Skip to main content
Top
Published in: Current Diabetes Reports 11/2015

01-11-2015 | Microvascular Complications—Neuropathy (R Pop-Busui, Section Editor)

Diabetes-Related Dysfunction of the Small Intestine and the Colon: Focus on Motility

Authors: Viktor József Horváth, Zsuzsanna Putz, Ferenc Izbéki, Anna Erzsébet Körei, László Gerő, Csaba Lengyel, Péter Kempler, Tamás Várkonyi

Published in: Current Diabetes Reports | Issue 11/2015

Login to get access

Abstract

In contrast to gastric dysfunction, diabetes-related functional impairments of the small and large intestine have been studied less intensively. The gastrointestinal tract accomplishes several functions, such as mixing and propulsion of luminal content, absorption and secretion of ions, water, and nutrients, defense against pathogens, and elimination of waste products. Diverse functions of the gut are regulated by complex interactions among its functional elements, including gut microbiota. The network-forming tissues, the enteric nervous system) and the interstitial cells of Cajal, are definitely impaired in diabetic patients, and their loss of function is closely related to the symptoms in diabetes, but changes of other elements could also play a role in the development of diabetes mellitus-related motility disorders. The development of our understanding over the recent years of the diabetes-induced dysfunctions in the small and large intestine are reviewed in this article.
Literature
1.
go back to reference Feldman M, Schiller LR. Disorders of gastrointestinal motility associated with diabetes mellitus. Ann Intern Med. 1983;98:378–84.CrossRefPubMed Feldman M, Schiller LR. Disorders of gastrointestinal motility associated with diabetes mellitus. Ann Intern Med. 1983;98:378–84.CrossRefPubMed
2.
go back to reference Schvarcz E, Palmér M, Ingberg CM, et al. Increased prevalence of upper gastrointestinal symptoms in long-term type 1 diabetes mellitus. Diabet Med. 1996;13:478–81.CrossRefPubMed Schvarcz E, Palmér M, Ingberg CM, et al. Increased prevalence of upper gastrointestinal symptoms in long-term type 1 diabetes mellitus. Diabet Med. 1996;13:478–81.CrossRefPubMed
3.
go back to reference von der Ohe MR. Diarrhea in patients with diabetes mellitus. Eur J Gastroenterol Hepatol. 1995;7:730–6.PubMed von der Ohe MR. Diarrhea in patients with diabetes mellitus. Eur J Gastroenterol Hepatol. 1995;7:730–6.PubMed
4.
go back to reference Janatuinen E, Pikkarainen P, Laakso M, et al. Gastrointestinal symptoms in middleaged diabetic patients. Scand J Gastroenterol. 1993;28:427–32.CrossRefPubMed Janatuinen E, Pikkarainen P, Laakso M, et al. Gastrointestinal symptoms in middleaged diabetic patients. Scand J Gastroenterol. 1993;28:427–32.CrossRefPubMed
5.
go back to reference Bytzer P, Talley NJ, Hammer J, et al. GI symptoms in diabetes mellitus are associated with both poor glycemic control and diabetic complications. Am J Gastroenterol. 2002;97:604–11.CrossRefPubMed Bytzer P, Talley NJ, Hammer J, et al. GI symptoms in diabetes mellitus are associated with both poor glycemic control and diabetic complications. Am J Gastroenterol. 2002;97:604–11.CrossRefPubMed
6.
go back to reference Talley NJ, Phillips SF, Melton LJI, et al. A patient questionnaire to identify bowel disease. Ann Intern Med. 1989;111:671–4.CrossRefPubMed Talley NJ, Phillips SF, Melton LJI, et al. A patient questionnaire to identify bowel disease. Ann Intern Med. 1989;111:671–4.CrossRefPubMed
8.
go back to reference Wald A. Incontinence and anorectal dysfunction in patients with diabetes mellitus. Eur J Gastroenterol Hepatol. 1995;7:737–9.PubMed Wald A. Incontinence and anorectal dysfunction in patients with diabetes mellitus. Eur J Gastroenterol Hepatol. 1995;7:737–9.PubMed
9.
go back to reference Quan C, Talley NJ, Cross S, et al. Development and validation of the diabetes bowel symptom questionnaire. Aliment Pharmacol Ther. 2003;17:1179–87.CrossRefPubMed Quan C, Talley NJ, Cross S, et al. Development and validation of the diabetes bowel symptom questionnaire. Aliment Pharmacol Ther. 2003;17:1179–87.CrossRefPubMed
10.
go back to reference Lelic D, Brock C, Simrém M, et al. The brain networks encoding visceral sensation in patients with gastrointestinal symptoms due to diabetic neuropathy. Neurogastroenterol Motil. 2014;26:46–58.CrossRefPubMed Lelic D, Brock C, Simrém M, et al. The brain networks encoding visceral sensation in patients with gastrointestinal symptoms due to diabetic neuropathy. Neurogastroenterol Motil. 2014;26:46–58.CrossRefPubMed
11.
go back to reference Lelic D, Brock C, Søfteland E, et al. Brain networks encoding rectal sensation in type 1 diabetes. Neuroscience. 2013;1:96–105.CrossRef Lelic D, Brock C, Søfteland E, et al. Brain networks encoding rectal sensation in type 1 diabetes. Neuroscience. 2013;1:96–105.CrossRef
12.
go back to reference Brock C, Søfteland E, Gunterberg V, et al. Diabetic autonomic neuropathy affects symptom generation and brain-gut axis. Diabetes Care. 2013;36:3698–705.PubMedCentralCrossRefPubMed Brock C, Søfteland E, Gunterberg V, et al. Diabetic autonomic neuropathy affects symptom generation and brain-gut axis. Diabetes Care. 2013;36:3698–705.PubMedCentralCrossRefPubMed
13.•
go back to reference Blair PJ, Rhee P-L, Sanders KM, et al. The significance of interstitial cells in neurogastroenterology. J Neurogastroenterol Motil. 2014;20:294–317. This is an excellent report about the contribution of ICC to the gastrointestinal motility.PubMedCentralCrossRefPubMed Blair PJ, Rhee P-L, Sanders KM, et al. The significance of interstitial cells in neurogastroenterology. J Neurogastroenterol Motil. 2014;20:294–317. This is an excellent report about the contribution of ICC to the gastrointestinal motility.PubMedCentralCrossRefPubMed
14.
go back to reference Ördög T. Interstitial cells of Cajal in diabetic gastroenteropathy. Neurogastroenterol Motil. 2008;20:8–18.CrossRefPubMed Ördög T. Interstitial cells of Cajal in diabetic gastroenteropathy. Neurogastroenterol Motil. 2008;20:8–18.CrossRefPubMed
15.
go back to reference Huizinga JD, Chen J-H, Zhu YF. The origin of segmentation motor activity in the intestine. Nat Commun. 2014;5:1–11.CrossRef Huizinga JD, Chen J-H, Zhu YF. The origin of segmentation motor activity in the intestine. Nat Commun. 2014;5:1–11.CrossRef
16.
go back to reference Huizinga JD, Martz S, Gil V, et al. Two independent networks of interstitial cells of Cajal work cooperatively with the enteric nervous system to create colonic motor patterns. Front Neurosci. 2011;5:1–14.CrossRef Huizinga JD, Martz S, Gil V, et al. Two independent networks of interstitial cells of Cajal work cooperatively with the enteric nervous system to create colonic motor patterns. Front Neurosci. 2011;5:1–14.CrossRef
17.
go back to reference Sjölund K, Sandén G, Håkanson R, et al. Endocrine cells in human intestine: an immunocytochemical study. Gastroenterology. 1983;85:1120–30.PubMed Sjölund K, Sandén G, Håkanson R, et al. Endocrine cells in human intestine: an immunocytochemical study. Gastroenterology. 1983;85:1120–30.PubMed
18.
go back to reference Greenberg GR, Pokol-Daniel S. Neural modulation of glucose-dependent insulinotropic peptide (GIP) and insulin secretion in conscious dogs. Pancreas. 1994;9:531–5.CrossRefPubMed Greenberg GR, Pokol-Daniel S. Neural modulation of glucose-dependent insulinotropic peptide (GIP) and insulin secretion in conscious dogs. Pancreas. 1994;9:531–5.CrossRefPubMed
20.
go back to reference Holst JJ, Burcelin R, Nathanson E. Neuroprotective properties of GLP-1: theoretical and practical applications. Curr Med Res Opin. 2011;27:547–58.CrossRefPubMed Holst JJ, Burcelin R, Nathanson E. Neuroprotective properties of GLP-1: theoretical and practical applications. Curr Med Res Opin. 2011;27:547–58.CrossRefPubMed
21.
go back to reference Kazakos KA, Sarafidis PA, Yovos JG. The impact of diabetic autonomic neuropathy on the incretin effect. Med Sci Monit. 2008;14:CR213–20.PubMed Kazakos KA, Sarafidis PA, Yovos JG. The impact of diabetic autonomic neuropathy on the incretin effect. Med Sci Monit. 2008;14:CR213–20.PubMed
22.
go back to reference Forrest A, Huizinga JD, Wang XY, et al. Increase in stretch-induced rhythmic motor activity in the diabetic rat colon is associated with loss of ICC of the submuscular plexus. Am J Physiol Gastrointest Liver Physiol. 2008;294:G315–26.CrossRefPubMed Forrest A, Huizinga JD, Wang XY, et al. Increase in stretch-induced rhythmic motor activity in the diabetic rat colon is associated with loss of ICC of the submuscular plexus. Am J Physiol Gastrointest Liver Physiol. 2008;294:G315–26.CrossRefPubMed
23.
go back to reference Imaeda K, Takano H, Koshita M, et al. Electrical properties of colonic smooth muscle in spontaneously non-insulin-dependent diabetic rats. J Smooth Muscle Res. 1998;34:1–11.CrossRefPubMed Imaeda K, Takano H, Koshita M, et al. Electrical properties of colonic smooth muscle in spontaneously non-insulin-dependent diabetic rats. J Smooth Muscle Res. 1998;34:1–11.CrossRefPubMed
24.
go back to reference Huizinga JD, Zarate N, Farrugia G. Physiology, injury and recovery of interstitial cells of Cajal: basic and clinical science. Gastroenterology. 2009;137:1548–56.PubMedCentralCrossRefPubMed Huizinga JD, Zarate N, Farrugia G. Physiology, injury and recovery of interstitial cells of Cajal: basic and clinical science. Gastroenterology. 2009;137:1548–56.PubMedCentralCrossRefPubMed
25.
go back to reference Sanders KM, Ördög T, Koh SD, et al. Physiology and pathophysiology of the interstitial cells of Cajal: from bench to bedside. IV. Genetic and animal models of GI motility disorders caused by loss of interstitial cells of Cajal. Am J Physiol Gastrointest Liver Physiol. 2002;282:G747–56.CrossRefPubMed Sanders KM, Ördög T, Koh SD, et al. Physiology and pathophysiology of the interstitial cells of Cajal: from bench to bedside. IV. Genetic and animal models of GI motility disorders caused by loss of interstitial cells of Cajal. Am J Physiol Gastrointest Liver Physiol. 2002;282:G747–56.CrossRefPubMed
26.
go back to reference Yamamoto T, Watabe K, Nakahara M, et al. Involvement of interstitial cells of Cajal in gastrointestinal dysmotility of diabetic db/db mice. Gastroenterology. 2006;130:A-90. Yamamoto T, Watabe K, Nakahara M, et al. Involvement of interstitial cells of Cajal in gastrointestinal dysmotility of diabetic db/db mice. Gastroenterology. 2006;130:A-90.
27.
go back to reference Wim JEP, Lammers HM, Al-Bloushi SA, et al. Slow wave propagation and plasticity of interstitial cells of Cajal in the small intestine of diabetic rats. Exp Physiol. 2011;96:1039–48.CrossRef Wim JEP, Lammers HM, Al-Bloushi SA, et al. Slow wave propagation and plasticity of interstitial cells of Cajal in the small intestine of diabetic rats. Exp Physiol. 2011;96:1039–48.CrossRef
28.
go back to reference Kawano K, Hirashima T, Mori S, et al. Spontaneous long-term hyperglycemic rat with diabetic complications. Otsuka Long-Evans Tokushima Fatty (OLETF) strain. Diabetes. 1992;41:1422–8.CrossRefPubMed Kawano K, Hirashima T, Mori S, et al. Spontaneous long-term hyperglycemic rat with diabetic complications. Otsuka Long-Evans Tokushima Fatty (OLETF) strain. Diabetes. 1992;41:1422–8.CrossRefPubMed
29.
30.
go back to reference Lorincz A, Redelman D, Horvath VJ, et al. Progenitors of interstitial cells of Cajal in the postnatal murine stomach. Gastroenterology. 2008;134:1083–93.PubMedCentralCrossRefPubMed Lorincz A, Redelman D, Horvath VJ, et al. Progenitors of interstitial cells of Cajal in the postnatal murine stomach. Gastroenterology. 2008;134:1083–93.PubMedCentralCrossRefPubMed
31.
go back to reference Bardsley MR, Horvath VJ, Asuzu DT, et al. Kitlow stem cells cause resistance to Kit/platelet-derived growth factor alpha inhibitors in murine gastrointestinal stromal tumors. Gastroenterology. 2010;139:942–52.PubMedCentralCrossRefPubMed Bardsley MR, Horvath VJ, Asuzu DT, et al. Kitlow stem cells cause resistance to Kit/platelet-derived growth factor alpha inhibitors in murine gastrointestinal stromal tumors. Gastroenterology. 2010;139:942–52.PubMedCentralCrossRefPubMed
32.
go back to reference Maneesh D, Hayashi Y, Gajdos GB, et al. Stem cells for murine interstitial cells of Cajal suppress cellular immunity and colitis via prostaglandin E2 secretion. Gastroenterology. 2015;148:978–90.CrossRef Maneesh D, Hayashi Y, Gajdos GB, et al. Stem cells for murine interstitial cells of Cajal suppress cellular immunity and colitis via prostaglandin E2 secretion. Gastroenterology. 2015;148:978–90.CrossRef
33.
go back to reference He CL, Soffer EE, Ferris CD, et al. Loss of interstitial cells of Cajal and inhibitory innervation in insulin-dependent diabetes. Gastroenterology. 2001;121:427–34.CrossRefPubMed He CL, Soffer EE, Ferris CD, et al. Loss of interstitial cells of Cajal and inhibitory innervation in insulin-dependent diabetes. Gastroenterology. 2001;121:427–34.CrossRefPubMed
34.
go back to reference Nakahara M, Isozaki K, Hirota S, et al. Deficiency of KIT positive cells in the colon of patients with diabetes mellitus. J Gastroenterol Hepatol. 2002;17:666–70.CrossRefPubMed Nakahara M, Isozaki K, Hirota S, et al. Deficiency of KIT positive cells in the colon of patients with diabetes mellitus. J Gastroenterol Hepatol. 2002;17:666–70.CrossRefPubMed
35.
go back to reference Nielsen DS, Krich L, Buschard K, et al. Beyond genetics. Influence of dietary factors and gut microbiota on type 1 diabetes. FEBS Lett. 2014;588:4234–43.CrossRefPubMed Nielsen DS, Krich L, Buschard K, et al. Beyond genetics. Influence of dietary factors and gut microbiota on type 1 diabetes. FEBS Lett. 2014;588:4234–43.CrossRefPubMed
36.
37.
go back to reference Atkinson MA, Bluestone JA, Eisenbarth GS, et al. How does type 1 diabetes develop? The notion of homicide or β-cell suicide revisited. Diabetes. 2011;60:1370–9.PubMedCentralCrossRefPubMed Atkinson MA, Bluestone JA, Eisenbarth GS, et al. How does type 1 diabetes develop? The notion of homicide or β-cell suicide revisited. Diabetes. 2011;60:1370–9.PubMedCentralCrossRefPubMed
38.
39.
go back to reference Gutierrez-Canas I, Juarraz Y, Santiago B, et al. VIP down-regulates TLR4 expression and TLR4-mediated chemokine production in human rheumatoid synovial fibroblasts. Rheumatology. 2006;45:527–32.CrossRefPubMed Gutierrez-Canas I, Juarraz Y, Santiago B, et al. VIP down-regulates TLR4 expression and TLR4-mediated chemokine production in human rheumatoid synovial fibroblasts. Rheumatology. 2006;45:527–32.CrossRefPubMed
40.
go back to reference Barbara G, Stanghellini V, Brandi G, et al. Interactions between commensal bacteria and gut sensorimotor function in health and disease. Am J Gastroenterol. 2005;100:2560–8.CrossRefPubMed Barbara G, Stanghellini V, Brandi G, et al. Interactions between commensal bacteria and gut sensorimotor function in health and disease. Am J Gastroenterol. 2005;100:2560–8.CrossRefPubMed
41.
go back to reference Rhee SH, Pothoulakis C, Mayer EA. Principles and clinical implications of the brain-gut-enteric microbiota axis. Nat Rev Gastroenterol Hepatol. 2009;6:306–14.CrossRefPubMed Rhee SH, Pothoulakis C, Mayer EA. Principles and clinical implications of the brain-gut-enteric microbiota axis. Nat Rev Gastroenterol Hepatol. 2009;6:306–14.CrossRefPubMed
42.
43.
go back to reference Bravo JA, Forsythe P, Chew MV. Ingestion of Lactobacillus strain regulates emotional behavior and central GABA receptor expression in a mouse via the vagus nerve. Proc Natl Acad Sci U S A. 2011;108:16050–5.PubMedCentralCrossRefPubMed Bravo JA, Forsythe P, Chew MV. Ingestion of Lactobacillus strain regulates emotional behavior and central GABA receptor expression in a mouse via the vagus nerve. Proc Natl Acad Sci U S A. 2011;108:16050–5.PubMedCentralCrossRefPubMed
44.
go back to reference Kunze WA, Mao YK, Wang B. Lactobacillus reuteri enhances excitability of colonic AH neurons by inhibiting calcium-dependent potassium channel opening. J Cell Mol Med. 2009;13:2261–70.CrossRefPubMed Kunze WA, Mao YK, Wang B. Lactobacillus reuteri enhances excitability of colonic AH neurons by inhibiting calcium-dependent potassium channel opening. J Cell Mol Med. 2009;13:2261–70.CrossRefPubMed
45.
go back to reference Iyer LM, Aravind L, Coon SL, et al. Evolution of cell-cell signaling in animals: did late horizontal gene transfer from bacteria have a role? Trends Genet. 2004;20:292–9.CrossRefPubMed Iyer LM, Aravind L, Coon SL, et al. Evolution of cell-cell signaling in animals: did late horizontal gene transfer from bacteria have a role? Trends Genet. 2004;20:292–9.CrossRefPubMed
46.
go back to reference Asano Y, Hiramoto T, Nishino R. Critical role of gut microbiota in the production of biologically active, free catecholamines in the gut lumen of mice. Am J Physiol Gastrointest Liver Physiol. 2012;303:G1288–95.CrossRefPubMed Asano Y, Hiramoto T, Nishino R. Critical role of gut microbiota in the production of biologically active, free catecholamines in the gut lumen of mice. Am J Physiol Gastrointest Liver Physiol. 2012;303:G1288–95.CrossRefPubMed
47.
go back to reference Sobko T, Huang L, Midtvedt T. Generation of NO by probiotic bacteria in the gastrointestinal Tract. Free Radic Biol Med. 2006;41:985–91.CrossRefPubMed Sobko T, Huang L, Midtvedt T. Generation of NO by probiotic bacteria in the gastrointestinal Tract. Free Radic Biol Med. 2006;41:985–91.CrossRefPubMed
48.
go back to reference Schicho R, Krueger D, Zeller F. Hydrogen sulfide is a novel prosecretory neuromodulator in the Guinea-pig and human colon. Gastroenterology. 2006;131:1542–52.CrossRefPubMed Schicho R, Krueger D, Zeller F. Hydrogen sulfide is a novel prosecretory neuromodulator in the Guinea-pig and human colon. Gastroenterology. 2006;131:1542–52.CrossRefPubMed
49.
go back to reference Wirth R, Bódi N, Maróti G, et al. Regionally distinct alterations in the composition of the gut microbiota in rats with streptozotocin-induced diabetes. PLoS One. 2014;9, e110440.PubMedCentralCrossRefPubMed Wirth R, Bódi N, Maróti G, et al. Regionally distinct alterations in the composition of the gut microbiota in rats with streptozotocin-induced diabetes. PLoS One. 2014;9, e110440.PubMedCentralCrossRefPubMed
50.
go back to reference Izbéki F, Wittman T, Rosztóczy A, et al. Immediate insulin treatment prevents gut motility alterations and loss of nitrergic neurons in the ileum and colon of rats with streptozotocin-induced diabetes. Diabetes Res Clin Pract. 2008;80:192–8.CrossRefPubMed Izbéki F, Wittman T, Rosztóczy A, et al. Immediate insulin treatment prevents gut motility alterations and loss of nitrergic neurons in the ileum and colon of rats with streptozotocin-induced diabetes. Diabetes Res Clin Pract. 2008;80:192–8.CrossRefPubMed
51.
go back to reference Bódi N, Talapka P, Poles P, et al. Gut region-specific diabetic damage to the capillary endothelium adjacent to the myenteric plexus. Microcirculation. 2012;19:316–26.CrossRefPubMed Bódi N, Talapka P, Poles P, et al. Gut region-specific diabetic damage to the capillary endothelium adjacent to the myenteric plexus. Microcirculation. 2012;19:316–26.CrossRefPubMed
52.
go back to reference Vaarala O, Atkinson MA, Neu J. The “perfect storm” for type 1 diabetes. The complex interplay between intestinal microbiota, gut permeability, and mucosal immunity. Diabetes. 2008;57:2555–62.PubMedCentralCrossRefPubMed Vaarala O, Atkinson MA, Neu J. The “perfect storm” for type 1 diabetes. The complex interplay between intestinal microbiota, gut permeability, and mucosal immunity. Diabetes. 2008;57:2555–62.PubMedCentralCrossRefPubMed
53.
go back to reference Yarandi SS, Srinivasan S. Diabetic gastrointestinal motility disorders and the role of enteric nervous system: current status and future directions. Neurogastroenterol Motil. 2014;26:611–24.PubMedCentralCrossRefPubMed Yarandi SS, Srinivasan S. Diabetic gastrointestinal motility disorders and the role of enteric nervous system: current status and future directions. Neurogastroenterol Motil. 2014;26:611–24.PubMedCentralCrossRefPubMed
54.
go back to reference Lundgren O, Svanvik J, Jivegard L. Enteric nervous system. I. Physiology and pathophysiology of the intestinal tract. Dig Dis Sci. 1989;34:264–83.CrossRefPubMed Lundgren O, Svanvik J, Jivegard L. Enteric nervous system. I. Physiology and pathophysiology of the intestinal tract. Dig Dis Sci. 1989;34:264–83.CrossRefPubMed
55.
go back to reference Furness JB, Callaghan BP, Rivera LR, et al. The enteric nervous system and gastrointestinal innervation: integrated local and central control. Adv Exp Med Biol. 2014;817:39–71.CrossRefPubMed Furness JB, Callaghan BP, Rivera LR, et al. The enteric nervous system and gastrointestinal innervation: integrated local and central control. Adv Exp Med Biol. 2014;817:39–71.CrossRefPubMed
56.••
go back to reference Kempler P, Amarenco G, Freeman R, et al. Toronto Consensus Panel on Diabetic Neuropathy. Management strategies for gastrointestinal, erectile, bladder, and sudomotor dysfunction in patients with diabetes. Diabetes Metab Res Rev. 2011;27:665–77. The latest panel guideline on autonomic neuropathy and gastrointestinal complications.CrossRefPubMed Kempler P, Amarenco G, Freeman R, et al. Toronto Consensus Panel on Diabetic Neuropathy. Management strategies for gastrointestinal, erectile, bladder, and sudomotor dysfunction in patients with diabetes. Diabetes Metab Res Rev. 2011;27:665–77. The latest panel guideline on autonomic neuropathy and gastrointestinal complications.CrossRefPubMed
57.
go back to reference Søfteland E, Brock C, Frøkjær JB, et al. Association between visceral, cardiac and sensorimotor polyneuropathies in diabetes mellitus. J Diabetes Complicat. 2014;28:370–7.CrossRefPubMed Søfteland E, Brock C, Frøkjær JB, et al. Association between visceral, cardiac and sensorimotor polyneuropathies in diabetes mellitus. J Diabetes Complicat. 2014;28:370–7.CrossRefPubMed
58.
go back to reference Cesario V, Di Rienzo TA, Campanale M, et al. Methane intestinal production and poor metabolic control in type I diabetes complicated by autonomic neuropathy. Minerva Endocrinol. 2014;39:201–7.PubMed Cesario V, Di Rienzo TA, Campanale M, et al. Methane intestinal production and poor metabolic control in type I diabetes complicated by autonomic neuropathy. Minerva Endocrinol. 2014;39:201–7.PubMed
59.
go back to reference Ojetti V, Pitocco D, Scarpellini E, et al. Small bowel bacterial overgrowth and type 1 diabetes. Eur Rev Med Pharmacol Sci. 2009;13:419–23.PubMed Ojetti V, Pitocco D, Scarpellini E, et al. Small bowel bacterial overgrowth and type 1 diabetes. Eur Rev Med Pharmacol Sci. 2009;13:419–23.PubMed
60.
go back to reference Zietz B, Lock G, Straub RH, et al. Small-bowel bacterial overgrowth in diabetic subjects is associated with cardiovascular autonomic neuropathy. Diabetes Care. 2000;23:1200–1.CrossRefPubMed Zietz B, Lock G, Straub RH, et al. Small-bowel bacterial overgrowth in diabetic subjects is associated with cardiovascular autonomic neuropathy. Diabetes Care. 2000;23:1200–1.CrossRefPubMed
61.
go back to reference Gatopoulou A, Papanas N, Maltezos E. Diabetic gastrointestinal autonomic neuropathy: current status and new achievements for everyday clinical practice. Eur J Intern Med. 2012;23:499–505.CrossRefPubMed Gatopoulou A, Papanas N, Maltezos E. Diabetic gastrointestinal autonomic neuropathy: current status and new achievements for everyday clinical practice. Eur J Intern Med. 2012;23:499–505.CrossRefPubMed
62.
go back to reference El-Salhy M. The possible role of the gut neuroendocrine system in diabetes gastroenteropathy. Histol Histopathol. 2002;17:1153–61.PubMed El-Salhy M. The possible role of the gut neuroendocrine system in diabetes gastroenteropathy. Histol Histopathol. 2002;17:1153–61.PubMed
63.
go back to reference Phillips LK, Rayner CK, Jones KL, et al. An update on autonomic neuropathy affecting the gastrointestinal tract. Curr Diab Rep. 2006;6:417–23.CrossRefPubMed Phillips LK, Rayner CK, Jones KL, et al. An update on autonomic neuropathy affecting the gastrointestinal tract. Curr Diab Rep. 2006;6:417–23.CrossRefPubMed
64.
go back to reference Samsom M, Jebbink RJ, Akkermans LM, et al. Abnormalities of antroduodenal motility in type I diabetes. Diabetes Care. 1996;19:21–7.CrossRefPubMed Samsom M, Jebbink RJ, Akkermans LM, et al. Abnormalities of antroduodenal motility in type I diabetes. Diabetes Care. 1996;19:21–7.CrossRefPubMed
65.
go back to reference Nguyen LA, Snape WJ. Clinical presentation and pathophysiology of gastroparesis. Gastroenterol Clin N Am. 2015;44:21–30.CrossRef Nguyen LA, Snape WJ. Clinical presentation and pathophysiology of gastroparesis. Gastroenterol Clin N Am. 2015;44:21–30.CrossRef
66.
go back to reference Chandrasekharan B, Anitha M, Blatt R, et al. Colonic motor dysfunction in human diabetes is associated with enteric neuronal loss and increased oxidative stress. Neurogastroenterol Motil. 2011;23:131–8.PubMedCentralCrossRefPubMed Chandrasekharan B, Anitha M, Blatt R, et al. Colonic motor dysfunction in human diabetes is associated with enteric neuronal loss and increased oxidative stress. Neurogastroenterol Motil. 2011;23:131–8.PubMedCentralCrossRefPubMed
67.
go back to reference Bharucha AE, Low P, Camilleri M, et al. A randomised controlled study of the effect of cholinesterase inhibition on colon function in patients with diabetes mellitus and constipation. Gut. 2013;62:708–15.PubMedCentralCrossRefPubMed Bharucha AE, Low P, Camilleri M, et al. A randomised controlled study of the effect of cholinesterase inhibition on colon function in patients with diabetes mellitus and constipation. Gut. 2013;62:708–15.PubMedCentralCrossRefPubMed
68.
go back to reference Jung HK, Kim DY, Moon IH, et al. Colonic transit time in diabetic patients—comparison with healthy subjects and the effect of autonomic neuropathy. Yonsei Med J. 2003;44:265–72.CrossRefPubMed Jung HK, Kim DY, Moon IH, et al. Colonic transit time in diabetic patients—comparison with healthy subjects and the effect of autonomic neuropathy. Yonsei Med J. 2003;44:265–72.CrossRefPubMed
69.
70.
go back to reference Rosztóczy A, Róka R, Várkonyi T, et al. Regional differences in the manifestation of gastrointestinal motor disorders in type 1 diabetic patients with autonomic neuropathy. Z Gastroenterol. 2004;42:1295–300.CrossRefPubMed Rosztóczy A, Róka R, Várkonyi T, et al. Regional differences in the manifestation of gastrointestinal motor disorders in type 1 diabetic patients with autonomic neuropathy. Z Gastroenterol. 2004;42:1295–300.CrossRefPubMed
71.
go back to reference Valdovinos MA, Camilleri M, Zimmerman BR. Chronic diarrhea in diabetes mellitus: mechanisms and an approach to diagnosis and treatment. Mayo Clin Proc. 1993;68:691–702.CrossRefPubMed Valdovinos MA, Camilleri M, Zimmerman BR. Chronic diarrhea in diabetes mellitus: mechanisms and an approach to diagnosis and treatment. Mayo Clin Proc. 1993;68:691–702.CrossRefPubMed
72.
go back to reference Mourad FH, Gorard D, Thillainayagam AV, et al. Effective treatment of diabetic diarrhea with somatostatin analogue, octreotide. Gut. 1992;33:1578–80.PubMedCentralCrossRefPubMed Mourad FH, Gorard D, Thillainayagam AV, et al. Effective treatment of diabetic diarrhea with somatostatin analogue, octreotide. Gut. 1992;33:1578–80.PubMedCentralCrossRefPubMed
73.
go back to reference Horváth VJ, Izbéki F, Lengyel C, et al. Diabetic gastroparesis: functional/morphologic background, diagnosis, and treatment options. Curr Diab Rep. 2014;14:527–33.CrossRefPubMed Horváth VJ, Izbéki F, Lengyel C, et al. Diabetic gastroparesis: functional/morphologic background, diagnosis, and treatment options. Curr Diab Rep. 2014;14:527–33.CrossRefPubMed
74.
go back to reference Bytzer P, Talley NJ, Jones MP, et al. Oral hypoglycaemic drugs and gastrointestinal symptoms in diabetes mellitus. Aliment Pharmacol Ther. 2001;15:137–42.CrossRefPubMed Bytzer P, Talley NJ, Jones MP, et al. Oral hypoglycaemic drugs and gastrointestinal symptoms in diabetes mellitus. Aliment Pharmacol Ther. 2001;15:137–42.CrossRefPubMed
75.
go back to reference Ruiter R, Visser LE, van Herk-Sukel MP, et al. Lower risk of cancer in patients on metformin in comparison with those on sulfonylurea derivatives: results from a large population-based follow-up. Diabetes Care. 2012;35:119–24.PubMedCentralCrossRefPubMed Ruiter R, Visser LE, van Herk-Sukel MP, et al. Lower risk of cancer in patients on metformin in comparison with those on sulfonylurea derivatives: results from a large population-based follow-up. Diabetes Care. 2012;35:119–24.PubMedCentralCrossRefPubMed
76.
77.
go back to reference Zhang ZJ, Zheng ZJ, Kan H, et al. Reduced risk of colorectal cancer with metformin therapy in patients with type 2 diabetes. Diabetes Care. 2011;34:2323–8.PubMedCentralCrossRefPubMed Zhang ZJ, Zheng ZJ, Kan H, et al. Reduced risk of colorectal cancer with metformin therapy in patients with type 2 diabetes. Diabetes Care. 2011;34:2323–8.PubMedCentralCrossRefPubMed
78.
Metadata
Title
Diabetes-Related Dysfunction of the Small Intestine and the Colon: Focus on Motility
Authors
Viktor József Horváth
Zsuzsanna Putz
Ferenc Izbéki
Anna Erzsébet Körei
László Gerő
Csaba Lengyel
Péter Kempler
Tamás Várkonyi
Publication date
01-11-2015
Publisher
Springer US
Published in
Current Diabetes Reports / Issue 11/2015
Print ISSN: 1534-4827
Electronic ISSN: 1539-0829
DOI
https://doi.org/10.1007/s11892-015-0672-8

Other articles of this Issue 11/2015

Current Diabetes Reports 11/2015 Go to the issue

Pathogenesis of Type 1 Diabetes (A Pugliese, Section Editor)

Genes Affecting β-Cell Function in Type 1 Diabetes

Pathogenesis of Type 1 Diabetes (A Pugliese, Section Editor)

Effects of Type 1 Diabetes-Associated IFIH1 Polymorphisms on MDA5 Function and Expression

Treatment of Type 1 Diabetes (M Pietropaolo, Section Editor)

Can We Prevent Type 1 Diabetes?

Pathogenesis of Type 2 Diabetes and Insulin Resistance (RM Watanabe, Section Editor)

Adipose Tissue Inflammation in the Pathogenesis of Type 2 Diabetes

Live Webinar | 27-06-2024 | 18:00 (CEST)

Keynote webinar | Spotlight on medication adherence

Live: Thursday 27th June 2024, 18:00-19:30 (CEST)

WHO estimates that half of all patients worldwide are non-adherent to their prescribed medication. The consequences of poor adherence can be catastrophic, on both the individual and population level.

Join our expert panel to discover why you need to understand the drivers of non-adherence in your patients, and how you can optimize medication adherence in your clinics to drastically improve patient outcomes.

Prof. Kevin Dolgin
Prof. Florian Limbourg
Prof. Anoop Chauhan
Developed by: Springer Medicine
Obesity Clinical Trial Summary

At a glance: The STEP trials

A round-up of the STEP phase 3 clinical trials evaluating semaglutide for weight loss in people with overweight or obesity.

Developed by: Springer Medicine