Skip to main content
Top
Published in: Cardiovascular Toxicology 3-4/2023

21-02-2023 | Dexamethasone

Molecular Cardiotoxic Effects of Proteasome Inhibitors Carfilzomib and Ixazomib and Their Combination with Dexamethasone Involve Mitochondrial Dysregulation

Authors: Ayse Tarbin Jannuzzi, Nalan Sümeyra Korkmaz, Aysenur Gunaydin Akyildiz, Sema Arslan Eseryel, Betul Karademir Yilmaz, Buket Alpertunga

Published in: Cardiovascular Toxicology | Issue 3-4/2023

Login to get access

Abstract

With the development and approval of new proteasome inhibitors, proteasome inhibition is increasingly recognized in cancer therapy. Besides successful anti-cancer effects in hematological cancers, side effects such as cardiotoxicity are limiting effective treatment. In this study, we used a cardiomyocyte model to investigate the molecular cardiotoxic mechanisms of carfilzomib (CFZ) and ixazomib (IXZ) alone or in combination with the immunomodulatory drug dexamethasone (DEX) which is frequently used in combination therapies in the clinic. According to our findings, CFZ showed a higher cytotoxic effect at lower concentrations than IXZ. DEX combination attenuated the cytotoxicity for both proteasome inhibitors. All drug treatments caused a marked increase in K48 ubiquitination. Both CFZ and IXZ caused an upregulation in cellular and endoplasmic reticulum stress protein (HSP90, HSP70, GRP94, and GRP78) levels and DEX combination attenuated the increased stress protein levels. Importantly, IXZ and IXZ-DEX treatments caused upregulation of mitochondria fission and fusion gene expression levels higher than caused by CFZ and CFZ-DEX combination. The IXZ-DEX combination reduced the levels of OXPHOS proteins (Complex II–V) more than the CFZ-DEX combination. Reduced mitochondrial membrane potential and ATP production were detected with all drug treatments in cardiomyocytes. Our findings suggest that the cardiotoxic effect of proteasome inhibitors may be due to their class effect and stress response and mitochondrial dysfunction may be involved in the cardiotoxicity process.
Appendix
Available only for authorised users
Literature
1.
go back to reference Wu, P., Oren, O., Gertz, M. A., & Yang, E. H. (2020). Proteasome inhibitor-related cardiotoxicity: Mechanisms, diagnosis, and management. Current Oncology Reports, 22(7), 1–14.CrossRef Wu, P., Oren, O., Gertz, M. A., & Yang, E. H. (2020). Proteasome inhibitor-related cardiotoxicity: Mechanisms, diagnosis, and management. Current Oncology Reports, 22(7), 1–14.CrossRef
2.
go back to reference Shah, C., Bishnoi, R., Jain, A., Bejjanki, H., Xiong, S., Wang, Y., Zou, F., & Moreb, J. S. (2018). Cardiotoxicity associated with carfilzomib: Systematic review and meta-analysis. Leukemia & lymphoma, 59(11), 2557–2569.CrossRef Shah, C., Bishnoi, R., Jain, A., Bejjanki, H., Xiong, S., Wang, Y., Zou, F., & Moreb, J. S. (2018). Cardiotoxicity associated with carfilzomib: Systematic review and meta-analysis. Leukemia & lymphoma, 59(11), 2557–2569.CrossRef
3.
go back to reference Jouni, H., Aubry, M. C., Lacy, M. Q., Kumar, S. K., Frye, R. L., & Herrmann, J. (2017). Ixazomib cardiotoxicity: A possible class effect of proteasome inhibitors. American Journal of Hematology, 92(2), 220–221.CrossRefPubMed Jouni, H., Aubry, M. C., Lacy, M. Q., Kumar, S. K., Frye, R. L., & Herrmann, J. (2017). Ixazomib cardiotoxicity: A possible class effect of proteasome inhibitors. American Journal of Hematology, 92(2), 220–221.CrossRefPubMed
5.
go back to reference Ling, Y., Li, R., Zhong, J., Zhao, Y., & Chen, Z. (2022). Ixazomib-associated cardiovascular adverse events in multiple myeloma: A systematic review and meta-analysis. Drug and Chemical Toxicology, 45(4), 1443–1448.CrossRefPubMed Ling, Y., Li, R., Zhong, J., Zhao, Y., & Chen, Z. (2022). Ixazomib-associated cardiovascular adverse events in multiple myeloma: A systematic review and meta-analysis. Drug and Chemical Toxicology, 45(4), 1443–1448.CrossRefPubMed
6.
go back to reference Latif, A., Kapoor, V., Lateef, N., Ahsan, M. J., Usman, R. M., Malik, S. U., Ahmad, N., Rosko, N., Rudoni, J., William, P., Khouri, J., & Anwer, F. (2021). Incidence and management of carfilzomib-induced cardiovascular toxicity; A systematic review and meta-analysis. Cardiovascular & Haematological Disorders-Drug Targets (Formerly Current Drug Targets-Cardiovascular & Hematological Disorders), 21(1), 30–45.CrossRef Latif, A., Kapoor, V., Lateef, N., Ahsan, M. J., Usman, R. M., Malik, S. U., Ahmad, N., Rosko, N., Rudoni, J., William, P., Khouri, J., & Anwer, F. (2021). Incidence and management of carfilzomib-induced cardiovascular toxicity; A systematic review and meta-analysis. Cardiovascular & Haematological Disorders-Drug Targets (Formerly Current Drug Targets-Cardiovascular & Hematological Disorders), 21(1), 30–45.CrossRef
7.
go back to reference Dispenzieri, A., Kastritis, E., Wechalekar, A. D., Schönland, S. O., Kim, K., Sanchorawala, V., Landau, H. J., Kwok, F., Suzuki, K., Comenzo, R. L., Berg, D., Liu, G., Kumar, A., Faller, D. V., & Merlini, G. (2022). A randomized phase 3 study of ixazomib–dexamethasone versus physician’s choice in relapsed or refractory AL amyloidosis. Leukemia, 36(1), 225–235.CrossRefPubMed Dispenzieri, A., Kastritis, E., Wechalekar, A. D., Schönland, S. O., Kim, K., Sanchorawala, V., Landau, H. J., Kwok, F., Suzuki, K., Comenzo, R. L., Berg, D., Liu, G., Kumar, A., Faller, D. V., & Merlini, G. (2022). A randomized phase 3 study of ixazomib–dexamethasone versus physician’s choice in relapsed or refractory AL amyloidosis. Leukemia, 36(1), 225–235.CrossRefPubMed
8.
go back to reference Das, A., Dasgupta, S., Gong, Y., Shah, U. A., Fradley, M. G., Cheng, R. K., Roy, B., & Guha, A. (2022). Cardiotoxicity as an adverse effect of immunomodulatory drugs and proteasome inhibitors in multiple myeloma: A network meta-analysis of randomized clinical trials. Hematological Oncology, 40(2), 233–242.CrossRefPubMed Das, A., Dasgupta, S., Gong, Y., Shah, U. A., Fradley, M. G., Cheng, R. K., Roy, B., & Guha, A. (2022). Cardiotoxicity as an adverse effect of immunomodulatory drugs and proteasome inhibitors in multiple myeloma: A network meta-analysis of randomized clinical trials. Hematological Oncology, 40(2), 233–242.CrossRefPubMed
9.
go back to reference Varga, Z. V., Ferdinandy, P., Liaudet, L., & Pacher, P. (2015). Drug-induced mitochondrial dysfunction and cardiotoxicity. American Journal of Physiology-Heart and Circulatory Physiology, 309(9), H1453–H1467.CrossRefPubMedPubMedCentral Varga, Z. V., Ferdinandy, P., Liaudet, L., & Pacher, P. (2015). Drug-induced mitochondrial dysfunction and cardiotoxicity. American Journal of Physiology-Heart and Circulatory Physiology, 309(9), H1453–H1467.CrossRefPubMedPubMedCentral
11.
go back to reference Patel, M. B., & Majetschak, M. (2007). Distribution and interrelationship of ubiquitin proteasome pathway component activities and ubiquitin pools in various porcine tissues. Physiological Research, 56(3), 341–350.CrossRefPubMed Patel, M. B., & Majetschak, M. (2007). Distribution and interrelationship of ubiquitin proteasome pathway component activities and ubiquitin pools in various porcine tissues. Physiological Research, 56(3), 341–350.CrossRefPubMed
12.
go back to reference Livak, K. J., & Schmittgen, T. D. (2001). Analysis of relative gene expression data using real-time quantitative PCR and the 2− ΔΔCT method. Methods, 25(4), 402–408.CrossRefPubMed Livak, K. J., & Schmittgen, T. D. (2001). Analysis of relative gene expression data using real-time quantitative PCR and the 2− ΔΔCT method. Methods, 25(4), 402–408.CrossRefPubMed
13.
go back to reference Wang, J., Fang, Y., Fan, R. A., & Kirk, C. J. (2021). Proteasome inhibitors and their pharmacokinetics, pharmacodynamics, and metabolism. International Journal of Molecular Sciences, 22(21), 11595.CrossRefPubMedPubMedCentral Wang, J., Fang, Y., Fan, R. A., & Kirk, C. J. (2021). Proteasome inhibitors and their pharmacokinetics, pharmacodynamics, and metabolism. International Journal of Molecular Sciences, 22(21), 11595.CrossRefPubMedPubMedCentral
14.
go back to reference Cole, D. C., & Frishman, W. H. (2018). Cardiovascular complications of proteasome inhibitors used in multiple myeloma. Cardiology in Review, 26(3), 122–129.CrossRefPubMed Cole, D. C., & Frishman, W. H. (2018). Cardiovascular complications of proteasome inhibitors used in multiple myeloma. Cardiology in Review, 26(3), 122–129.CrossRefPubMed
15.
go back to reference Grandin, E. W., Ky, B., Cornell, R. F., Carver, J., & Lenihan, D. J. (2015). Patterns of cardiac toxicity associated with irreversible proteasome inhibition in the treatment of multiple myeloma. Journal of Cardiac Failure, 21(2), 138–144.CrossRefPubMed Grandin, E. W., Ky, B., Cornell, R. F., Carver, J., & Lenihan, D. J. (2015). Patterns of cardiac toxicity associated with irreversible proteasome inhibition in the treatment of multiple myeloma. Journal of Cardiac Failure, 21(2), 138–144.CrossRefPubMed
16.
go back to reference de Bruin, G., Xin, B. T., Kraus, M., van der Stelt, M., van der Marel, G. A., Kisselev, A. F., Driessen, C., Florea, B. I., & Overkleeft, H. S. (2016). A set of activity-based probes to visualize human (Immuno)proteasome activities. Angewandte Chemie International Edition, 55(13), 4199–4203. https://doi.org/10.1002/anie.201509092CrossRefPubMed de Bruin, G., Xin, B. T., Kraus, M., van der Stelt, M., van der Marel, G. A., Kisselev, A. F., Driessen, C., Florea, B. I., & Overkleeft, H. S. (2016). A set of activity-based probes to visualize human (Immuno)proteasome activities. Angewandte Chemie International Edition, 55(13), 4199–4203. https://​doi.​org/​10.​1002/​anie.​201509092CrossRefPubMed
17.
go back to reference Demo, S. D., Kirk, C. J., Aujay, M. A., Buchholz, T. J., Dajee, M., Ho, M. N., Jiang, J., Laidig, G. J., Lewis, E. R., Parlati, F., Shenk, K. D., Smyth, M. S., Sun, C. M., Vallone, M. K., Woo, T. M., Molineaux, C. J., & Bennett, M. K. (2007). Antitumor activity of PR-171, a novel irreversible inhibitor of the proteasome. Cancer Research, 67(13), 6383–6391. https://doi.org/10.1158/0008-5472.CAN-06-4086CrossRefPubMed Demo, S. D., Kirk, C. J., Aujay, M. A., Buchholz, T. J., Dajee, M., Ho, M. N., Jiang, J., Laidig, G. J., Lewis, E. R., Parlati, F., Shenk, K. D., Smyth, M. S., Sun, C. M., Vallone, M. K., Woo, T. M., Molineaux, C. J., & Bennett, M. K. (2007). Antitumor activity of PR-171, a novel irreversible inhibitor of the proteasome. Cancer Research, 67(13), 6383–6391. https://​doi.​org/​10.​1158/​0008-5472.​CAN-06-4086CrossRefPubMed
18.
go back to reference Kupperman, E., Lee, E. C., Cao, Y., Bannerman, B., Fitzgerald, M., Berger, A., Yu, J., Yang, Y., Hales, P., Bruzzese, F., Liu, J., Blank, J., Garcia, K., Tsu, C., Dick, L., Fleming, P., Yu, L., Manfredi, M., Rolfe, M., & Bolen, J. (2010). Evaluation of the proteasome inhibitor MLN9708 in preclinical models of human cancer. Cancer Research, 70(5), 1970–1980.CrossRefPubMed Kupperman, E., Lee, E. C., Cao, Y., Bannerman, B., Fitzgerald, M., Berger, A., Yu, J., Yang, Y., Hales, P., Bruzzese, F., Liu, J., Blank, J., Garcia, K., Tsu, C., Dick, L., Fleming, P., Yu, L., Manfredi, M., Rolfe, M., & Bolen, J. (2010). Evaluation of the proteasome inhibitor MLN9708 in preclinical models of human cancer. Cancer Research, 70(5), 1970–1980.CrossRefPubMed
19.
go back to reference Mendez-Lopez, M. A., Besse, A., Florea, B., Zuppinger, C., Overkleeft, H., Driessen, C., & Besse, L. (2019). Carfilzomib induces cardiotoxicity via ß5/ß2-specific proteasome subunit inhibition pattern. Blood, 134, 3110.CrossRef Mendez-Lopez, M. A., Besse, A., Florea, B., Zuppinger, C., Overkleeft, H., Driessen, C., & Besse, L. (2019). Carfilzomib induces cardiotoxicity via ß5/ß2-specific proteasome subunit inhibition pattern. Blood, 134, 3110.CrossRef
20.
go back to reference Besse, A., Besse, L., Kraus, M., Mendez-Lopez, M., Bader, J., Xin, B. T., de Bruin, G., Maurits, E., Overkleeft, H. S., & Driessen, C. (2019). Proteasome inhibition in multiple myeloma: Head-to-head comparison of currently available proteasome inhibitors. Cell Chemical Biology, 26(3), 340–351.CrossRefPubMed Besse, A., Besse, L., Kraus, M., Mendez-Lopez, M., Bader, J., Xin, B. T., de Bruin, G., Maurits, E., Overkleeft, H. S., & Driessen, C. (2019). Proteasome inhibition in multiple myeloma: Head-to-head comparison of currently available proteasome inhibitors. Cell Chemical Biology, 26(3), 340–351.CrossRefPubMed
21.
go back to reference Mateos, M. V., Goldschmidt, H., San-Miguel, J., Mikhael, J., DeCosta, L., Zhou, L., Obreja, M., Blaedel, J., Szabo, Z., & Leleu, X. (2018). Carfilzomib in relapsed or refractory multiple myeloma patients with early or late relapse following prior therapy: A subgroup analysis of the randomized phase 3 ASPIRE and ENDEAVOR trials. Hematological Oncology, 36(2), 463–470.CrossRefPubMed Mateos, M. V., Goldschmidt, H., San-Miguel, J., Mikhael, J., DeCosta, L., Zhou, L., Obreja, M., Blaedel, J., Szabo, Z., & Leleu, X. (2018). Carfilzomib in relapsed or refractory multiple myeloma patients with early or late relapse following prior therapy: A subgroup analysis of the randomized phase 3 ASPIRE and ENDEAVOR trials. Hematological Oncology, 36(2), 463–470.CrossRefPubMed
22.
go back to reference Fradley, M. G., Groarke, J. D., Laubach, J., Alsina, M., Lenihan, D. J., Cornell, R. F., Maglio, M., Shain, K. H., Richardson, P. G., & Moslehi, J. (2018). Recurrent cardiotoxicity potentiated by the interaction of proteasome inhibitor and immunomodulatory therapy for the treatment of multiple myeloma. British Journal of Haematology, 180(2), 271–275.CrossRefPubMed Fradley, M. G., Groarke, J. D., Laubach, J., Alsina, M., Lenihan, D. J., Cornell, R. F., Maglio, M., Shain, K. H., Richardson, P. G., & Moslehi, J. (2018). Recurrent cardiotoxicity potentiated by the interaction of proteasome inhibitor and immunomodulatory therapy for the treatment of multiple myeloma. British Journal of Haematology, 180(2), 271–275.CrossRefPubMed
23.
go back to reference Moreau, P., Masszi, T., Grzasko, N., Bahlis, N. J., Hansson, M., Pour, L., Sandhu, I., Ganly, P., Baker, B. W., Jackson, S. R., Stoppa, A. M., Simpson, D. R., Gimsing, P., Palumbo, A., Garderet, L., Cavo, M., Kumar, S., Touzeau, C., Buadi, F. K., … TOURMALINE-MM1 Study Group. (2016). Oral ixazomib, lenalidomide, and dexamethasone for multiple myeloma. New England Journal of Medicine, 374(17), 1621–1634.CrossRefPubMed Moreau, P., Masszi, T., Grzasko, N., Bahlis, N. J., Hansson, M., Pour, L., Sandhu, I., Ganly, P., Baker, B. W., Jackson, S. R., Stoppa, A. M., Simpson, D. R., Gimsing, P., Palumbo, A., Garderet, L., Cavo, M., Kumar, S., Touzeau, C., Buadi, F. K., … TOURMALINE-MM1 Study Group. (2016). Oral ixazomib, lenalidomide, and dexamethasone for multiple myeloma. New England Journal of Medicine, 374(17), 1621–1634.CrossRefPubMed
25.
go back to reference Meyer, J. N., Leuthner, T. C., & Luz, A. L. (2017). Mitochondrial fusion, fission, and mitochondrial toxicity. Toxicology, 391, 42–53.CrossRefPubMed Meyer, J. N., Leuthner, T. C., & Luz, A. L. (2017). Mitochondrial fusion, fission, and mitochondrial toxicity. Toxicology, 391, 42–53.CrossRefPubMed
26.
go back to reference Nan, J., Zhu, W., Rahman, M. S., Liu, M., Li, D., Su, S., Zhang, N., Hu, X., Yu, H., Gupta, M. P., & Wang, J. (2017). Molecular regulation of mitochondrial dynamics in cardiac disease. Biochimica et Biophysica Acta (BBA)-Molecular Cell Research, 1864(7), 1260–1273.CrossRefPubMed Nan, J., Zhu, W., Rahman, M. S., Liu, M., Li, D., Su, S., Zhang, N., Hu, X., Yu, H., Gupta, M. P., & Wang, J. (2017). Molecular regulation of mitochondrial dynamics in cardiac disease. Biochimica et Biophysica Acta (BBA)-Molecular Cell Research, 1864(7), 1260–1273.CrossRefPubMed
27.
go back to reference Olmedo, I., Pino, G., Riquelme, J. A., Aranguiz, P., Díaz, M. C., López-Crisosto, C., Lavandero, S., Donoso, P., Pedrozo, Z., & Sánchez, G. (2020). Inhibition of the proteasome preserves Mitofusin-2 and mitochondrial integrity, protecting cardiomyocytes during ischemia-reperfusion injury. Biochimica et Biophysica Acta (BBA)-Molecular Basis of Disease, 1866(5), 165659.CrossRefPubMed Olmedo, I., Pino, G., Riquelme, J. A., Aranguiz, P., Díaz, M. C., López-Crisosto, C., Lavandero, S., Donoso, P., Pedrozo, Z., & Sánchez, G. (2020). Inhibition of the proteasome preserves Mitofusin-2 and mitochondrial integrity, protecting cardiomyocytes during ischemia-reperfusion injury. Biochimica et Biophysica Acta (BBA)-Molecular Basis of Disease, 1866(5), 165659.CrossRefPubMed
28.
go back to reference Chen, I. C., Liu, Y. C., Wu, Y. H., Lo, S. H., Wang, S. C., Li, C. Y., Dai, Z. K., Hsu, J. H., Yeh, C. Y., & Tseng, Y. H. (2022). Proteasome inhibitors decrease the viability of pulmonary arterial smooth muscle cells by restoring mitofusin-2 expression under hypoxic conditions. Biomedicines, 10(4), 873.CrossRefPubMedPubMedCentral Chen, I. C., Liu, Y. C., Wu, Y. H., Lo, S. H., Wang, S. C., Li, C. Y., Dai, Z. K., Hsu, J. H., Yeh, C. Y., & Tseng, Y. H. (2022). Proteasome inhibitors decrease the viability of pulmonary arterial smooth muscle cells by restoring mitofusin-2 expression under hypoxic conditions. Biomedicines, 10(4), 873.CrossRefPubMedPubMedCentral
29.
go back to reference Tibullo, D., Giallongo, C., Romano, A., Vicario, N., Barbato, A., Puglisi, F., Parenti, R., Amorini, A. M., Wissam Saab, M., Tavazzi, B., Mangione, R., Brundo, M. V., Lazzarino, G., Palumbo, G. A., Volti, G. L., Raimondo, F. D., & Lazzarino, G. (2020). Mitochondrial functions, energy metabolism and protein glycosylation are interconnected processes mediating resistance to bortezomib in multiple myeloma cells. Biomolecules, 10(5), 696.CrossRefPubMedPubMedCentral Tibullo, D., Giallongo, C., Romano, A., Vicario, N., Barbato, A., Puglisi, F., Parenti, R., Amorini, A. M., Wissam Saab, M., Tavazzi, B., Mangione, R., Brundo, M. V., Lazzarino, G., Palumbo, G. A., Volti, G. L., Raimondo, F. D., & Lazzarino, G. (2020). Mitochondrial functions, energy metabolism and protein glycosylation are interconnected processes mediating resistance to bortezomib in multiple myeloma cells. Biomolecules, 10(5), 696.CrossRefPubMedPubMedCentral
30.
go back to reference Kolwicz, S. C., Jr., Purohit, S., & Tian, R. (2013). Cardiac metabolism and its interactions with contraction, growth, and survival of cardiomyocytes. Circulation Research, 113(5), 603–616.CrossRefPubMed Kolwicz, S. C., Jr., Purohit, S., & Tian, R. (2013). Cardiac metabolism and its interactions with contraction, growth, and survival of cardiomyocytes. Circulation Research, 113(5), 603–616.CrossRefPubMed
31.
go back to reference Hoppins, S. (2014). The regulation of mitochondrial dynamics. Current Opinion in Cell Biology, 29, 46–52.CrossRefPubMed Hoppins, S. (2014). The regulation of mitochondrial dynamics. Current Opinion in Cell Biology, 29, 46–52.CrossRefPubMed
32.
go back to reference Chen, H., Vermulst, M., Wang, Y. E., Chomyn, A., Prolla, T. A., McCaffery, J. M., & Chan, D. C. (2010). Mitochondrial fusion is required for mtDNA stability in skeletal muscle and tolerance of mtDNA mutations. Cell, 141(2), 280–289.CrossRefPubMedPubMedCentral Chen, H., Vermulst, M., Wang, Y. E., Chomyn, A., Prolla, T. A., McCaffery, J. M., & Chan, D. C. (2010). Mitochondrial fusion is required for mtDNA stability in skeletal muscle and tolerance of mtDNA mutations. Cell, 141(2), 280–289.CrossRefPubMedPubMedCentral
33.
go back to reference Forghani, P., Rashid, A., Sun, F., Liu, R., Li, D., Lee, M. R., Hwang, H., Maxwell, J. T., Mandawat, A., Wu, R., Salaita, K., & Xu, C. (2021). Carfilzomib treatment causes molecular and functional alterations of human induced pluripotent stem cell-derived cardiomyocytes. Journal of the American Heart Association, 10(24), e022247.CrossRefPubMedPubMedCentral Forghani, P., Rashid, A., Sun, F., Liu, R., Li, D., Lee, M. R., Hwang, H., Maxwell, J. T., Mandawat, A., Wu, R., Salaita, K., & Xu, C. (2021). Carfilzomib treatment causes molecular and functional alterations of human induced pluripotent stem cell-derived cardiomyocytes. Journal of the American Heart Association, 10(24), e022247.CrossRefPubMedPubMedCentral
34.
go back to reference Stahn, C., & Buttgereit, F. (2008). Genomic and nongenomic effects of glucocorticoids. Nature Clinical Practice Rheumatology, 4(10), 525–533.CrossRefPubMed Stahn, C., & Buttgereit, F. (2008). Genomic and nongenomic effects of glucocorticoids. Nature Clinical Practice Rheumatology, 4(10), 525–533.CrossRefPubMed
35.
go back to reference Desquiret, V., Gueguen, N., Malthièry, Y., Ritz, P., & Simard, G. (2008). Mitochondrial effects of dexamethasone imply both membrane and cytosolic-initiated pathways in HepG2 cells. The International Journal of Biochemistry & Cell Biology, 40(8), 1629–1641.CrossRef Desquiret, V., Gueguen, N., Malthièry, Y., Ritz, P., & Simard, G. (2008). Mitochondrial effects of dexamethasone imply both membrane and cytosolic-initiated pathways in HepG2 cells. The International Journal of Biochemistry & Cell Biology, 40(8), 1629–1641.CrossRef
36.
go back to reference Troncoso, R., Paredes, F., Parra, V., Gatica, D., Vásquez-Trincado, C., Quiroga, C., Bravo-Sagua, R., López-Crisosto, C., Rodriguez, A. E., Oyarzún, A. P., Kroemer, G., & Lavandero, S. (2014). Dexamethasone-induced autophagy mediates muscle atrophy through mitochondrial clearance. Cell Cycle, 13(14), 2281–2295.CrossRefPubMedPubMedCentral Troncoso, R., Paredes, F., Parra, V., Gatica, D., Vásquez-Trincado, C., Quiroga, C., Bravo-Sagua, R., López-Crisosto, C., Rodriguez, A. E., Oyarzún, A. P., Kroemer, G., & Lavandero, S. (2014). Dexamethasone-induced autophagy mediates muscle atrophy through mitochondrial clearance. Cell Cycle, 13(14), 2281–2295.CrossRefPubMedPubMedCentral
37.
go back to reference Zhou, R., Li, J., Zhang, L., Cheng, Y., Yan, J., Sun, Y., Wang, J., & Jiang, H. (2020). Role of Parkin-mediated mitophagy in glucocorticoid-induced cardiomyocyte maturation. Life Sciences, 255, 117817.CrossRefPubMed Zhou, R., Li, J., Zhang, L., Cheng, Y., Yan, J., Sun, Y., Wang, J., & Jiang, H. (2020). Role of Parkin-mediated mitophagy in glucocorticoid-induced cardiomyocyte maturation. Life Sciences, 255, 117817.CrossRefPubMed
38.
go back to reference Rajashree, S., & Puvanakrishnan, R. (1998). Dexamethasone induced alterations in enzymatic and nonenzymatic antioxidant status in heart and kidney of rats. Molecular and Cellular Biochemistry, 181(1), 77–85.CrossRefPubMed Rajashree, S., & Puvanakrishnan, R. (1998). Dexamethasone induced alterations in enzymatic and nonenzymatic antioxidant status in heart and kidney of rats. Molecular and Cellular Biochemistry, 181(1), 77–85.CrossRefPubMed
39.
go back to reference Karademir, B., Sari, G., Jannuzzi, A. T., Musunuri, S., Wicher, G., Grune, T., Mi, J., Hacioglu-Bay, H., Forsberg-Nilsson, K., Bergquist, J., & Jung, T. (2018). Proteomic approach for understanding milder neurotoxicity of Carfilzomib against Bortezomib. Scientific Reports, 8(1), 16318.CrossRefPubMedPubMedCentral Karademir, B., Sari, G., Jannuzzi, A. T., Musunuri, S., Wicher, G., Grune, T., Mi, J., Hacioglu-Bay, H., Forsberg-Nilsson, K., Bergquist, J., & Jung, T. (2018). Proteomic approach for understanding milder neurotoxicity of Carfilzomib against Bortezomib. Scientific Reports, 8(1), 16318.CrossRefPubMedPubMedCentral
40.
go back to reference Jannuzzi, A. T., Arslan, S., Yilmaz, A. M., Sari, G., Beklen, H., Méndez, L., Fedorova, M., Arga, K. Y., Karademir Yilmaz, B., & Alpertunga, B. (2020). Higher proteotoxic stress rather than mitochondrial damage is involved in higher neurotoxicity of bortezomib compared to carfilzomib. Redox Biology, 32, 101502.CrossRefPubMedPubMedCentral Jannuzzi, A. T., Arslan, S., Yilmaz, A. M., Sari, G., Beklen, H., Méndez, L., Fedorova, M., Arga, K. Y., Karademir Yilmaz, B., & Alpertunga, B. (2020). Higher proteotoxic stress rather than mitochondrial damage is involved in higher neurotoxicity of bortezomib compared to carfilzomib. Redox Biology, 32, 101502.CrossRefPubMedPubMedCentral
Metadata
Title
Molecular Cardiotoxic Effects of Proteasome Inhibitors Carfilzomib and Ixazomib and Their Combination with Dexamethasone Involve Mitochondrial Dysregulation
Authors
Ayse Tarbin Jannuzzi
Nalan Sümeyra Korkmaz
Aysenur Gunaydin Akyildiz
Sema Arslan Eseryel
Betul Karademir Yilmaz
Buket Alpertunga
Publication date
21-02-2023
Publisher
Springer US
Keyword
Dexamethasone
Published in
Cardiovascular Toxicology / Issue 3-4/2023
Print ISSN: 1530-7905
Electronic ISSN: 1559-0259
DOI
https://doi.org/10.1007/s12012-023-09785-7

Other articles of this Issue 3-4/2023

Cardiovascular Toxicology 3-4/2023 Go to the issue