (2023) Autophagy and mitophagy: physiological implications in kidney inflammation and diseases. Am J Physiol Renal Physiol 325(1):F1-f21PubMedCrossRef
7.
go back to reference Ponticelli C, Moroni G, Reggiani F (2023) Autophagy and podocytopathy. Nephrol Dial Transplant 38(9):1931–1939PubMedCrossRef Ponticelli C, Moroni G, Reggiani F (2023) Autophagy and podocytopathy. Nephrol Dial Transplant 38(9):1931–1939PubMedCrossRef
8.
go back to reference Kong Z et al (2023) Sinensetin ameliorates high glucose-induced diabetic nephropathy via enhancing autophagy in vitro and in vivo. J Biochem Mol Toxicol 37(10):e23445PubMedCrossRef Kong Z et al (2023) Sinensetin ameliorates high glucose-induced diabetic nephropathy via enhancing autophagy in vitro and in vivo. J Biochem Mol Toxicol 37(10):e23445PubMedCrossRef
10.
go back to reference Tagawa A et al (2016) Impaired podocyte autophagy exacerbates proteinuria in diabetic nephropathy. Diabetes 65(3):755–767PubMedCrossRef Tagawa A et al (2016) Impaired podocyte autophagy exacerbates proteinuria in diabetic nephropathy. Diabetes 65(3):755–767PubMedCrossRef
12.
go back to reference Xia J et al (2023) Downregulating lncRNA MIAT attenuates apoptosis of podocytes exposed to high glucose. Acta Diabetol 61:451–460PubMedCrossRef Xia J et al (2023) Downregulating lncRNA MIAT attenuates apoptosis of podocytes exposed to high glucose. Acta Diabetol 61:451–460PubMedCrossRef
13.
go back to reference Zhou L et al (2012) Pretreatment with the total flavone glycosides of Flos Abelmoschus manihot and hyperoside prevents glomerular podocyte apoptosis in streptozotocin-induced diabetic nephropathy. J Med Food 15(5):461–468PubMedPubMedCentralCrossRef Zhou L et al (2012) Pretreatment with the total flavone glycosides of Flos Abelmoschus manihot and hyperoside prevents glomerular podocyte apoptosis in streptozotocin-induced diabetic nephropathy. J Med Food 15(5):461–468PubMedPubMedCentralCrossRef
14.
go back to reference Caretti G et al (2006) The RNA helicases p68/p72 and the noncoding RNA SRA are coregulators of MyoD and skeletal muscle differentiation. Dev Cell 11(4):547–560PubMedCrossRef Caretti G et al (2006) The RNA helicases p68/p72 and the noncoding RNA SRA are coregulators of MyoD and skeletal muscle differentiation. Dev Cell 11(4):547–560PubMedCrossRef
16.
go back to reference Agyemang K et al (2013) Recent Advances in Astragalus membranaceus Anti-Diabetic Research: Pharmacological Effects of Its Phytochemical Constituents. Evid Based Complement Alternat Med 2013:654643PubMedPubMedCentralCrossRef Agyemang K et al (2013) Recent Advances in Astragalus membranaceus Anti-Diabetic Research: Pharmacological Effects of Its Phytochemical Constituents. Evid Based Complement Alternat Med 2013:654643PubMedPubMedCentralCrossRef
17.
go back to reference Yue Y et al (2022) Astragalus polysaccharides/PVA nanofiber membranes containing astragaloside IV-loaded liposomes and their potential use for wound healing. Evid Based Complement Alternat Med 2022:9716271PubMedPubMedCentralCrossRef Yue Y et al (2022) Astragalus polysaccharides/PVA nanofiber membranes containing astragaloside IV-loaded liposomes and their potential use for wound healing. Evid Based Complement Alternat Med 2022:9716271PubMedPubMedCentralCrossRef
18.
go back to reference Sun S et al (2023) Astragalus polysaccharides alleviates cardiac hypertrophy in diabetic cardiomyopathy via inhibiting the BMP10-mediated signaling pathway. Phytomedicine 109:154543PubMedCrossRef Sun S et al (2023) Astragalus polysaccharides alleviates cardiac hypertrophy in diabetic cardiomyopathy via inhibiting the BMP10-mediated signaling pathway. Phytomedicine 109:154543PubMedCrossRef
19.
go back to reference Yue X et al (2023) Astragalus polysaccharide ameliorates insulin resistance in HepG2 cells through activating the STAT5/IGF-1 pathway. Immun Inflamm Dis 11(11):e1071PubMedPubMedCentralCrossRef Yue X et al (2023) Astragalus polysaccharide ameliorates insulin resistance in HepG2 cells through activating the STAT5/IGF-1 pathway. Immun Inflamm Dis 11(11):e1071PubMedPubMedCentralCrossRef
20.
go back to reference Sun J et al (2021) Protective effects of astragalus polysaccharide on sepsis-induced acute kidney injury. Anal Cell Pathol (Amst) 2021:7178253PubMed Sun J et al (2021) Protective effects of astragalus polysaccharide on sepsis-induced acute kidney injury. Anal Cell Pathol (Amst) 2021:7178253PubMed
21.
go back to reference Ma Q et al (2020) Astragalus Polysaccharide Attenuates Cisplatin-Induced Acute Kidney Injury by Suppressing Oxidative Damage and Mitochondrial Dysfunction. Biomed Res Int 2020:2851349PubMedPubMedCentralCrossRef Ma Q et al (2020) Astragalus Polysaccharide Attenuates Cisplatin-Induced Acute Kidney Injury by Suppressing Oxidative Damage and Mitochondrial Dysfunction. Biomed Res Int 2020:2851349PubMedPubMedCentralCrossRef
22.
go back to reference Meng X et al (2020) Astragalus polysaccharides protect renal function and affect the TGF-β/Smad signaling pathway in streptozotocin-induced diabetic rats. J Int Med Res 48(5):300060520903612PubMedCrossRef Meng X et al (2020) Astragalus polysaccharides protect renal function and affect the TGF-β/Smad signaling pathway in streptozotocin-induced diabetic rats. J Int Med Res 48(5):300060520903612PubMedCrossRef
23.
go back to reference Guo M et al (2023) Astragalus polysaccharide ameliorates renal inflammatory responses in a diabetic nephropathy by suppressing the TLR4/NF-κB pathway. Drug Des Devel Ther 17:2107–2118PubMedPubMedCentralCrossRef Guo M et al (2023) Astragalus polysaccharide ameliorates renal inflammatory responses in a diabetic nephropathy by suppressing the TLR4/NF-κB pathway. Drug Des Devel Ther 17:2107–2118PubMedPubMedCentralCrossRef
25.
go back to reference Deng Z et al (2021) SIRT1 attenuates sepsis-induced acute kidney injury via Beclin1 deacetylation-mediated autophagy activation. Cell Death Dis 12(2):217PubMedPubMedCentralCrossRef Deng Z et al (2021) SIRT1 attenuates sepsis-induced acute kidney injury via Beclin1 deacetylation-mediated autophagy activation. Cell Death Dis 12(2):217PubMedPubMedCentralCrossRef
26.
go back to reference Ji J et al (2021) SIRT1: mechanism and protective effect in diabetic nephropathy. Endocr Metab Immune Disord Drug Targets 21(5):835–842PubMed Ji J et al (2021) SIRT1: mechanism and protective effect in diabetic nephropathy. Endocr Metab Immune Disord Drug Targets 21(5):835–842PubMed
28.
go back to reference Miao XY et al (2022) Astragalus polysaccharides reduce high-glucose-induced rat aortic endothelial cell senescence and inflammasome activation by modulating the mitochondrial Na(+)/Ca(2+) exchanger. Cell Biochem Biophys 80(2):341–353PubMedCrossRef Miao XY et al (2022) Astragalus polysaccharides reduce high-glucose-induced rat aortic endothelial cell senescence and inflammasome activation by modulating the mitochondrial Na(+)/Ca(2+) exchanger. Cell Biochem Biophys 80(2):341–353PubMedCrossRef
29.
go back to reference Koch EAT et al (2020) Autophagy in diabetic nephropathy: a review. Int Urol Nephrol 52(9):1705–1712PubMedCrossRef Koch EAT et al (2020) Autophagy in diabetic nephropathy: a review. Int Urol Nephrol 52(9):1705–1712PubMedCrossRef
30.
go back to reference Rogacka D et al (2016) SIRT1-AMPK crosstalk is involved in high glucose-dependent impairment of insulin responsiveness in primary rat podocytes. Exp Cell Res 349(2):328–338PubMedCrossRef Rogacka D et al (2016) SIRT1-AMPK crosstalk is involved in high glucose-dependent impairment of insulin responsiveness in primary rat podocytes. Exp Cell Res 349(2):328–338PubMedCrossRef
31.
go back to reference Da J et al (2023) Central administration of Dapagliflozin alleviates a hypothalamic neuroinflammatory signature and changing tubular lipid metabolism in type 2 diabetic nephropathy by upregulating MCPIP1. Biomed Pharmacother 168:115840PubMedCrossRef Da J et al (2023) Central administration of Dapagliflozin alleviates a hypothalamic neuroinflammatory signature and changing tubular lipid metabolism in type 2 diabetic nephropathy by upregulating MCPIP1. Biomed Pharmacother 168:115840PubMedCrossRef
32.
go back to reference Patel P et al (2023) Roflumilast ameliorates diabetic nephropathy in rats through down-regulation of JAK/STAT signaling pathway. Naunyn Schmiedebergs Arch Pharmacol 396(11):3285–3297PubMedCrossRef Patel P et al (2023) Roflumilast ameliorates diabetic nephropathy in rats through down-regulation of JAK/STAT signaling pathway. Naunyn Schmiedebergs Arch Pharmacol 396(11):3285–3297PubMedCrossRef
33.
go back to reference Liu X et al (2020) Effects of HuoxueJiangtang decoction alone or in combination with metformin on renal function and renal cortical mRNA expression in diabetic nephropathy rats. Pharm Biol 58(1):1123–1130PubMedCrossRef Liu X et al (2020) Effects of HuoxueJiangtang decoction alone or in combination with metformin on renal function and renal cortical mRNA expression in diabetic nephropathy rats. Pharm Biol 58(1):1123–1130PubMedCrossRef
34.
go back to reference Deng X et al (2018) Tea polypeptide ameliorates diabetic nephropathy through RAGE and NF-κB signaling pathway in type 2 diabetes mice. J Agric Food Chem 66(45):11957–11967PubMedCrossRef Deng X et al (2018) Tea polypeptide ameliorates diabetic nephropathy through RAGE and NF-κB signaling pathway in type 2 diabetes mice. J Agric Food Chem 66(45):11957–11967PubMedCrossRef
35.
go back to reference Huang Y et al (2019) High expression of complement components in the kidneys of type 2 diabetic rats with diabetic nephropathy. Front Endocrinol (Lausanne) 10:459PubMedCrossRef Huang Y et al (2019) High expression of complement components in the kidneys of type 2 diabetic rats with diabetic nephropathy. Front Endocrinol (Lausanne) 10:459PubMedCrossRef
36.
go back to reference Xu J et al (2020) Metformin alleviates renal injury in diabetic rats by inducing Sirt1/FoxO1 autophagic signal axis. Clin Exp Pharmacol Physiol 47(4):599–608PubMedCrossRef Xu J et al (2020) Metformin alleviates renal injury in diabetic rats by inducing Sirt1/FoxO1 autophagic signal axis. Clin Exp Pharmacol Physiol 47(4):599–608PubMedCrossRef
37.
go back to reference Feng Y et al (2023) Iron chelator deferoxamine alleviates progression of diabetic nephropathy by relieving inflammation and fibrosis in rats. Biomolecules 13(8):1266PubMedPubMedCentralCrossRef Feng Y et al (2023) Iron chelator deferoxamine alleviates progression of diabetic nephropathy by relieving inflammation and fibrosis in rats. Biomolecules 13(8):1266PubMedPubMedCentralCrossRef
38.
go back to reference Chadha M et al (2023) Evolution of guideline recommendations on insulin therapy in type 2 diabetes mellitus over the last two decades: a narrative review. Curr Diabetes Rev 19(8):e160123212777PubMedPubMedCentralCrossRef Chadha M et al (2023) Evolution of guideline recommendations on insulin therapy in type 2 diabetes mellitus over the last two decades: a narrative review. Curr Diabetes Rev 19(8):e160123212777PubMedPubMedCentralCrossRef
39.
go back to reference Zhang B et al (2018) Honokiol ameliorates myocardial ischemia/reperfusion injury in type 1 diabetic rats by reducing oxidative stress and apoptosis through activating the SIRT1-Nrf2 signaling pathway. Oxid Med Cell Longev 2018:3159801PubMedPubMedCentral Zhang B et al (2018) Honokiol ameliorates myocardial ischemia/reperfusion injury in type 1 diabetic rats by reducing oxidative stress and apoptosis through activating the SIRT1-Nrf2 signaling pathway. Oxid Med Cell Longev 2018:3159801PubMedPubMedCentral
41.
go back to reference Gu C et al (2015) Astragalus polysaccharides affect insulin resistance by regulating the hepatic SIRT1-PGC-1α/PPARα-FGF21 signaling pathway in male sprague dawley rats undergoing catch-up growth. Mol Med Rep 12(5):6451–6460PubMedPubMedCentralCrossRef Gu C et al (2015) Astragalus polysaccharides affect insulin resistance by regulating the hepatic SIRT1-PGC-1α/PPARα-FGF21 signaling pathway in male sprague dawley rats undergoing catch-up growth. Mol Med Rep 12(5):6451–6460PubMedPubMedCentralCrossRef
43.
go back to reference Chen X et al (2022) Signaling pathways of podocyte injury in diabetic kidney disease and the effect of sodium-glucose cotransporter 2 inhibitors. Cells 11(23):3913PubMedPubMedCentralCrossRef Chen X et al (2022) Signaling pathways of podocyte injury in diabetic kidney disease and the effect of sodium-glucose cotransporter 2 inhibitors. Cells 11(23):3913PubMedPubMedCentralCrossRef
44.
go back to reference Ruby M et al (2023) Autophagy as a therapeutic target for chronic kidney disease and the roles of TGF-β1 in autophagy and kidney fibrosis. Cells 12(3):412PubMedPubMedCentralCrossRef Ruby M et al (2023) Autophagy as a therapeutic target for chronic kidney disease and the roles of TGF-β1 in autophagy and kidney fibrosis. Cells 12(3):412PubMedPubMedCentralCrossRef
45.
go back to reference Li CX et al (2022) Astragalus polysaccharide: a review of its immunomodulatory effect. Arch Pharm Res 45(6):367–389PubMedCrossRef Li CX et al (2022) Astragalus polysaccharide: a review of its immunomodulatory effect. Arch Pharm Res 45(6):367–389PubMedCrossRef
46.
go back to reference Barutta F, Bellini S, Gruden G (2022) Mechanisms of podocyte injury and implications for diabetic nephropathy. Clin Sci (Lond) 136(7):493–520PubMedCrossRef Barutta F, Bellini S, Gruden G (2022) Mechanisms of podocyte injury and implications for diabetic nephropathy. Clin Sci (Lond) 136(7):493–520PubMedCrossRef
47.
go back to reference Zhang X et al (2023) Vitamin D ameliorates podocyte injury by enhancing autophagy activity in diabetic kidney disease. Kidney Blood Press Res 48(1):314–325PubMedCrossRef Zhang X et al (2023) Vitamin D ameliorates podocyte injury by enhancing autophagy activity in diabetic kidney disease. Kidney Blood Press Res 48(1):314–325PubMedCrossRef
48.
49.
go back to reference Peng L, Zhang C, Xiao G (2023) Astragalus polysaccharide alleviates angiotensin II-induced glomerular podocyte dysfunction by inhibiting the expression of RARRES1 and LCN2. Clin Exp Pharmacol Physiol 50:504–515PubMedCrossRef Peng L, Zhang C, Xiao G (2023) Astragalus polysaccharide alleviates angiotensin II-induced glomerular podocyte dysfunction by inhibiting the expression of RARRES1 and LCN2. Clin Exp Pharmacol Physiol 50:504–515PubMedCrossRef
51.
go back to reference He LY et al (2023) Cordyceps proteins alleviate lupus nephritis through modulation of the STAT3/mTOR/NF-кB signaling pathway. J Ethnopharmacol 309:116284PubMedCrossRef He LY et al (2023) Cordyceps proteins alleviate lupus nephritis through modulation of the STAT3/mTOR/NF-кB signaling pathway. J Ethnopharmacol 309:116284PubMedCrossRef
52.
go back to reference Lv C et al (2023) Triptolide protects against podocyte injury in diabetic nephropathy by activating the Nrf2/HO-1 pathway and inhibiting the NLRP3 inflammasome pathway. Ren Fail 45(1):2165103PubMedPubMedCentralCrossRef Lv C et al (2023) Triptolide protects against podocyte injury in diabetic nephropathy by activating the Nrf2/HO-1 pathway and inhibiting the NLRP3 inflammasome pathway. Ren Fail 45(1):2165103PubMedPubMedCentralCrossRef
53.
go back to reference Kong ZL et al (2020) Orientin protects podocytes from high glucose induced apoptosis through mitophagy. Chem Biodivers 17(3):e1900647PubMedCrossRef Kong ZL et al (2020) Orientin protects podocytes from high glucose induced apoptosis through mitophagy. Chem Biodivers 17(3):e1900647PubMedCrossRef
56.
go back to reference Cao W et al (2023) Effects of Shenkang decoction on creatinine and blood urea nitrogen in chronic renal failure hemodialysis patients: a randomized controlled trial. J Integr Complement Med 29(4):253–260PubMedCrossRef Cao W et al (2023) Effects of Shenkang decoction on creatinine and blood urea nitrogen in chronic renal failure hemodialysis patients: a randomized controlled trial. J Integr Complement Med 29(4):253–260PubMedCrossRef
Metadata
Title
Astragalus polysaccharide attenuates diabetic nephropathy by reducing apoptosis and enhancing autophagy through activation of Sirt1/FoxO1 pathway
Authors
Yanmei Xu
Chen Xu
Jie Huang
Chuanwen Xu
Yan Xiong
Publication date
23-04-2024
Publisher
Springer Netherlands
Published in
International Urology and Nephrology
Print ISSN: 0301-1623
Electronic ISSN: 1573-2584
DOI
https://doi.org/10.1007/s11255-024-04038-0
Live Webinar | 27-06-2024 | 18:00 (CEST)

Keynote webinar | Spotlight on medication adherence

Live: Thursday 27th June 2024, 18:00-19:30 (CEST)

WHO estimates that half of all patients worldwide are non-adherent to their prescribed medication. The consequences of poor adherence can be catastrophic, on both the individual and population level.

Join our expert panel to discover why you need to understand the drivers of non-adherence in your patients, and how you can optimize medication adherence in your clinics to drastically improve patient outcomes.

Prof. Kevin Dolgin
Prof. Florian Limbourg
Prof. Anoop Chauhan
Developed by: Springer Medicine
Obesity Clinical Trial Summary

At a glance: The STEP trials

A round-up of the STEP phase 3 clinical trials evaluating semaglutide for weight loss in people with overweight or obesity.

Developed by: Springer Medicine