Skip to main content
Top
Published in: Journal of Cardiothoracic Surgery 1/2023

Open Access 01-12-2023 | Diabetic Cardiomyopathy | Research

Dexmedetomidine ameliorates diabetic cardiomyopathy by inhibiting ferroptosis through the Nrf2/GPX4 pathway

Authors: Fan Li, Zhenfei Hu, Yidan Huang, Haiting Zhan

Published in: Journal of Cardiothoracic Surgery | Issue 1/2023

Login to get access

Abstract

Objective

Dexmedetomidine (DEX) has been shown to have anti-apoptotic effects in diabetes mellitus, but its role in mitigating diabetic cardiomyopathy (DCM) through ferroptosis regulation is unclear.

Methods

An in vitro DCM model was established using H9C2 cells induced with high glucose (HG) and treated with DEX at varying doses and a nuclear factor erythroid 2-realated factor 2 (Nrf2) specific inhibitor ML385. Cell viability was evaluated using the MTT method after treatment with DEX or mannitol (MAN), and the dosage of DEX used in subsequent experimentation was determined. The effects of HG-induced high osmotic pressure were assessed using MAN as a control. Cell apoptosis was evaluated using flow cytometry. Protein levels of Bcl2, Bax, nuclear Nrf2, and glutathione peroxidase 4 (GPX4) were measured using Western blot. Superoxide dismutase (SOD) activity, malondialdehyde (MDA) levels, Fe2+ concentration and reactive oxygen species (ROS) levels were measured using corresponding kits and dichlorodihydrofluorescein diacetate, respectively.

Results

Treatment with DEX or MAN had no effect on H9C2 cell viability. HG induction reduced H9C2 cell viability, increased cell apoptosis, upregulated levels of Bax, Fe2+, MDA, and ROS, and downregulated Bcl2 protein levels, SOD activity, and protein levels of nuclear Nrf2 and GPX4. DEX inhibited HG-induced H9C2 cell apoptosis, promoted Nrf2 nuclear translocation, and activated the Nrf2/GPX4 pathway. Inhibition of Nrf2 partially reversed the protective effects of DEX against HG-evoked H9C2 cell injury.

Conclusion

Our findings demonstrate that DEX attenuates HG-induced cardiomyocyte injury by inhibiting ferroptosis through the Nrf2/GPX4 pathway, providing potential therapeutic targets for DCM treatment.
Literature
1.
go back to reference Siao WZ, Chen YH, Tsai CF, Lee CM, Jong GP. Diabetes Mellitus and Heart failure. J Pers Med. 2022;12(10). Siao WZ, Chen YH, Tsai CF, Lee CM, Jong GP. Diabetes Mellitus and Heart failure. J Pers Med. 2022;12(10).
2.
go back to reference Zhao X, Liu S, Wang X, Chen Y, Pang P, Yang Q, et al. Diabetic cardiomyopathy: clinical phenotype and practice. Front Endocrinol (Lausanne). 2022;13:1032268.PubMedCrossRef Zhao X, Liu S, Wang X, Chen Y, Pang P, Yang Q, et al. Diabetic cardiomyopathy: clinical phenotype and practice. Front Endocrinol (Lausanne). 2022;13:1032268.PubMedCrossRef
3.
go back to reference Jia G, Whaley-Connell A, Sowers JR. Diabetic cardiomyopathy: a hyperglycaemia- and insulin-resistance-induced heart disease. Diabetologia. 2018;61(1):21–8.PubMedCrossRef Jia G, Whaley-Connell A, Sowers JR. Diabetic cardiomyopathy: a hyperglycaemia- and insulin-resistance-induced heart disease. Diabetologia. 2018;61(1):21–8.PubMedCrossRef
4.
go back to reference Chen Y, Hua Y, Li X, Arslan IM, Zhang W, Meng G. Distinct types of cell death and the implication in Diabetic Cardiomyopathy. Front Pharmacol. 2020;11:42.PubMedPubMedCentralCrossRef Chen Y, Hua Y, Li X, Arslan IM, Zhang W, Meng G. Distinct types of cell death and the implication in Diabetic Cardiomyopathy. Front Pharmacol. 2020;11:42.PubMedPubMedCentralCrossRef
8.
go back to reference Oh JE, Jun JH, Hwang HJ, Shin EJ, Oh YJ, Choi YS. Dexmedetomidine restores autophagy and cardiac dysfunction in rats with streptozotocin-induced diabetes mellitus. Acta Diabetol. 2019;56(1):105–14.PubMedCrossRef Oh JE, Jun JH, Hwang HJ, Shin EJ, Oh YJ, Choi YS. Dexmedetomidine restores autophagy and cardiac dysfunction in rats with streptozotocin-induced diabetes mellitus. Acta Diabetol. 2019;56(1):105–14.PubMedCrossRef
9.
go back to reference Yu P, Zhang J, Ding Y, Chen D, Sun H, Yuan F, et al. Dexmedetomidine post-conditioning alleviates myocardial ischemia-reperfusion injury in rats by ferroptosis inhibition via SLC7A11/GPX4 axis activation. Hum Cell. 2022;35(3):836–48.PubMedCrossRef Yu P, Zhang J, Ding Y, Chen D, Sun H, Yuan F, et al. Dexmedetomidine post-conditioning alleviates myocardial ischemia-reperfusion injury in rats by ferroptosis inhibition via SLC7A11/GPX4 axis activation. Hum Cell. 2022;35(3):836–48.PubMedCrossRef
10.
11.
go back to reference Sadrkhanloo M, Entezari M, Orouei S, Zabolian A, Mirzaie A, Maghsoudloo A, et al. Targeting Nrf2 in ischemia-reperfusion alleviation: from signaling networks to therapeutic targeting. Life Sci. 2022;300:120561.PubMedCrossRef Sadrkhanloo M, Entezari M, Orouei S, Zabolian A, Mirzaie A, Maghsoudloo A, et al. Targeting Nrf2 in ischemia-reperfusion alleviation: from signaling networks to therapeutic targeting. Life Sci. 2022;300:120561.PubMedCrossRef
12.
go back to reference Cui C, Yang F, Li Q. Post-translational modification of GPX4 is a Promising Target for treating ferroptosis-related Diseases. Front Mol Biosci. 2022;9:901565.PubMedPubMedCentralCrossRef Cui C, Yang F, Li Q. Post-translational modification of GPX4 is a Promising Target for treating ferroptosis-related Diseases. Front Mol Biosci. 2022;9:901565.PubMedPubMedCentralCrossRef
13.
go back to reference Wang Z, Yao M, Jiang L, Wang L, Yang Y, Wang Q, et al. Dexmedetomidine attenuates myocardial ischemia/reperfusion-induced ferroptosis via AMPK/GSK-3beta/Nrf2 axis. Biomed Pharmacother. 2022;154:113572.PubMedCrossRef Wang Z, Yao M, Jiang L, Wang L, Yang Y, Wang Q, et al. Dexmedetomidine attenuates myocardial ischemia/reperfusion-induced ferroptosis via AMPK/GSK-3beta/Nrf2 axis. Biomed Pharmacother. 2022;154:113572.PubMedCrossRef
14.
go back to reference Wang Y, Yan S, Liu X, Deng F, Wang P, Yang L, et al. PRMT4 promotes ferroptosis to aggravate doxorubicin-induced cardiomyopathy via inhibition of the Nrf2/GPX4 pathway. Cell Death Differ. 2022;29(10):1982–95.PubMedCrossRef Wang Y, Yan S, Liu X, Deng F, Wang P, Yang L, et al. PRMT4 promotes ferroptosis to aggravate doxorubicin-induced cardiomyopathy via inhibition of the Nrf2/GPX4 pathway. Cell Death Differ. 2022;29(10):1982–95.PubMedCrossRef
15.
go back to reference Wei Z, Shaohuan Q, Pinfang K, Chao S. Curcumin attenuates Ferroptosis-Induced Myocardial Injury in Diabetic Cardiomyopathy through the Nrf2 pathway. Cardiovasc Ther. 2022;2022:3159717.PubMedPubMedCentralCrossRef Wei Z, Shaohuan Q, Pinfang K, Chao S. Curcumin attenuates Ferroptosis-Induced Myocardial Injury in Diabetic Cardiomyopathy through the Nrf2 pathway. Cardiovasc Ther. 2022;2022:3159717.PubMedPubMedCentralCrossRef
16.
go back to reference Ren BC, Zhang YF, Liu SS, Cheng XJ, Yang X, Cui XG, et al. Curcumin alleviates oxidative stress and inhibits apoptosis in diabetic cardiomyopathy via Sirt1-Foxo1 and PI3K-Akt signalling pathways. J Cell Mol Med. 2020;24(21):12355–67.PubMedPubMedCentralCrossRef Ren BC, Zhang YF, Liu SS, Cheng XJ, Yang X, Cui XG, et al. Curcumin alleviates oxidative stress and inhibits apoptosis in diabetic cardiomyopathy via Sirt1-Foxo1 and PI3K-Akt signalling pathways. J Cell Mol Med. 2020;24(21):12355–67.PubMedPubMedCentralCrossRef
17.
go back to reference Wei Z, Jing Z, Pinfang K, Chao S, Shaohuan Q. Quercetin inhibits pyroptosis in Diabetic Cardiomyopathy through the Nrf2 pathway. J Diabetes Res. 2022;2022:9723632.PubMedPubMedCentralCrossRef Wei Z, Jing Z, Pinfang K, Chao S, Shaohuan Q. Quercetin inhibits pyroptosis in Diabetic Cardiomyopathy through the Nrf2 pathway. J Diabetes Res. 2022;2022:9723632.PubMedPubMedCentralCrossRef
18.
go back to reference Tan Y, Zhang Z, Zheng C, Wintergerst KA, Keller BB, Cai L. Mechanisms of diabetic cardiomyopathy and potential therapeutic strategies: preclinical and clinical evidence. Nat Rev Cardiol. 2020;17(9):585–607.PubMedPubMedCentralCrossRef Tan Y, Zhang Z, Zheng C, Wintergerst KA, Keller BB, Cai L. Mechanisms of diabetic cardiomyopathy and potential therapeutic strategies: preclinical and clinical evidence. Nat Rev Cardiol. 2020;17(9):585–607.PubMedPubMedCentralCrossRef
19.
go back to reference Fang X, Wang H, Han D, Xie E, Yang X, Wei J, et al. Ferroptosis as a target for protection against cardiomyopathy. Proc Natl Acad Sci U S A. 2019;116(7):2672–80.PubMedPubMedCentralCrossRef Fang X, Wang H, Han D, Xie E, Yang X, Wei J, et al. Ferroptosis as a target for protection against cardiomyopathy. Proc Natl Acad Sci U S A. 2019;116(7):2672–80.PubMedPubMedCentralCrossRef
21.
go back to reference Lu LQ, Tian J, Luo XJ, Peng J. Targeting the pathways of regulated necrosis: a potential strategy for alleviation of cardio-cerebrovascular injury. Cell Mol Life Sci. 2021;78(1):63–78.PubMedCrossRef Lu LQ, Tian J, Luo XJ, Peng J. Targeting the pathways of regulated necrosis: a potential strategy for alleviation of cardio-cerebrovascular injury. Cell Mol Life Sci. 2021;78(1):63–78.PubMedCrossRef
22.
go back to reference Wang C, Yuan W, Hu A, Lin J, Xia Z, Yang CF, et al. Dexmedetomidine alleviated sepsis–induced myocardial ferroptosis and septic heart injury. Mol Med Rep. 2020;22(1):175–84.PubMedPubMedCentralCrossRef Wang C, Yuan W, Hu A, Lin J, Xia Z, Yang CF, et al. Dexmedetomidine alleviated sepsis–induced myocardial ferroptosis and septic heart injury. Mol Med Rep. 2020;22(1):175–84.PubMedPubMedCentralCrossRef
23.
go back to reference Ma X, Xu J, Gao N, Tian J, Song T. Dexmedetomidine attenuates myocardial ischemia-reperfusion injury via inhibiting ferroptosis by the cAMP/PKA/CREB pathway. Mol Cell Probes. 2023;68:101899.PubMedCrossRef Ma X, Xu J, Gao N, Tian J, Song T. Dexmedetomidine attenuates myocardial ischemia-reperfusion injury via inhibiting ferroptosis by the cAMP/PKA/CREB pathway. Mol Cell Probes. 2023;68:101899.PubMedCrossRef
24.
25.
go back to reference Edlich F. BCL-2 proteins and apoptosis: recent insights and unknowns. Biochem Biophys Res Commun. 2018;500(1):26–34.PubMedCrossRef Edlich F. BCL-2 proteins and apoptosis: recent insights and unknowns. Biochem Biophys Res Commun. 2018;500(1):26–34.PubMedCrossRef
26.
go back to reference Sun T, Gong Q, Wu Y, Shen Z, Zhang Y, Ge S, et al. Dexmedetomidine alleviates cardiomyocyte apoptosis and cardiac dysfunction may be associated with inhibition of RhoA/ROCK pathway in mice with myocardial infarction. Naunyn Schmiedebergs Arch Pharmacol. 2021;394(7):1569–77.PubMedCrossRef Sun T, Gong Q, Wu Y, Shen Z, Zhang Y, Ge S, et al. Dexmedetomidine alleviates cardiomyocyte apoptosis and cardiac dysfunction may be associated with inhibition of RhoA/ROCK pathway in mice with myocardial infarction. Naunyn Schmiedebergs Arch Pharmacol. 2021;394(7):1569–77.PubMedCrossRef
27.
go back to reference Yang FY, Zhang L, Zheng Y, Dong H. Dexmedetomidine attenuates ischemia and reperfusion-induced cardiomyocyte injury through p53 and forkhead box O3a (FOXO3a)/p53-upregulated modulator of apoptosis (PUMA) signaling signaling. Bioengineered. 2022;13(1):1377–87.PubMedPubMedCentralCrossRef Yang FY, Zhang L, Zheng Y, Dong H. Dexmedetomidine attenuates ischemia and reperfusion-induced cardiomyocyte injury through p53 and forkhead box O3a (FOXO3a)/p53-upregulated modulator of apoptosis (PUMA) signaling signaling. Bioengineered. 2022;13(1):1377–87.PubMedPubMedCentralCrossRef
29.
go back to reference Wang X, Chen X, Zhou W, Men H, Bao T, Sun Y, et al. Ferroptosis is essential for diabetic cardiomyopathy and is prevented by sulforaphane via AMPK/NRF2 pathways. Acta Pharm Sin B. 2022;12(2):708–22.PubMedCrossRef Wang X, Chen X, Zhou W, Men H, Bao T, Sun Y, et al. Ferroptosis is essential for diabetic cardiomyopathy and is prevented by sulforaphane via AMPK/NRF2 pathways. Acta Pharm Sin B. 2022;12(2):708–22.PubMedCrossRef
30.
go back to reference Wei J, Zhao Y, Liang H, Du W, Wang L. Preliminary evidence for the presence of multiple forms of cell death in diabetes cardiomyopathy. Acta Pharm Sin B. 2022;12(1):1–17.PubMedCrossRef Wei J, Zhao Y, Liang H, Du W, Wang L. Preliminary evidence for the presence of multiple forms of cell death in diabetes cardiomyopathy. Acta Pharm Sin B. 2022;12(1):1–17.PubMedCrossRef
31.
go back to reference Ge ZD, Lian Q, Mao X, Xia Z. Current Status and Challenges of NRF2 as a potential therapeutic target for Diabetic Cardiomyopathy. Int Heart J. 2019;60(3):512–20.PubMedCrossRef Ge ZD, Lian Q, Mao X, Xia Z. Current Status and Challenges of NRF2 as a potential therapeutic target for Diabetic Cardiomyopathy. Int Heart J. 2019;60(3):512–20.PubMedCrossRef
32.
go back to reference Yu Y, Yan Y, Niu F, Wang Y, Chen X, Su G, et al. Ferroptosis: a cell death connecting oxidative stress, inflammation and cardiovascular diseases. Cell Death Discov. 2021;7(1):193.PubMedPubMedCentralCrossRef Yu Y, Yan Y, Niu F, Wang Y, Chen X, Su G, et al. Ferroptosis: a cell death connecting oxidative stress, inflammation and cardiovascular diseases. Cell Death Discov. 2021;7(1):193.PubMedPubMedCentralCrossRef
33.
go back to reference Peng ML, Fu Y, Wu CW, Zhang Y, Ren H, Zhou SS. Signaling pathways related to oxidative stress in Diabetic Cardiomyopathy. Front Endocrinol (Lausanne). 2022;13:907757.PubMedCrossRef Peng ML, Fu Y, Wu CW, Zhang Y, Ren H, Zhou SS. Signaling pathways related to oxidative stress in Diabetic Cardiomyopathy. Front Endocrinol (Lausanne). 2022;13:907757.PubMedCrossRef
34.
go back to reference Pena E, El Alam S, Siques P, Brito J. Oxidative stress and Diseases Associated with High-Altitude exposure. Antioxid (Basel). 2022;11(2). Pena E, El Alam S, Siques P, Brito J. Oxidative stress and Diseases Associated with High-Altitude exposure. Antioxid (Basel). 2022;11(2).
35.
go back to reference Hassannia B, Van Coillie S, Vanden Berghe T, Ferroptosis. Biological rust of lipid membranes. Antioxid Redox Signal. 2021;35(6):487–509.PubMedCrossRef Hassannia B, Van Coillie S, Vanden Berghe T, Ferroptosis. Biological rust of lipid membranes. Antioxid Redox Signal. 2021;35(6):487–509.PubMedCrossRef
36.
go back to reference Czerska M, Mikolajewska K, Zielinski M, Gromadzinska J, Wasowicz W. Today’s oxidative stress markers. Med Pr. 2015;66(3):393–405.PubMedCrossRef Czerska M, Mikolajewska K, Zielinski M, Gromadzinska J, Wasowicz W. Today’s oxidative stress markers. Med Pr. 2015;66(3):393–405.PubMedCrossRef
37.
go back to reference Yin W, Wang C, Peng Y, Yuan W, Zhang Z, Liu H, et al. Dexmedetomidine alleviates H(2)O(2)-induced oxidative stress and cell necroptosis through activating of alpha2-adrenoceptor in H9C2 cells. Mol Biol Rep. 2020;47(5):3629–39.PubMedCrossRef Yin W, Wang C, Peng Y, Yuan W, Zhang Z, Liu H, et al. Dexmedetomidine alleviates H(2)O(2)-induced oxidative stress and cell necroptosis through activating of alpha2-adrenoceptor in H9C2 cells. Mol Biol Rep. 2020;47(5):3629–39.PubMedCrossRef
38.
go back to reference Cai S, Liu Y, Cheng Y, Yuan J, Fang J. Dexmedetomidine protects cardiomyocytes against hypoxia/reoxygenation injury via multiple mechanisms. J Clin Lab Anal. 2022;36(7):e24119.PubMedCrossRef Cai S, Liu Y, Cheng Y, Yuan J, Fang J. Dexmedetomidine protects cardiomyocytes against hypoxia/reoxygenation injury via multiple mechanisms. J Clin Lab Anal. 2022;36(7):e24119.PubMedCrossRef
40.
go back to reference Wu W, Du Z, Wu L. Dexmedetomidine attenuates hypoxia-induced cardiomyocyte injury by promoting telomere/telomerase activity: possible involvement of ERK1/2-Nrf2 signaling pathway. Cell Biol Int. 2022;46(7):1036–46.PubMedCrossRef Wu W, Du Z, Wu L. Dexmedetomidine attenuates hypoxia-induced cardiomyocyte injury by promoting telomere/telomerase activity: possible involvement of ERK1/2-Nrf2 signaling pathway. Cell Biol Int. 2022;46(7):1036–46.PubMedCrossRef
43.
go back to reference Tian H, Xiong Y, Zhang Y, Leng Y, Tao J, Li L, et al. Activation of NRF2/FPN1 pathway attenuates myocardial ischemia-reperfusion injury in diabetic rats by regulating iron homeostasis and ferroptosis. Cell Stress Chaperones. 2021;27(2):149–64.PubMedCrossRef Tian H, Xiong Y, Zhang Y, Leng Y, Tao J, Li L, et al. Activation of NRF2/FPN1 pathway attenuates myocardial ischemia-reperfusion injury in diabetic rats by regulating iron homeostasis and ferroptosis. Cell Stress Chaperones. 2021;27(2):149–64.PubMedCrossRef
44.
go back to reference Chen D, Li Z, Bao P, Chen M, Zhang M, Yan F, et al. Nrf2 deficiency aggravates angiotensin II-induced cardiac injury by increasing hypertrophy and enhancing IL-6/STAT3-dependent inflammation. Biochim Biophys Acta Mol Basis Dis. 2019;1865(6):1253–64.PubMedCrossRef Chen D, Li Z, Bao P, Chen M, Zhang M, Yan F, et al. Nrf2 deficiency aggravates angiotensin II-induced cardiac injury by increasing hypertrophy and enhancing IL-6/STAT3-dependent inflammation. Biochim Biophys Acta Mol Basis Dis. 2019;1865(6):1253–64.PubMedCrossRef
45.
go back to reference Shin D, Kim EH, Lee J, Roh JL. Nrf2 inhibition reverses resistance to GPX4 inhibitor-induced ferroptosis in head and neck cancer. Free Radic Biol Med. 2018;129:454–62.PubMedCrossRef Shin D, Kim EH, Lee J, Roh JL. Nrf2 inhibition reverses resistance to GPX4 inhibitor-induced ferroptosis in head and neck cancer. Free Radic Biol Med. 2018;129:454–62.PubMedCrossRef
Metadata
Title
Dexmedetomidine ameliorates diabetic cardiomyopathy by inhibiting ferroptosis through the Nrf2/GPX4 pathway
Authors
Fan Li
Zhenfei Hu
Yidan Huang
Haiting Zhan
Publication date
01-12-2023
Publisher
BioMed Central
Published in
Journal of Cardiothoracic Surgery / Issue 1/2023
Electronic ISSN: 1749-8090
DOI
https://doi.org/10.1186/s13019-023-02300-7

Other articles of this Issue 1/2023

Journal of Cardiothoracic Surgery 1/2023 Go to the issue