Skip to main content
Top
Published in: Journal of NeuroEngineering and Rehabilitation 1/2013

Open Access 01-12-2013 | Research

Sub-threshold spinal cord stimulation facilitates spontaneous motor activity in spinal rats

Authors: Parag Gad, Jaehoon Choe, Prithvi Shah, Guillermo Garcia-Alias, Mrinal Rath, Yury Gerasimenko, Hui Zhong, Roland R Roy, Victor Reggie Edgerton

Published in: Journal of NeuroEngineering and Rehabilitation | Issue 1/2013

Login to get access

Abstract

Background

Epidural stimulation of the spinal cord can be used to enable stepping on a treadmill (electrical enabling motor control, eEmc) after a complete mid-thoracic spinal cord transection in adult rats. Herein we have studied the effects of eEmc using a sub-threshold intensity of stimulation combined with spontaneous load-bearing proprioception to facilitate hindlimb stepping and standing during daily cage activity in paralyzed rats.

Methods

We hypothesized that eEmc combined with spontaneous cage activity would greatly increase the frequency and level of activation of the locomotor circuits in paralyzed rats. Spontaneous cage activity was recorded using a specially designed swivel connector to record EMG signals and an IR based camcorder to record video.

Results and conclusion

The spinal rats initially were very lethargic in their cages showing little movement. Without eEmc, the rats remained rather inactive with the torso rarely being elevated from the cage floor. When the rats used their forelimbs to move, the hindlimbs were extended and dragged behind with little or no flexion. In contrast, with eEmc the rats were highly active and the hindlimbs showed robust alternating flexion and extension resulting in step-like movements during forelimb-facilitated locomotion and often would stand using the sides of the cages as support. The mean and summed integrated EMG levels in both a hindlimb flexor and extensor muscle were higher with than without eEmc. These data suggest that eEmc, in combination with the associated proprioceptive input, can modulate the spinal networks to significantly amplify the amount and robustness of spontaneous motor activity in paralyzed rats.
Appendix
Available only for authorised users
Literature
1.
go back to reference Iwahara T, Atsuta Y, Skinner RD: Locomotion induced by spinal cord stimulation in the neonate rat in vitro. Somatosens Mot Res 1991, 8: 281-287. 10.3109/08990229109144751CrossRefPubMed Iwahara T, Atsuta Y, Skinner RD: Locomotion induced by spinal cord stimulation in the neonate rat in vitro. Somatosens Mot Res 1991, 8: 281-287. 10.3109/08990229109144751CrossRefPubMed
2.
go back to reference Gerasimenko YP, Avelev VD, Nikitin OA, Lavrov IA: Initiation of locomotor activity in spinal cats by epidural stimulation of the spinal cord. Neurosci Behav Physiol 2003, 33: 247-254. 10.1023/A:1022199214515CrossRefPubMed Gerasimenko YP, Avelev VD, Nikitin OA, Lavrov IA: Initiation of locomotor activity in spinal cats by epidural stimulation of the spinal cord. Neurosci Behav Physiol 2003, 33: 247-254. 10.1023/A:1022199214515CrossRefPubMed
3.
go back to reference Ichiyama RM, Gerasimenko YP, Zhong H, Roy RR, Edgerton VR: Hindlimb stepping movements in complete spinal rats induced by epidural spinal cord stimulation. Neurosci Lett 2005, 383: 339-344. 10.1016/j.neulet.2005.04.049CrossRefPubMed Ichiyama RM, Gerasimenko YP, Zhong H, Roy RR, Edgerton VR: Hindlimb stepping movements in complete spinal rats induced by epidural spinal cord stimulation. Neurosci Lett 2005, 383: 339-344. 10.1016/j.neulet.2005.04.049CrossRefPubMed
4.
go back to reference Gerasimenko Y, Roy RR, Edgerton VR: Comparison of the spinal circuits that generate and control locomotion in rats, cats and humans. Exp Neurol 2008, 09: 417-425.CrossRef Gerasimenko Y, Roy RR, Edgerton VR: Comparison of the spinal circuits that generate and control locomotion in rats, cats and humans. Exp Neurol 2008, 09: 417-425.CrossRef
5.
go back to reference Courtine G, Gerasimenko Y, van den Brand R, Yew A, Musienko P, Zhong H, Song B, Ao Y, Ichiyama RM, Lavrov I, Roy RR, Sofroniew MV, Edgerton VR: Transformation of nonfunctional spinal circuits into functional states after the loss of brain input. Nat Neurosci 2009, 12: 1333-1342. 10.1038/nn.2401PubMedCentralCrossRefPubMed Courtine G, Gerasimenko Y, van den Brand R, Yew A, Musienko P, Zhong H, Song B, Ao Y, Ichiyama RM, Lavrov I, Roy RR, Sofroniew MV, Edgerton VR: Transformation of nonfunctional spinal circuits into functional states after the loss of brain input. Nat Neurosci 2009, 12: 1333-1342. 10.1038/nn.2401PubMedCentralCrossRefPubMed
6.
go back to reference Shah PK, Gerasimenko Y, Shyu A, Lavrov I, Zhong H, Roy RR, Edgerton VR: Variability in step training enhances locomotor recovery after a spinal cord injury. Eur J Neurosci 2012, 36: 2054-2062. 10.1111/j.1460-9568.2012.08106.xPubMedCentralCrossRefPubMed Shah PK, Gerasimenko Y, Shyu A, Lavrov I, Zhong H, Roy RR, Edgerton VR: Variability in step training enhances locomotor recovery after a spinal cord injury. Eur J Neurosci 2012, 36: 2054-2062. 10.1111/j.1460-9568.2012.08106.xPubMedCentralCrossRefPubMed
7.
go back to reference Harkema SJ, Gerasimenko YP, Hodes J, Burdick J, Angeli C, Chen Y, Ferreira C, Willhite A, Rejc E, Grossman R, Edgerton VR: Effect of epidural stimulation of the lumbosacral spinal cord on voluntary movement, standing and assisted stepping after motor complete paraplegia: a case study. Lancet 2011, 377: 1938-1947. 10.1016/S0140-6736(11)60547-3PubMedCentralCrossRefPubMed Harkema SJ, Gerasimenko YP, Hodes J, Burdick J, Angeli C, Chen Y, Ferreira C, Willhite A, Rejc E, Grossman R, Edgerton VR: Effect of epidural stimulation of the lumbosacral spinal cord on voluntary movement, standing and assisted stepping after motor complete paraplegia: a case study. Lancet 2011, 377: 1938-1947. 10.1016/S0140-6736(11)60547-3PubMedCentralCrossRefPubMed
8.
go back to reference Angeli CA, Edgerton VR, Gerasimenko YP, Harkema SJ: Improvements in level of recovery of task specific voluntary control of lower limbs with lumbosacral epidural stimulation and training after chronic complete paralysis. SFN Abstracts 2012,  . 475.26/JJ12 Angeli CA, Edgerton VR, Gerasimenko YP, Harkema SJ: Improvements in level of recovery of task specific voluntary control of lower limbs with lumbosacral epidural stimulation and training after chronic complete paralysis. SFN Abstracts 2012,  . 475.26/JJ12
9.
go back to reference Alaimo MA, Smith JL, Roy RR, Edgerton VR: EMG activity of slow and fast ankle extensors following spinal cord transection. J Appl Physiol 1984, 56: 1608-1613. 10.1063/1.334145CrossRefPubMed Alaimo MA, Smith JL, Roy RR, Edgerton VR: EMG activity of slow and fast ankle extensors following spinal cord transection. J Appl Physiol 1984, 56: 1608-1613. 10.1063/1.334145CrossRefPubMed
10.
go back to reference Roy RR, Hodgson JA, Lauretz S, Pierotti DJ, Gayek RJ, Edgerton VR: Chronic spinal cord injured cats: surgical procedures and management. Lab Anim Sci 1992, 42: 335-343.PubMed Roy RR, Hodgson JA, Lauretz S, Pierotti DJ, Gayek RJ, Edgerton VR: Chronic spinal cord injured cats: surgical procedures and management. Lab Anim Sci 1992, 42: 335-343.PubMed
11.
go back to reference Roy RR, Hutchison DL, Pierotti DJ, Hodgson JA, Edgerton VR: EMG patterns of rat ankle extensors and flexors during treadmill locomotion and swimming. J Appl Physiol 1991, 70: 2522-2529.PubMed Roy RR, Hutchison DL, Pierotti DJ, Hodgson JA, Edgerton VR: EMG patterns of rat ankle extensors and flexors during treadmill locomotion and swimming. J Appl Physiol 1991, 70: 2522-2529.PubMed
12.
go back to reference de Leon RD, Kubasak MD, Phelps PE, Timoszyk WK, Reinkensmeyer DJ, Roy RR, Edgerton VR: Using robotics to teach the spinal cord to walk. Brain Res 2002, 40: 267-273. 10.1016/S0165-0173(02)00209-6CrossRef de Leon RD, Kubasak MD, Phelps PE, Timoszyk WK, Reinkensmeyer DJ, Roy RR, Edgerton VR: Using robotics to teach the spinal cord to walk. Brain Res 2002, 40: 267-273. 10.1016/S0165-0173(02)00209-6CrossRef
13.
go back to reference Lavrov I, Dy CJ, Fong AJ, Gerasimenko Y, Courtine G, Zhong H, Roy RR, Edgerton VR: Epidural stimulation induced modulation of spinal locomotor networks in adult spinal rats. J Neurosci 2006, 28: 6022-6029.CrossRef Lavrov I, Dy CJ, Fong AJ, Gerasimenko Y, Courtine G, Zhong H, Roy RR, Edgerton VR: Epidural stimulation induced modulation of spinal locomotor networks in adult spinal rats. J Neurosci 2006, 28: 6022-6029.CrossRef
14.
go back to reference Ichiyama RM, Courtine G, Gerasimenko YP, Yang GJ, van den Brand R, Lavrov IA, Zhong H, Roy RR, Edgerton VR: Step training reinforces specific spinal locomotor circuitry in adult spinal rats. J Neurosci 2008, 28: 7370-7375. 10.1523/JNEUROSCI.1881-08.2008CrossRefPubMed Ichiyama RM, Courtine G, Gerasimenko YP, Yang GJ, van den Brand R, Lavrov IA, Zhong H, Roy RR, Edgerton VR: Step training reinforces specific spinal locomotor circuitry in adult spinal rats. J Neurosci 2008, 28: 7370-7375. 10.1523/JNEUROSCI.1881-08.2008CrossRefPubMed
15.
go back to reference Viitasalo J, Komi P: Signal characteristics of EMG during fatigue. Eur J Appl Physiol 1977, 37: 111-121. 10.1007/BF00421697CrossRef Viitasalo J, Komi P: Signal characteristics of EMG during fatigue. Eur J Appl Physiol 1977, 37: 111-121. 10.1007/BF00421697CrossRef
16.
go back to reference Whiting WC, Gregor RJ, Roy RR, Edgerton VR: A technique for estimating mechanical work of individual muscles in the cat during treadmill locomotion. J Biomech 1984, 17: 685-694. 10.1016/0021-9290(84)90122-2CrossRefPubMed Whiting WC, Gregor RJ, Roy RR, Edgerton VR: A technique for estimating mechanical work of individual muscles in the cat during treadmill locomotion. J Biomech 1984, 17: 685-694. 10.1016/0021-9290(84)90122-2CrossRefPubMed
17.
go back to reference Roy RR, Harkema SJ, Edgerton VR: Basic concepts of activity-based interventions for improved recovery of motor function after spinal cord injury. Arch Phys Med Rehabil 2012, 93: 1487-1497. 10.1016/j.apmr.2012.04.034CrossRefPubMed Roy RR, Harkema SJ, Edgerton VR: Basic concepts of activity-based interventions for improved recovery of motor function after spinal cord injury. Arch Phys Med Rehabil 2012, 93: 1487-1497. 10.1016/j.apmr.2012.04.034CrossRefPubMed
18.
go back to reference Rossignol S, Frigon A: Recovery of locomotion after spinal cord injury: some facts and mechanisms. Annu Rev Neurosci 2011, 34: 413-440. 10.1146/annurev-neuro-061010-113746CrossRefPubMed Rossignol S, Frigon A: Recovery of locomotion after spinal cord injury: some facts and mechanisms. Annu Rev Neurosci 2011, 34: 413-440. 10.1146/annurev-neuro-061010-113746CrossRefPubMed
19.
go back to reference Gad P, Woodbridge J, Lavrov I, Zhong H, Roy RR, Sarrafzadeh M, Edgerton VR: Forelimb EMG-based trigger to control an electronic spinal bridge to enable hindlimb stepping after a complete spinal cord lesion in rats. J Neuroeng Rehabil 2012, 9: 38. 10.1186/1743-0003-9-38PubMedCentralCrossRefPubMed Gad P, Woodbridge J, Lavrov I, Zhong H, Roy RR, Sarrafzadeh M, Edgerton VR: Forelimb EMG-based trigger to control an electronic spinal bridge to enable hindlimb stepping after a complete spinal cord lesion in rats. J Neuroeng Rehabil 2012, 9: 38. 10.1186/1743-0003-9-38PubMedCentralCrossRefPubMed
20.
go back to reference van den Brand R, Heutschi J, Barraud Q, DiGiovanna J, Bartholdi K, Huerlimann M, Friedli L, Vollenweider I, Martin Moraud E, Duis S, Dominici N, Micera S, Musienko P, Courtine G: Restoring voluntary control of locomotion after paralyzing spinal cord injury. Science 2012, 336: 1182-1185. 10.1126/science.1217416CrossRefPubMed van den Brand R, Heutschi J, Barraud Q, DiGiovanna J, Bartholdi K, Huerlimann M, Friedli L, Vollenweider I, Martin Moraud E, Duis S, Dominici N, Micera S, Musienko P, Courtine G: Restoring voluntary control of locomotion after paralyzing spinal cord injury. Science 2012, 336: 1182-1185. 10.1126/science.1217416CrossRefPubMed
21.
go back to reference García-Alías G, Barkhuysen S, Buckle M, Fawcett JW: Chondroitinase ABCtreatment opens a window of opportunity for task-specific rehabilitation. Nat Neurosci 2009, 12: 1145-1151. 10.1038/nn.2377CrossRefPubMed García-Alías G, Barkhuysen S, Buckle M, Fawcett JW: Chondroitinase ABCtreatment opens a window of opportunity for task-specific rehabilitation. Nat Neurosci 2009, 12: 1145-1151. 10.1038/nn.2377CrossRefPubMed
22.
go back to reference Finni T, Haakana P, Pesola AJ, Pullinen T: Exercise for fitness does not decrease the muscular inactivity time during normal daily life. Scand J Med Sci Sports 2012,  . doi:10.1111/j.1600-0838.2012.01456.x Finni T, Haakana P, Pesola AJ, Pullinen T: Exercise for fitness does not decrease the muscular inactivity time during normal daily life. Scand J Med Sci Sports 2012,  . doi:10.1111/j.1600-0838.2012.01456.x
23.
go back to reference Hodgson JA, Roy RR, Higuchi N, Monti RJ, Zhong H, Grossman E, Edgerton VR: Does daily activity level determine muscle phenotype? J Exp Biol 2005, 208: 3761-3770. 10.1242/jeb.01825CrossRefPubMed Hodgson JA, Roy RR, Higuchi N, Monti RJ, Zhong H, Grossman E, Edgerton VR: Does daily activity level determine muscle phenotype? J Exp Biol 2005, 208: 3761-3770. 10.1242/jeb.01825CrossRefPubMed
Metadata
Title
Sub-threshold spinal cord stimulation facilitates spontaneous motor activity in spinal rats
Authors
Parag Gad
Jaehoon Choe
Prithvi Shah
Guillermo Garcia-Alias
Mrinal Rath
Yury Gerasimenko
Hui Zhong
Roland R Roy
Victor Reggie Edgerton
Publication date
01-12-2013
Publisher
BioMed Central
Published in
Journal of NeuroEngineering and Rehabilitation / Issue 1/2013
Electronic ISSN: 1743-0003
DOI
https://doi.org/10.1186/1743-0003-10-108

Other articles of this Issue 1/2013

Journal of NeuroEngineering and Rehabilitation 1/2013 Go to the issue