Skip to main content
Top
Published in: Inflammation 5/2014

01-10-2014

Dexmedetomidine Controls Systemic Cytokine Levels through the Cholinergic Anti-inflammatory Pathway

Authors: Hui Xiang, Bo Hu, Zhifeng Li, Jianguo Li

Published in: Inflammation | Issue 5/2014

Login to get access

Abstract

Previous studies have shown that dexmedetomidine exerted anti-inflammatory effect on several animal models with inflammation, but the mechanism is not clear. This study intends to elucidate the anti-inflammatory mechanism of dexmedetomidine through the cholinergic anti-inflammatory pathway. To investigate this therapeutic potential of dexmedetomidine, a murine model of endotoxemia was established induced by lipopolysaccharide (LPS). Animals were assigned to one of four protocols. Protocol one: animals were randomly assigned to control group, dexmedetomidine group, and sterile saline group (n = 20 each), and these animals were used for survival analysis. The survival rate was assessed up to 120 h after endotoxin injection. Protocol two: animals were randomly assigned to one of four groups (n = 16 each): group 1 (group Saline), treated with sterile saline 15 min prior to endotoxin treatment (10 mg kg−1 over 2 min); group 2 (group Dex), treated with dexmedetomidine 15 min prior to endotoxin treatment; group 3 (group αBGT + Dex), treated with alpha-7 nicotinic acetylcholine receptors (α7nAChR) antagonist alpha-bungarotoxin (αBGT, 1 μg/kg) 15 min prior to dexmedetomidine treatment; group 4 (group saline + Dex), treated with equivalent sterile saline 15 min prior to dexmedetomidine treatment. Protocol three: animals were randomly assigned to one of two groups (n = 16 each): vagotomy group (group VNX + Dex), right cervical vagus nerve was exposed and transected; sham-operated group (group SHAM + Dex), the cervical vagus nerve was visualized, but was neither isolated from the surrounding tissues nor transected. Protocol four: animals were treated with dexmedetomidine (40 μg/kg) and sterile saline to observe the discharge activity of cervical vagus nerves by using BL-420F data acquisition and analysis system (n = 16 each). In the survival analysis groups, the survival rate of dexmedetomidine group was significantly higher than that of the endotoxemia group (65 versus 25 %, P < 0.01). Preemptive administration of dexmedetomidine significantly attenuated the cytokine response after lipopolysaccharide (LPS) induced endotoxemia (TNF-alpha, IL-1beta, IL-6, P < 0.01, respectively). However, preemptive administration of dexmedetomidine failed to suppress cytokine response in α-bungarotoxin group and vagotomy group (TNF-alpha, IL-1beta, IL-6, P > 0.05, respectively). Furthermore, preemptive administration of dexmedetomidine significantly increased the discharge frequency of cervical vagus nerves in comparison with sterile saline treatment (P < 0.01).Our results demonstrate that the preemptive administration of dexmedetomidine increases the activity of cervical vagus nerve and have the ability to successfully improve survival in experimental endotoxemia by inhibiting the inflammatory cytokines release. However, administration of dexmedetomidine to vagotomy or α7 nAChR antagonist pretreatment mice failed to suppress TNF levels, indicating that the vagus nerve and α7nAChR-mediated cholinergic anti-inflammatory pathway is required for the anti-inflammatory effect of dexmedetomidine. These findings show that central alpha-2 agonist dexmedetomidine suppresses systemic inflammation through vagal- and α7nAChR-dependent mechanism.
Literature
1.
go back to reference Casey, L.C., R.A. Balk, and R.C. Bone. 1993. Plasma cytokine and endotoxin levels correlate with survival in patients with the sepsis syndrome. Annals of Internal Medicine 119: 771–778.PubMedCrossRef Casey, L.C., R.A. Balk, and R.C. Bone. 1993. Plasma cytokine and endotoxin levels correlate with survival in patients with the sepsis syndrome. Annals of Internal Medicine 119: 771–778.PubMedCrossRef
2.
go back to reference Damas, P., A. Reuter, P. Gysen, J. Demonty, M. Lamy, and P. Franchimont. 1989. Tumor necrosis factor and interleukin-1 serum levels during severe sepsis in humans. Critical Care Medicine 17: 975–978.PubMedCrossRef Damas, P., A. Reuter, P. Gysen, J. Demonty, M. Lamy, and P. Franchimont. 1989. Tumor necrosis factor and interleukin-1 serum levels during severe sepsis in humans. Critical Care Medicine 17: 975–978.PubMedCrossRef
3.
go back to reference Wakabayashi, G., J.A. Gelfand, W.K. Jung, R.J. Connolly, J.F. Burke, and C.A. Dinarello. 1991. Staphylococcus epidermidis induces complement activation, tumor necrosis factor and interleukin-1, a shock-like state and tissue injury in rabbits without endotoxemia. Comparison to Escherichia coli. Journal of Clinical Investigation 87: 1925–1935.PubMedCrossRefPubMedCentral Wakabayashi, G., J.A. Gelfand, W.K. Jung, R.J. Connolly, J.F. Burke, and C.A. Dinarello. 1991. Staphylococcus epidermidis induces complement activation, tumor necrosis factor and interleukin-1, a shock-like state and tissue injury in rabbits without endotoxemia. Comparison to Escherichia coli. Journal of Clinical Investigation 87: 1925–1935.PubMedCrossRefPubMedCentral
5.
go back to reference Borovikova, L.V., S. Ivanova, M. Zhang, H. Yang, G.I. Botchkina, L.R. Watkins, H. Wang, N. Abumrad, J.W. Eaton, and K.J. Tracey. 2000. Vagus nerve stimulation attenuates the systemic inflammatory response to endotoxin. Nature 405: 458–462.PubMedCrossRef Borovikova, L.V., S. Ivanova, M. Zhang, H. Yang, G.I. Botchkina, L.R. Watkins, H. Wang, N. Abumrad, J.W. Eaton, and K.J. Tracey. 2000. Vagus nerve stimulation attenuates the systemic inflammatory response to endotoxin. Nature 405: 458–462.PubMedCrossRef
7.
go back to reference Taniguchi, T., K. Yamamoto, N. Ohmoto, K. Ohta, and T. Kobayashi. 2000. Effects of propofol on hemodynamic and inflammatory responses to endotoxemia in rats. Critical Care Medicine 28: 1101–1106.PubMedCrossRef Taniguchi, T., K. Yamamoto, N. Ohmoto, K. Ohta, and T. Kobayashi. 2000. Effects of propofol on hemodynamic and inflammatory responses to endotoxemia in rats. Critical Care Medicine 28: 1101–1106.PubMedCrossRef
8.
go back to reference Taniguchi, T., and K. Yamamoto. 2005. Anti-inflammatory effects of intravenous anesthetics on endotoxemia. Mini Reviews in Medicinal Chemistry 5: 241–245.PubMedCrossRef Taniguchi, T., and K. Yamamoto. 2005. Anti-inflammatory effects of intravenous anesthetics on endotoxemia. Mini Reviews in Medicinal Chemistry 5: 241–245.PubMedCrossRef
9.
go back to reference Hsu, Y.W., L.I. Cortinez, K.M. Robertson, J.C. Keifer, S.T. Sum-Ping, E.W. Moretti, C.C. Young, D.R. Wright, D.B. Macleod, and J. Somma. 2004. Dexmedetomidine pharmacodynamics: part I: crossover comparison of the respiratory effects of dexmedetomidine and remifentanil in healthy volunteers. Anesthesiology 101: 1066–1076.PubMedCrossRef Hsu, Y.W., L.I. Cortinez, K.M. Robertson, J.C. Keifer, S.T. Sum-Ping, E.W. Moretti, C.C. Young, D.R. Wright, D.B. Macleod, and J. Somma. 2004. Dexmedetomidine pharmacodynamics: part I: crossover comparison of the respiratory effects of dexmedetomidine and remifentanil in healthy volunteers. Anesthesiology 101: 1066–1076.PubMedCrossRef
10.
go back to reference Pandharipande, P.P., B.T. Pun, D.L. Herr, M. Maze, T.D. Girard, R.R. Miller, A.K. Shintani, J.L. Thompson, J.C. Jackson, S.A. Deppen, et al. 2007. Effect of sedation with dexmedetomidine vs lorazepam on acute brain dysfunction in mechanically ventilated patients: the MENDS randomized controlled trial. JAMA 298: 2644–2653.PubMedCrossRef Pandharipande, P.P., B.T. Pun, D.L. Herr, M. Maze, T.D. Girard, R.R. Miller, A.K. Shintani, J.L. Thompson, J.C. Jackson, S.A. Deppen, et al. 2007. Effect of sedation with dexmedetomidine vs lorazepam on acute brain dysfunction in mechanically ventilated patients: the MENDS randomized controlled trial. JAMA 298: 2644–2653.PubMedCrossRef
11.
go back to reference Hofer, S., J. Steppan, T. Wagner, B. Funke, C. Lichtenstern, E. Martin, B.M. Graf, A. Bierhaus, and M.A. Weigand. 2009. Central sympatholytics prolong survival in experimental sepsis. Critical Care 13: R11.PubMedCrossRefPubMedCentral Hofer, S., J. Steppan, T. Wagner, B. Funke, C. Lichtenstern, E. Martin, B.M. Graf, A. Bierhaus, and M.A. Weigand. 2009. Central sympatholytics prolong survival in experimental sepsis. Critical Care 13: R11.PubMedCrossRefPubMedCentral
12.
go back to reference Taniguchi, T., A. Kurita, K. Kobayashi, K. Yamamoto, and H. Inaba. 2008. Dose- and time-related effects of dexmedetomidine on mortality and inflammatory responses to endotoxin-induced shock in rats. Journal of Anesthesia 22: 221–228.PubMedCrossRef Taniguchi, T., A. Kurita, K. Kobayashi, K. Yamamoto, and H. Inaba. 2008. Dose- and time-related effects of dexmedetomidine on mortality and inflammatory responses to endotoxin-induced shock in rats. Journal of Anesthesia 22: 221–228.PubMedCrossRef
13.
go back to reference Gu, J., J. Chen, P. Xia, G. Tao, H. Zhao, and D. Ma. 2011. Dexmedetomidine attenuates remote lung injury induced by renal ischemia-reperfusion in mice. Acta Anaesthesiologica Scandinavica 55: 1272–1278.PubMedCrossRef Gu, J., J. Chen, P. Xia, G. Tao, H. Zhao, and D. Ma. 2011. Dexmedetomidine attenuates remote lung injury induced by renal ischemia-reperfusion in mice. Acta Anaesthesiologica Scandinavica 55: 1272–1278.PubMedCrossRef
14.
go back to reference Gu, J., P. Sun, H. Zhao, H.R. Watts, R.D. Sanders, N. Terrando, P. Xia, M. Maze, and D. Ma. 2011. Dexmedetomidine provides renoprotection against ischemia-reperfusion injury in mice. Critical Care 15: R153.PubMedCrossRefPubMedCentral Gu, J., P. Sun, H. Zhao, H.R. Watts, R.D. Sanders, N. Terrando, P. Xia, M. Maze, and D. Ma. 2011. Dexmedetomidine provides renoprotection against ischemia-reperfusion injury in mice. Critical Care 15: R153.PubMedCrossRefPubMedCentral
15.
go back to reference Sica, D.A. 2007. Centrally acting antihypertensive agents: an update. Journal of Clinical Hypertension (Greenwich, Conn.) 9: 399–405.CrossRef Sica, D.A. 2007. Centrally acting antihypertensive agents: an update. Journal of Clinical Hypertension (Greenwich, Conn.) 9: 399–405.CrossRef
17.
go back to reference Taniguchi, T., Y. Kidani, H. Kanakura, Y. Takemoto, and K. Yamamoto. 2004. Effects of dexmedetomidine on mortality rate and inflammatory responses to endotoxin-induced shock in rats. Critical Care Medicine 32: 1322–1326.PubMedCrossRef Taniguchi, T., Y. Kidani, H. Kanakura, Y. Takemoto, and K. Yamamoto. 2004. Effects of dexmedetomidine on mortality rate and inflammatory responses to endotoxin-induced shock in rats. Critical Care Medicine 32: 1322–1326.PubMedCrossRef
18.
go back to reference Seok, J., H.S. Warren, A.G. Cuenca, M.N. Mindrinos, H.V. Baker, W. Xu, D.R. Richards, G.P. McDonald-Smith, H. Gao, L. Hennessy, et al. 2013. Genomic responses in mouse models poorly mimic human inflammatory diseases. Proceedings of the National Academy of Sciences of the United States of America 110: 3507–3512.PubMedCrossRefPubMedCentral Seok, J., H.S. Warren, A.G. Cuenca, M.N. Mindrinos, H.V. Baker, W. Xu, D.R. Richards, G.P. McDonald-Smith, H. Gao, L. Hennessy, et al. 2013. Genomic responses in mouse models poorly mimic human inflammatory diseases. Proceedings of the National Academy of Sciences of the United States of America 110: 3507–3512.PubMedCrossRefPubMedCentral
19.
go back to reference Rosas-Ballina, M., and K.J. Tracey. 2009. Cholinergic control of inflammation. Journal of Internal Medicine 265: 663–679.PubMedCrossRef Rosas-Ballina, M., and K.J. Tracey. 2009. Cholinergic control of inflammation. Journal of Internal Medicine 265: 663–679.PubMedCrossRef
20.
go back to reference van Westerloo, D.J., I.A. Giebelen, S. Florquin, J. Daalhuisen, M.J. Bruno, A.F. de Vos, K.J. Tracey, and T. van der Poll. 2005. The cholinergic anti-inflammatory pathway regulates the host response during septic peritonitis. Journal of Infectious Diseases 191: 2138–2148.PubMedCrossRef van Westerloo, D.J., I.A. Giebelen, S. Florquin, J. Daalhuisen, M.J. Bruno, A.F. de Vos, K.J. Tracey, and T. van der Poll. 2005. The cholinergic anti-inflammatory pathway regulates the host response during septic peritonitis. Journal of Infectious Diseases 191: 2138–2148.PubMedCrossRef
21.
go back to reference Kessler, W., T. Traeger, A. Westerholt, F. Neher, M. Mikulcak, A. Muller, S. Maier, and C.D. Heidecke. 2006. The vagal nerve as a link between the nervous and immune system in the instance of polymicrobial sepsis. Langenbeck’s Archives of Surgery 391: 83–87.PubMedCrossRef Kessler, W., T. Traeger, A. Westerholt, F. Neher, M. Mikulcak, A. Muller, S. Maier, and C.D. Heidecke. 2006. The vagal nerve as a link between the nervous and immune system in the instance of polymicrobial sepsis. Langenbeck’s Archives of Surgery 391: 83–87.PubMedCrossRef
22.
go back to reference van Westerloo, D.J., I.A. Giebelen, S. Florquin, M.J. Bruno, G.J. Larosa, L. Ulloa, K.J. Tracey, and T. van der Poll. 2006. The vagus nerve and nicotinic receptors modulate experimental pancreatitis severity in mice. Gastroenterology 130: 1822–1830.PubMedCrossRef van Westerloo, D.J., I.A. Giebelen, S. Florquin, M.J. Bruno, G.J. Larosa, L. Ulloa, K.J. Tracey, and T. van der Poll. 2006. The vagus nerve and nicotinic receptors modulate experimental pancreatitis severity in mice. Gastroenterology 130: 1822–1830.PubMedCrossRef
23.
go back to reference Guarini, S., D. Altavilla, M.M. Cainazzo, D. Giuliani, A. Bigiani, H. Marini, G. Squadrito, L. Minutoli, A. Bertolini, R. Marini, et al. 2003. Efferent vagal fibre stimulation blunts nuclear factor-κB activation and protects against hypovolemic hemorrhagic shock. Circulation 107: 1189–1194.PubMedCrossRef Guarini, S., D. Altavilla, M.M. Cainazzo, D. Giuliani, A. Bigiani, H. Marini, G. Squadrito, L. Minutoli, A. Bertolini, R. Marini, et al. 2003. Efferent vagal fibre stimulation blunts nuclear factor-κB activation and protects against hypovolemic hemorrhagic shock. Circulation 107: 1189–1194.PubMedCrossRef
24.
go back to reference Bernik, T.R., S.G. Friedman, M. Ochani, R. DiRaimo, S. Susarla, C.J. Czura, and K.J. Tracey. 2002. Cholinergic antiinflammatory pathway inhibition of tumor necrosis factor during ischemia reperfusion. Journal of Vascular Surgery 36: 1231–1236.PubMedCrossRef Bernik, T.R., S.G. Friedman, M. Ochani, R. DiRaimo, S. Susarla, C.J. Czura, and K.J. Tracey. 2002. Cholinergic antiinflammatory pathway inhibition of tumor necrosis factor during ischemia reperfusion. Journal of Vascular Surgery 36: 1231–1236.PubMedCrossRef
25.
go back to reference Huston, J.M., M. Gallowitsch-Puerta, M. Ochani, K. Ochani, R. Yuan, M. Rosas-Ballina, M. Ashok, R.S. Goldstein, S. Chavan, V.A. Pavlov, et al. 2007. Transcutaneous vagus nerve stimulation reduces serum high mobility group box 1 levels and improves survival in murine sepsis. Critical Care Medicine 35: 2762–2768.PubMedCrossRef Huston, J.M., M. Gallowitsch-Puerta, M. Ochani, K. Ochani, R. Yuan, M. Rosas-Ballina, M. Ashok, R.S. Goldstein, S. Chavan, V.A. Pavlov, et al. 2007. Transcutaneous vagus nerve stimulation reduces serum high mobility group box 1 levels and improves survival in murine sepsis. Critical Care Medicine 35: 2762–2768.PubMedCrossRef
26.
go back to reference van Westerloo, D.J., I.A. Giebelen, J.C. Meijers, J. Daalhuisen, A.F. de Vos, M. Levi, and T. van der Poll. 2006. Vagus nerve stimulation inhibits activation of coagulation and fibrinolysis during endotoxemia in rats. Journal of Thrombosis and Haemostasis 4: 1997–2002.PubMedCrossRef van Westerloo, D.J., I.A. Giebelen, J.C. Meijers, J. Daalhuisen, A.F. de Vos, M. Levi, and T. van der Poll. 2006. Vagus nerve stimulation inhibits activation of coagulation and fibrinolysis during endotoxemia in rats. Journal of Thrombosis and Haemostasis 4: 1997–2002.PubMedCrossRef
27.
go back to reference Wang, H., M. Yu, M. Ochani, C.A. Amella, M. Tanovic, S. Susarla, J.H. Li, H. Wang, H. Yang, L. Ulloa, et al. 2003. Nicotinic acetylcholine receptor alpha7 subunit is an essential regulator of inflammation. Nature 421: 384–388.PubMedCrossRef Wang, H., M. Yu, M. Ochani, C.A. Amella, M. Tanovic, S. Susarla, J.H. Li, H. Wang, H. Yang, L. Ulloa, et al. 2003. Nicotinic acetylcholine receptor alpha7 subunit is an essential regulator of inflammation. Nature 421: 384–388.PubMedCrossRef
28.
go back to reference Pavlov, V.A., M. Ochani, L.H. Yang, M. Gallowitsch-Puerta, K. Ochani, X. Lin, J. Levi, W.R. Parrish, M. Rosas-Ballina, C.J. Czura, et al. 2007. Selective alpha7-nicotinic acetylcholine receptor agonist GTS-21 improves survival in murine endotoxemia and severe sepsis. Critical Care Medicine 35: 1139–1144.PubMedCrossRef Pavlov, V.A., M. Ochani, L.H. Yang, M. Gallowitsch-Puerta, K. Ochani, X. Lin, J. Levi, W.R. Parrish, M. Rosas-Ballina, C.J. Czura, et al. 2007. Selective alpha7-nicotinic acetylcholine receptor agonist GTS-21 improves survival in murine endotoxemia and severe sepsis. Critical Care Medicine 35: 1139–1144.PubMedCrossRef
29.
go back to reference Zhang, Y., and J. Li. 2012. Carbachol ameliorates lipopolysaccharide-induced intestinal epithelial tight junction damage by down-regulating NFkappabeta and myosin light-chain kinase pathways. Biochemical and Biophysical Research Communications 428: 321–326. Zhang, Y., and J. Li. 2012. Carbachol ameliorates lipopolysaccharide-induced intestinal epithelial tight junction damage by down-regulating NFkappabeta and myosin light-chain kinase pathways. Biochemical and Biophysical Research Communications 428: 321–326.
30.
go back to reference Shimizu, S., T. Akiyama, T. Kawada, Y. Sata, M. Mizuno, A. Kamiya, T. Shishido, M. Inagaki, M. Shirai, S. Sano, and M. Sugimachi. 2012. Medetomidine, an α2-adrenergic agonist, activates cardiac vagal nerve through modulation of baroreflex control. Circulation Journal 76: 152–159.PubMedCrossRef Shimizu, S., T. Akiyama, T. Kawada, Y. Sata, M. Mizuno, A. Kamiya, T. Shishido, M. Inagaki, M. Shirai, S. Sano, and M. Sugimachi. 2012. Medetomidine, an α2-adrenergic agonist, activates cardiac vagal nerve through modulation of baroreflex control. Circulation Journal 76: 152–159.PubMedCrossRef
Metadata
Title
Dexmedetomidine Controls Systemic Cytokine Levels through the Cholinergic Anti-inflammatory Pathway
Authors
Hui Xiang
Bo Hu
Zhifeng Li
Jianguo Li
Publication date
01-10-2014
Publisher
Springer US
Published in
Inflammation / Issue 5/2014
Print ISSN: 0360-3997
Electronic ISSN: 1573-2576
DOI
https://doi.org/10.1007/s10753-014-9906-1

Other articles of this Issue 5/2014

Inflammation 5/2014 Go to the issue
Obesity Clinical Trial Summary

At a glance: The STEP trials

A round-up of the STEP phase 3 clinical trials evaluating semaglutide for weight loss in people with overweight or obesity.

Developed by: Springer Medicine

Highlights from the ACC 2024 Congress

Year in Review: Pediatric cardiology

Watch Dr. Anne Marie Valente present the last year's highlights in pediatric and congenital heart disease in the official ACC.24 Year in Review session.

Year in Review: Pulmonary vascular disease

The last year's highlights in pulmonary vascular disease are presented by Dr. Jane Leopold in this official video from ACC.24.

Year in Review: Valvular heart disease

Watch Prof. William Zoghbi present the last year's highlights in valvular heart disease from the official ACC.24 Year in Review session.

Year in Review: Heart failure and cardiomyopathies

Watch this official video from ACC.24. Dr. Biykem Bozkurt discuss last year's major advances in heart failure and cardiomyopathies.