Skip to main content
Top
Published in: Urolithiasis 4/2019

01-08-2019 | Original Paper

Development of a two-stage in vitro model system to investigate the mineralization mechanisms involved in idiopathic stone formation: stage 1—biomimetic Randall’s plaque using decellularized porcine kidneys

Authors: Archana C. Lovett, Saeed R. Khan, Laurie B. Gower

Published in: Urolithiasis | Issue 4/2019

Login to get access

Abstract

Idiopathic calcium oxalate (CaOx) stone formers form stones that are commonly attached to calcium phosphate (CaP) deposits in the renal tissue, known as Randall’s plaques (RP). Plaques are suggested to originate in the renal tubular basement membrane, where they exhibit a morphology of concentrically laminated apatitic spherules, while in the interstitial regions, the collagen fibrils and vesicles become mineralized. We hypothesize that these minerals might form by non-classical crystallization mechanisms, such as via amorphous precursors, some of which might originate from a polymer-induced liquid-precursor (PILP) process. Thus, our goal is to identify mineralogical ‘signatures’ of various stone formation mechanisms. To do this for idiopathic CaOx stones, we are developing a two-stage model system of CaP–CaOx composite stones, consisting of stage (1) CaP mineralized plaque, followed by stage (2) CaOx overgrowth into a stone. For the studies presented here, decellularized porcine kidneys were mineralized with CaP using polyaspartic acid or the protein osteopontin (OPN) to induce the PILP process and create biomimetic RP. Analysis of the PILP-mineralized tissues shows features that resemble the native plaques, including mineral spherules and collagen with intrafibrillar mineral. In contrast, the classical crystallization produced large apatitic spherulites, which is a very different morphology, but one which is also found in some stones. An alternative hypothesis regarding Randall’s plaque, and if or when it becomes pathological, is discussed.
Appendix
Available only for authorised users
Literature
2.
go back to reference Rodgers AL, De Klerk DP (1986) Crystalluria and urolithiasis in a relatively stone-free population. Scan Electron Microsc (Pt 3):1157–1167 Rodgers AL, De Klerk DP (1986) Crystalluria and urolithiasis in a relatively stone-free population. Scan Electron Microsc (Pt 3):1157–1167
5.
go back to reference Randall A (1937) The origin and growth of renal calculi. Ann Surg 105(6):1009–1027CrossRef Randall A (1937) The origin and growth of renal calculi. Ann Surg 105(6):1009–1027CrossRef
6.
go back to reference Evan A, Lingeman J, Coe FL, Worcester E (2006) Randall’s plaque: pathogenesis and role in calcium oxalate nephrolithiasis. Kidney Int 69(8):1313–1318CrossRef Evan A, Lingeman J, Coe FL, Worcester E (2006) Randall’s plaque: pathogenesis and role in calcium oxalate nephrolithiasis. Kidney Int 69(8):1313–1318CrossRef
9.
go back to reference Evan AP, Coe FL, Rittling SR, Bledsoe SM, Shao Y, Lingeman JE, Worcester EM (2005) Apatite plaque particles in inner medulla of kidneys of calcium oxalate stone formers: osteopontin localization. Kidney Int 68(1):145–154CrossRef Evan AP, Coe FL, Rittling SR, Bledsoe SM, Shao Y, Lingeman JE, Worcester EM (2005) Apatite plaque particles in inner medulla of kidneys of calcium oxalate stone formers: osteopontin localization. Kidney Int 68(1):145–154CrossRef
10.
go back to reference Evan AP, Lingeman JE, Coe FL, Parks JH, Bledsoe SB, Shao YZ, Sommer AJ, Paterson RF, Kuo RL, Grynpas M (2003) Randall’s plaque of patients with nephrolithiasis begins in basement membranes of thin loops of Henle. J Clin Investig 111(5):607–616CrossRef Evan AP, Lingeman JE, Coe FL, Parks JH, Bledsoe SB, Shao YZ, Sommer AJ, Paterson RF, Kuo RL, Grynpas M (2003) Randall’s plaque of patients with nephrolithiasis begins in basement membranes of thin loops of Henle. J Clin Investig 111(5):607–616CrossRef
13.
go back to reference Bagga HS, Chi T, Miller J, Stoller ML (2013) New insights into the pathogenesis of renal calculi. Urol Clin North Am 40(1):1–12CrossRef Bagga HS, Chi T, Miller J, Stoller ML (2013) New insights into the pathogenesis of renal calculi. Urol Clin North Am 40(1):1–12CrossRef
15.
go back to reference Sayer JA, Carr G, Simmons NL (2004) Nephrocalcinosis: molecular insights into calcium precipitation within the kidney. Clin Sci 106(6):549–561CrossRef Sayer JA, Carr G, Simmons NL (2004) Nephrocalcinosis: molecular insights into calcium precipitation within the kidney. Clin Sci 106(6):549–561CrossRef
16.
go back to reference Khan SR (1997) Calcium phosphate/calcium oxalate crystal association in urinary stones: implications for heterogeneous nucleation of calcium oxalate. J Urol 157(1):376–383CrossRef Khan SR (1997) Calcium phosphate/calcium oxalate crystal association in urinary stones: implications for heterogeneous nucleation of calcium oxalate. J Urol 157(1):376–383CrossRef
17.
go back to reference Bazin D, Daudon M (2012) Pathological calcifications and selected examples at the medicine-solid-state physics interface. J Phys D Appl Phys 45(38):383001CrossRef Bazin D, Daudon M (2012) Pathological calcifications and selected examples at the medicine-solid-state physics interface. J Phys D Appl Phys 45(38):383001CrossRef
18.
go back to reference Khan SR, Finlayson B, Hackett R (1984) Renal papillary changes in patient with calcium oxalate lithiasis. Urology 23(2):194–199CrossRef Khan SR, Finlayson B, Hackett R (1984) Renal papillary changes in patient with calcium oxalate lithiasis. Urology 23(2):194–199CrossRef
19.
go back to reference Stoller ML, Meng MV, Abrahams HM, Kane JP (2004) The primary stone event: a new hypothesis involving a vascular etiology. J Urol 171(5):1920–1924CrossRef Stoller ML, Meng MV, Abrahams HM, Kane JP (2004) The primary stone event: a new hypothesis involving a vascular etiology. J Urol 171(5):1920–1924CrossRef
23.
go back to reference Hug S, Grohe B, Jalkanen J, Chan B, Galarreta B, Vincent K, Lagugne-Labarthet F, Lajoie G, Goldberg HA, Karttunen M, Hunter GK (2012) Mechanism of inhibition of calcium oxalate crystal growth by an osteopontin phosphopeptide. Soft Matter 8(4):1226–1233. https://doi.org/10.1039/C1SM06232H CrossRef Hug S, Grohe B, Jalkanen J, Chan B, Galarreta B, Vincent K, Lagugne-Labarthet F, Lajoie G, Goldberg HA, Karttunen M, Hunter GK (2012) Mechanism of inhibition of calcium oxalate crystal growth by an osteopontin phosphopeptide. Soft Matter 8(4):1226–1233. https://​doi.​org/​10.​1039/​C1SM06232H CrossRef
24.
go back to reference Stoller ML, Low RK, Shami GS, Mccormick VD, Kerschma RL (1996) High resolution radiography of cadaveric kidneys: unraveling the mystery of randall’s plaque formation. J Urol 156:1263–1266CrossRef Stoller ML, Low RK, Shami GS, Mccormick VD, Kerschma RL (1996) High resolution radiography of cadaveric kidneys: unraveling the mystery of randall’s plaque formation. J Urol 156:1263–1266CrossRef
28.
go back to reference Khan SR, Atmani F, Glenton P, Hou ZC, Talham DR, Khurshid M (1996) Lipids and membranes in the organic matrix of urinary calcific crystals and stones. Calcif Tissue Int 59(5):357–365CrossRef Khan SR, Atmani F, Glenton P, Hou ZC, Talham DR, Khurshid M (1996) Lipids and membranes in the organic matrix of urinary calcific crystals and stones. Calcif Tissue Int 59(5):357–365CrossRef
30.
go back to reference Christmas KG, Gower LB, Khan SR, El-Shall H (2002) Aggregation and dispersion characteristics of calcium oxalate monohydrate: effect of urinary species. J Colloid Interface Sci 256:168–174CrossRef Christmas KG, Gower LB, Khan SR, El-Shall H (2002) Aggregation and dispersion characteristics of calcium oxalate monohydrate: effect of urinary species. J Colloid Interface Sci 256:168–174CrossRef
31.
go back to reference Khan SR, Kok DJ (2004) Modulators of urinary stone formation. Front Biosci 9:1450–1482CrossRef Khan SR, Kok DJ (2004) Modulators of urinary stone formation. Front Biosci 9:1450–1482CrossRef
34.
go back to reference Gericke A, Qin C, Spevak L, Fujimoto Y, Butler WT, Sorensen ES, Boskey AL (2005) Importance of phosphorylation for osteopontin regulation of biomineralization. Calcif Tissue Int 77(1):45–54CrossRef Gericke A, Qin C, Spevak L, Fujimoto Y, Butler WT, Sorensen ES, Boskey AL (2005) Importance of phosphorylation for osteopontin regulation of biomineralization. Calcif Tissue Int 77(1):45–54CrossRef
35.
39.
go back to reference Wolf SE, Gower LB (2017) Challenges and perspectives of the polymer-induced liquid-precursor process: the pathway from liquid-condensed mineral precursors to mesocrystalline products. In: Driessche AESV, Kellermeier M, Benning LG, Gebauer D (eds) New perspectives on mineral nucleation and growth: from solution precursors to solid materials. Springer International Publishing, Switzerland, pp 43–75. https://doi.org/10.1007/978-3-319-45669-0$43 CrossRef Wolf SE, Gower LB (2017) Challenges and perspectives of the polymer-induced liquid-precursor process: the pathway from liquid-condensed mineral precursors to mesocrystalline products. In: Driessche AESV, Kellermeier M, Benning LG, Gebauer D (eds) New perspectives on mineral nucleation and growth: from solution precursors to solid materials. Springer International Publishing, Switzerland, pp 43–75. https://​doi.​org/​10.​1007/​978-3-319-45669-0$43 CrossRef
43.
go back to reference Amos FF, Olszta MJ, Khan SR, Gower LB (2006) Relevance of a polymer-induced liquid-precursor (PILP) mineralization process to normal and pathological biomineralization. In: Königsberger E, Königsberger L (eds) Biomineralization- medical aspects of solubility, vol 4. Wiley, West Sussex, pp 125–217CrossRef Amos FF, Olszta MJ, Khan SR, Gower LB (2006) Relevance of a polymer-induced liquid-precursor (PILP) mineralization process to normal and pathological biomineralization. In: Königsberger E, Königsberger L (eds) Biomineralization- medical aspects of solubility, vol 4. Wiley, West Sussex, pp 125–217CrossRef
45.
go back to reference Gower LB, Odom DJ (2000) Deposition of calcium carbonate films by a polymer-induced liquid-precursor (PILP) process. J Crystal Growth 210(4):719–734CrossRef Gower LB, Odom DJ (2000) Deposition of calcium carbonate films by a polymer-induced liquid-precursor (PILP) process. J Crystal Growth 210(4):719–734CrossRef
52.
go back to reference Niu L-n, Jee SE, Jiao K, Tonggu L, Li M, Wang L, Yang Y-d, Bian J-h, Breschi L, Jang SS, Chen J-h, Pashley DH, Tay FR (2017) Collagen intrafibrillar mineralization as a result of the balance between osmotic equilibrium and electroneutrality. Nat Mater 16(3):370–378. https://doi.org/10.1038/nmat4789.CrossRefPubMed Niu L-n, Jee SE, Jiao K, Tonggu L, Li M, Wang L, Yang Y-d, Bian J-h, Breschi L, Jang SS, Chen J-h, Pashley DH, Tay FR (2017) Collagen intrafibrillar mineralization as a result of the balance between osmotic equilibrium and electroneutrality. Nat Mater 16(3):370–378. https://​doi.​org/​10.​1038/​nmat4789.CrossRefPubMed
57.
go back to reference Shiraga H, Min W, Vandusen WJ, Clayman MD, Miner D, Terrell CH, Sherbotie JR, Foreman JW, Przysiecki C, Neilson EG, Hoyer JR (1992) Inhibition of calcium-oxalate crystal-growth in vitro by uropontin—another member of the aspartic acid-rich protein superfamily. Proc Natl Acad Sci USA 89(1):426–430CrossRef Shiraga H, Min W, Vandusen WJ, Clayman MD, Miner D, Terrell CH, Sherbotie JR, Foreman JW, Przysiecki C, Neilson EG, Hoyer JR (1992) Inhibition of calcium-oxalate crystal-growth in vitro by uropontin—another member of the aspartic acid-rich protein superfamily. Proc Natl Acad Sci USA 89(1):426–430CrossRef
58.
go back to reference Worcester EM, Beshensky AM (1995) Osteopontin inhibits nucleation of calcium oxalate crystals. Ann NY Acad Sci 760:375–377CrossRef Worcester EM, Beshensky AM (1995) Osteopontin inhibits nucleation of calcium oxalate crystals. Ann NY Acad Sci 760:375–377CrossRef
59.
go back to reference Chidambaram A, Rodriguez D, Khan S, Gower L (2015) Biomimetic Randall’s plaque as an in vitro model system for studying the role of acidic biopolymers in idiopathic stone formation. Urolithiasis 43(1):77–92. https://doi.org/10.1007/s00240-014-0704-x. PMC http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4285617 Chidambaram A, Rodriguez D, Khan S, Gower L (2015) Biomimetic Randall’s plaque as an in vitro model system for studying the role of acidic biopolymers in idiopathic stone formation. Urolithiasis 43(1):77–92. https://​doi.​org/​10.​1007/​s00240-014-0704-x.​ PMC http://​www.​ncbi.​nlm.​nih.​gov/​pmc/​articles/​PMC4285617
61.
go back to reference Sørensen ES, Ostersen S, Chatterton D, Holst HH, Albertsen K (2007) Process for isolation of osteopontin from milk. Google Patents Sørensen ES, Ostersen S, Chatterton D, Holst HH, Albertsen K (2007) Process for isolation of osteopontin from milk. Google Patents
62.
go back to reference Ross R (1973) The elastic fiber—a review. J Histochem Cytochem 21(3):199–208CrossRef Ross R (1973) The elastic fiber—a review. J Histochem Cytochem 21(3):199–208CrossRef
64.
go back to reference Saxena NS (2017) Optimization of the polymer-induced liquid-precursor process for dentin remineralization. Doctoral, University of Florida, Gainesville, FL Saxena NS (2017) Optimization of the polymer-induced liquid-precursor process for dentin remineralization. Doctoral, University of Florida, Gainesville, FL
65.
go back to reference Saxena N, Mizels J, Rodriguez VGD, Wingender ALB, Gower L (2018) Comparative study of osteopontin versus polyaspartate for collagen mineralization. Acta Biomaterialia (in preparation) Saxena N, Mizels J, Rodriguez VGD, Wingender ALB, Gower L (2018) Comparative study of osteopontin versus polyaspartate for collagen mineralization. Acta Biomaterialia (in preparation)
67.
go back to reference Kaartinen MT, Pirhonen A, Linnala-Kankkunen A, Mäenpää PH (1997) Transglutaminase-catalyzed cross-linking of osteopontin is inhibited by osteocalcin. J Biol Chem 272(36):22736–22741CrossRef Kaartinen MT, Pirhonen A, Linnala-Kankkunen A, Mäenpää PH (1997) Transglutaminase-catalyzed cross-linking of osteopontin is inhibited by osteocalcin. J Biol Chem 272(36):22736–22741CrossRef
79.
go back to reference Haggitt RC, Pitcock JA (1971) Renal medullary calcifications: a light and electron microscopic study. J Urol 106(3):342–347CrossRef Haggitt RC, Pitcock JA (1971) Renal medullary calcifications: a light and electron microscopic study. J Urol 106(3):342–347CrossRef
80.
go back to reference Low RK, Stoller ML (1997) Endoscopic mapping of renal papillae for Randall’s plaques in patients with urinary stone disease. J Urol 158:2062–2064CrossRef Low RK, Stoller ML (1997) Endoscopic mapping of renal papillae for Randall’s plaques in patients with urinary stone disease. J Urol 158:2062–2064CrossRef
81.
go back to reference Taguchi T, Ikoma T, Tanaka J (2002) An improved method to prepare hyaluronic acid and type II collagen composite matrices. J Biomed Mater Res 61(2):330–336CrossRef Taguchi T, Ikoma T, Tanaka J (2002) An improved method to prepare hyaluronic acid and type II collagen composite matrices. J Biomed Mater Res 61(2):330–336CrossRef
82.
go back to reference Okada A, Yasui T, Fujii Y, Niimi K, Hamamoto S, Hirose M, Kojima Y, Itoh Y, Tozawa K, Hayashi Y, Kohri K (2010) Renal macrophage migration and crystal phagocytosis via inflammatory-related gene expression during kidney stone formation and elimination in mice: detection by association analysis of stone-related gene expression and microstructural observation. J Bone Miner Res 25(12):2701–2711. https://doi.org/10.1002/jbmr.158 CrossRefPubMed Okada A, Yasui T, Fujii Y, Niimi K, Hamamoto S, Hirose M, Kojima Y, Itoh Y, Tozawa K, Hayashi Y, Kohri K (2010) Renal macrophage migration and crystal phagocytosis via inflammatory-related gene expression during kidney stone formation and elimination in mice: detection by association analysis of stone-related gene expression and microstructural observation. J Bone Miner Res 25(12):2701–2711. https://​doi.​org/​10.​1002/​jbmr.​158 CrossRefPubMed
Metadata
Title
Development of a two-stage in vitro model system to investigate the mineralization mechanisms involved in idiopathic stone formation: stage 1—biomimetic Randall’s plaque using decellularized porcine kidneys
Authors
Archana C. Lovett
Saeed R. Khan
Laurie B. Gower
Publication date
01-08-2019
Publisher
Springer Berlin Heidelberg
Published in
Urolithiasis / Issue 4/2019
Print ISSN: 2194-7228
Electronic ISSN: 2194-7236
DOI
https://doi.org/10.1007/s00240-018-1060-z

Other articles of this Issue 4/2019

Urolithiasis 4/2019 Go to the issue