Skip to main content
Top
Published in: Radiation Oncology 1/2017

Open Access 01-12-2017 | Review

Development and clinical application of radiomics in lung cancer

Authors: Bojiang Chen, Rui Zhang, Yuncui Gan, Lan Yang, Weimin Li

Published in: Radiation Oncology | Issue 1/2017

Login to get access

Abstract

Since the discovery of X-rays at the end of the 19th century, medical imageology has progressed for 100 years, and medical imaging has become an important auxiliary tool for clinical diagnosis. With the launch of the human genome project (HGP) and the development of various high-throughput detection techniques, disease exploration in the post-genome era has extended beyond investigations of structural changes to in-depth analyses of molecular abnormalities in tissues, organs and cells, on the basis of gene expression and epigenetics. These techniques have given rise to genomics, proteomics, metabolomics and other systems biology subspecialties, including radiogenomics. Radiogenomics is an important revolution in the traditional visually identifiable imaging technology and constitutes a new branch, radiomics. Radiomics is aimed at extracting quantitative imaging features automatically and developing models to predict lesion phenotypes in a non-invasive manner. Here, we summarize the advent and development of radiomics, the basic process and challenges in clinical practice, with a focus on applications in pulmonary nodule evaluations, including diagnostics, pathological and molecular classifications, treatment response assessments and prognostic predictions, especially in radiotherapy.
Literature
1.
go back to reference Jones PA, Issa J-PJ, Baylin S. Targeting the cancer epigenome for therapy. Nat Rev Genet. 2016;17:630–41.CrossRefPubMed Jones PA, Issa J-PJ, Baylin S. Targeting the cancer epigenome for therapy. Nat Rev Genet. 2016;17:630–41.CrossRefPubMed
2.
go back to reference Robles AI, Jen J, Harris CC. Clinical Outcomes of TP53 Mutations in Cancers. Cold Spring Harb Perspect Med. 2016; 6. Robles AI, Jen J, Harris CC. Clinical Outcomes of TP53 Mutations in Cancers. Cold Spring Harb Perspect Med. 2016; 6.
3.
go back to reference Caswell DR, Swanton C. The role of tumour heterogeneity and clonal cooperativity in metastasis, immune evasion and clinical outcome. BMC Med. 2017;15:133.CrossRefPubMedPubMedCentral Caswell DR, Swanton C. The role of tumour heterogeneity and clonal cooperativity in metastasis, immune evasion and clinical outcome. BMC Med. 2017;15:133.CrossRefPubMedPubMedCentral
4.
go back to reference Baumann M, Hölscher T, Begg AC. Towards genetic prediction of radiation responses: ESTRO’s GENEPI project. Radiother Oncol. 2003;69:121–5.CrossRefPubMed Baumann M, Hölscher T, Begg AC. Towards genetic prediction of radiation responses: ESTRO’s GENEPI project. Radiother Oncol. 2003;69:121–5.CrossRefPubMed
5.
go back to reference Rutman AM, Kuo MD. Radiogenomics: creating a link between molecular diagnostics and diagnostic imaging. Eur J Radiol. 2009;70:232–41.CrossRefPubMed Rutman AM, Kuo MD. Radiogenomics: creating a link between molecular diagnostics and diagnostic imaging. Eur J Radiol. 2009;70:232–41.CrossRefPubMed
6.
go back to reference Segal E, Sirlin CB, Ooi C, et al. Decoding global gene expression programs in liver cancer by noninvasive imaging. Nat Biotechnol. 2007;25:675–80.CrossRefPubMed Segal E, Sirlin CB, Ooi C, et al. Decoding global gene expression programs in liver cancer by noninvasive imaging. Nat Biotechnol. 2007;25:675–80.CrossRefPubMed
7.
go back to reference Gerlinger M, Rowan AJ, Horswell S, et al. Intratumor heterogeneity and branched evolution revealed by multiregion sequencing. N Engl J Med. 2012;366:883–92.CrossRefPubMedPubMedCentral Gerlinger M, Rowan AJ, Horswell S, et al. Intratumor heterogeneity and branched evolution revealed by multiregion sequencing. N Engl J Med. 2012;366:883–92.CrossRefPubMedPubMedCentral
10.
go back to reference Burrell RA, McGranahan N, Bartek J, et al. The causes and consequences of genetic heterogeneity in cancer evolution. Nature. 2013;501:338.CrossRefPubMed Burrell RA, McGranahan N, Bartek J, et al. The causes and consequences of genetic heterogeneity in cancer evolution. Nature. 2013;501:338.CrossRefPubMed
11.
12.
go back to reference Hartmaier RJ, Albacker L, Chmielecki J et al. High-throughput genomic profiling of adult solid tumors reveals novel insights into cancer pathogenesis. Cancer Res. 2017. Hartmaier RJ, Albacker L, Chmielecki J et al. High-throughput genomic profiling of adult solid tumors reveals novel insights into cancer pathogenesis. Cancer Res. 2017.
13.
go back to reference Gutierrez ME, Choi K, Lanman RB et al. Genomic Profiling of Advanced Non–Small Cell Lung Cancer in Community Settings: Gaps and Opportunities. Clin Lung Cancer. 2017. Gutierrez ME, Choi K, Lanman RB et al. Genomic Profiling of Advanced Non–Small Cell Lung Cancer in Community Settings: Gaps and Opportunities. Clin Lung Cancer. 2017.
14.
go back to reference Lambin P, Rios-Velazquez E, Leijenaar R, et al. Radiomics: extracting more information from medical images using advanced feature analysis. Eur J Cancer. 2012;48:441–6.CrossRefPubMedPubMedCentral Lambin P, Rios-Velazquez E, Leijenaar R, et al. Radiomics: extracting more information from medical images using advanced feature analysis. Eur J Cancer. 2012;48:441–6.CrossRefPubMedPubMedCentral
15.
go back to reference Mitra S, Shankar BU. Integrating radio imaging with gene expressions toward a personalized management of cancer. IEEE Trans Human-Mach Syst. 2014;44:664–77.CrossRef Mitra S, Shankar BU. Integrating radio imaging with gene expressions toward a personalized management of cancer. IEEE Trans Human-Mach Syst. 2014;44:664–77.CrossRef
18.
go back to reference Mackin D, Fave X, Zhang L, et al. Measuring CT scanner variability of radiomics features. Investig Radiol. 2015;50:757.CrossRef Mackin D, Fave X, Zhang L, et al. Measuring CT scanner variability of radiomics features. Investig Radiol. 2015;50:757.CrossRef
19.
go back to reference Oliver JA, Budzevich M, Zhang GG, et al. Variability of image features computed from conventional and respiratory-gated PET/CT images of lung cancer. Transl Oncol. 2015;8:524–34.CrossRefPubMedPubMedCentral Oliver JA, Budzevich M, Zhang GG, et al. Variability of image features computed from conventional and respiratory-gated PET/CT images of lung cancer. Transl Oncol. 2015;8:524–34.CrossRefPubMedPubMedCentral
20.
go back to reference Huq MS, Fraass BA, Dunscombe PB, et al. The report of task group 100 of the AAPM: application of risk analysis methods to radiation therapy quality management. Med Phys. 2016;43:4209–62.CrossRefPubMedPubMedCentral Huq MS, Fraass BA, Dunscombe PB, et al. The report of task group 100 of the AAPM: application of risk analysis methods to radiation therapy quality management. Med Phys. 2016;43:4209–62.CrossRefPubMedPubMedCentral
21.
go back to reference Yang X, Knopp MV. Quantifying tumor vascular heterogeneity with dynamic contrast-enhanced magnetic resonance imaging: a review. J Biomed Biotechnol. 2011;2011:732848.PubMedPubMedCentral Yang X, Knopp MV. Quantifying tumor vascular heterogeneity with dynamic contrast-enhanced magnetic resonance imaging: a review. J Biomed Biotechnol. 2011;2011:732848.PubMedPubMedCentral
22.
go back to reference Koh D-M, Collins DJ. Diffusion-weighted MRI in the body: applications and challenges in oncology. Am J Roentgenol. 2007;188:1622–35.CrossRef Koh D-M, Collins DJ. Diffusion-weighted MRI in the body: applications and challenges in oncology. Am J Roentgenol. 2007;188:1622–35.CrossRef
23.
go back to reference van Velden FH, Kramer GM, Frings V, et al. Repeatability of radiomic features in non-small-cell lung cancer [18F] FDG-PET/CT studies: impact of reconstruction and delineation. Mol Imaging Biol. 2016;18:788–95.CrossRefPubMedPubMedCentral van Velden FH, Kramer GM, Frings V, et al. Repeatability of radiomic features in non-small-cell lung cancer [18F] FDG-PET/CT studies: impact of reconstruction and delineation. Mol Imaging Biol. 2016;18:788–95.CrossRefPubMedPubMedCentral
24.
go back to reference El Naqa I. The role of quantitative PET in predicting cancer treatment outcomes. Clin Transl Imaging. 2014;2:305–20.CrossRef El Naqa I. The role of quantitative PET in predicting cancer treatment outcomes. Clin Transl Imaging. 2014;2:305–20.CrossRef
25.
go back to reference Öllers M, Bosmans G, van Baardwijk A, et al. The integration of PET-CT scans from different hospitals into radiotherapy treatment planning. Radiother Oncol. 2008;87:142–6.CrossRefPubMed Öllers M, Bosmans G, van Baardwijk A, et al. The integration of PET-CT scans from different hospitals into radiotherapy treatment planning. Radiother Oncol. 2008;87:142–6.CrossRefPubMed
26.
go back to reference Coenen A, Honda O, van der Jagt EJ, et al. Computer-assisted solid lung nodule 3D volumetry on CT: influence of scan mode and iterative reconstruction: a CT phantom study. Jpn J Radiol. 2013;31:677–84.CrossRefPubMed Coenen A, Honda O, van der Jagt EJ, et al. Computer-assisted solid lung nodule 3D volumetry on CT: influence of scan mode and iterative reconstruction: a CT phantom study. Jpn J Radiol. 2013;31:677–84.CrossRefPubMed
27.
go back to reference Parmar C, Velazquez ER, Leijenaar R, et al. Robust radiomics feature quantification using semiautomatic volumetric segmentation. PLoS One. 2014;9:e102107.CrossRefPubMedPubMedCentral Parmar C, Velazquez ER, Leijenaar R, et al. Robust radiomics feature quantification using semiautomatic volumetric segmentation. PLoS One. 2014;9:e102107.CrossRefPubMedPubMedCentral
28.
go back to reference Wibmer A, Hricak H, Gondo T, et al. Haralick texture analysis of prostate MRI: utility for differentiating non-cancerous prostate from prostate cancer and differentiating prostate cancers with different Gleason scores. Eur Radiol. 2015;25:2840–50.CrossRefPubMedPubMedCentral Wibmer A, Hricak H, Gondo T, et al. Haralick texture analysis of prostate MRI: utility for differentiating non-cancerous prostate from prostate cancer and differentiating prostate cancers with different Gleason scores. Eur Radiol. 2015;25:2840–50.CrossRefPubMedPubMedCentral
29.
go back to reference Haralick RM, Shanmugam K. Textural features for image classification. IEEE Trans Syst Man Cybern. 1973;6:610–21.CrossRef Haralick RM, Shanmugam K. Textural features for image classification. IEEE Trans Syst Man Cybern. 1973;6:610–21.CrossRef
32.
go back to reference Aerts HJ, Velazquez ER, Leijenaar RT, et al. Decoding tumour phenotype by noninvasive imaging using a quantitative radiomics approach. Nat Commun. 2014;5:4006.PubMedPubMedCentral Aerts HJ, Velazquez ER, Leijenaar RT, et al. Decoding tumour phenotype by noninvasive imaging using a quantitative radiomics approach. Nat Commun. 2014;5:4006.PubMedPubMedCentral
33.
go back to reference Levy MA, Freymann JB, Kirby JS, et al. Informatics methods to enable sharing of quantitative imaging research data. Magn Reson Imaging. 2012;30:1249–56.CrossRefPubMedPubMedCentral Levy MA, Freymann JB, Kirby JS, et al. Informatics methods to enable sharing of quantitative imaging research data. Magn Reson Imaging. 2012;30:1249–56.CrossRefPubMedPubMedCentral
34.
go back to reference Ma J, Wang Q, Ren Y, et al. Automatic lung nodule classification with radiomics approach. In: SPIE medical imaging: International Society for Optics and Photonics; 2016. p. 978906. Ma J, Wang Q, Ren Y, et al. Automatic lung nodule classification with radiomics approach. In: SPIE medical imaging: International Society for Optics and Photonics; 2016. p. 978906.
35.
go back to reference Hawkins S, Wang H, Liu Y, et al. Predicting malignant nodules from screening CT scans. J Thorac Oncol. 2016;11:2120–8.CrossRefPubMed Hawkins S, Wang H, Liu Y, et al. Predicting malignant nodules from screening CT scans. J Thorac Oncol. 2016;11:2120–8.CrossRefPubMed
36.
go back to reference Godoy MC, Naidich DP. Overview and strategic management of subsolid pulmonary nodules. J Thorac Imaging. 2012;27:240–8.CrossRefPubMed Godoy MC, Naidich DP. Overview and strategic management of subsolid pulmonary nodules. J Thorac Imaging. 2012;27:240–8.CrossRefPubMed
37.
go back to reference Lee SH, Lee SM, Goo JM, et al. Usefulness of texture analysis in differentiating transient from persistent part-solid nodules (PSNs): a retrospective study. PLoS One. 2014;9:e85167.CrossRefPubMedPubMedCentral Lee SH, Lee SM, Goo JM, et al. Usefulness of texture analysis in differentiating transient from persistent part-solid nodules (PSNs): a retrospective study. PLoS One. 2014;9:e85167.CrossRefPubMedPubMedCentral
38.
go back to reference Chae H-D, Park CM, Park SJ, et al. Computerized texture analysis of persistent part-solid ground-glass nodules: differentiation of preinvasive lesions from invasive pulmonary adenocarcinomas. Radiology. 2014;273:285–93.CrossRefPubMed Chae H-D, Park CM, Park SJ, et al. Computerized texture analysis of persistent part-solid ground-glass nodules: differentiation of preinvasive lesions from invasive pulmonary adenocarcinomas. Radiology. 2014;273:285–93.CrossRefPubMed
39.
go back to reference Wu W, Parmar C, Grossmann P et al. Exploratory study to identify radiomics classifiers for lung cancer histology. Front Oncol. 2016; 6. Wu W, Parmar C, Grossmann P et al. Exploratory study to identify radiomics classifiers for lung cancer histology. Front Oncol. 2016; 6.
40.
go back to reference Lilenbaum RA, Horn LA. Management of EGFR mutation–positive non–small cell lung cancer. J Natl Compr Cancer Netw. 2016;14:672–4.CrossRef Lilenbaum RA, Horn LA. Management of EGFR mutation–positive non–small cell lung cancer. J Natl Compr Cancer Netw. 2016;14:672–4.CrossRef
41.
go back to reference Liu Y, Kim J, Balagurunathan Y, et al. Radiomic features are associated with EGFR mutation status in lung adenocarcinomas. Clinical lung cancer. 2016;17:441–8. e446CrossRefPubMedPubMedCentral Liu Y, Kim J, Balagurunathan Y, et al. Radiomic features are associated with EGFR mutation status in lung adenocarcinomas. Clinical lung cancer. 2016;17:441–8. e446CrossRefPubMedPubMedCentral
42.
go back to reference Weiss GJ, Ganeshan B, Miles KA, et al. Noninvasive image texture analysis differentiates K-ras mutation from pan-wildtype NSCLC and is prognostic. PLoS One. 2014;9:e100244.CrossRefPubMedPubMedCentral Weiss GJ, Ganeshan B, Miles KA, et al. Noninvasive image texture analysis differentiates K-ras mutation from pan-wildtype NSCLC and is prognostic. PLoS One. 2014;9:e100244.CrossRefPubMedPubMedCentral
43.
go back to reference Yoon HJ, Sohn I, Cho JH, et al. Decoding tumor phenotypes for ALK, ROS1, and RET fusions in lung adenocarcinoma using a radiomics approach. Medicine. 2015;94:e1753.CrossRefPubMedPubMedCentral Yoon HJ, Sohn I, Cho JH, et al. Decoding tumor phenotypes for ALK, ROS1, and RET fusions in lung adenocarcinoma using a radiomics approach. Medicine. 2015;94:e1753.CrossRefPubMedPubMedCentral
44.
go back to reference Parmar C, Leijenaar RT, Grossmann P, et al. Radiomic feature clusters and prognostic signatures specific for lung and head & neck cancer. Sci Rep. 2015;5:srep11044.CrossRef Parmar C, Leijenaar RT, Grossmann P, et al. Radiomic feature clusters and prognostic signatures specific for lung and head & neck cancer. Sci Rep. 2015;5:srep11044.CrossRef
45.
go back to reference Coroller TP, Grossmann P, Hou Y, et al. CT-based radiomic signature predicts distant metastasis in lung adenocarcinoma. Radiother Oncol. 2015;114:345–50.CrossRefPubMedPubMedCentral Coroller TP, Grossmann P, Hou Y, et al. CT-based radiomic signature predicts distant metastasis in lung adenocarcinoma. Radiother Oncol. 2015;114:345–50.CrossRefPubMedPubMedCentral
46.
go back to reference Coroller TP, Agrawal V, Narayan V, et al. Radiomic phenotype features predict pathological response in non-small cell lung cancer. Radiother Oncol. 2016;119:480–6.CrossRefPubMedPubMedCentral Coroller TP, Agrawal V, Narayan V, et al. Radiomic phenotype features predict pathological response in non-small cell lung cancer. Radiother Oncol. 2016;119:480–6.CrossRefPubMedPubMedCentral
47.
go back to reference Mattonen SA, Palma DA, Johnson C, et al. Detection of local cancer recurrence after stereotactic ablative radiation therapy for lung cancer: physician performance versus radiomic assessment. Int J Radiat Oncol Biol Phys. 2016;94:1121–8.CrossRefPubMed Mattonen SA, Palma DA, Johnson C, et al. Detection of local cancer recurrence after stereotactic ablative radiation therapy for lung cancer: physician performance versus radiomic assessment. Int J Radiat Oncol Biol Phys. 2016;94:1121–8.CrossRefPubMed
48.
go back to reference Defraene G, van Elmpt W, Crijns W, et al. CT characteristics allow identification of patient-specific susceptibility for radiation-induced lung damage. Radiother Oncol. 2015;117:29–35.CrossRefPubMed Defraene G, van Elmpt W, Crijns W, et al. CT characteristics allow identification of patient-specific susceptibility for radiation-induced lung damage. Radiother Oncol. 2015;117:29–35.CrossRefPubMed
49.
go back to reference Ghobadi G, Wiegman EM, Langendijk JA, et al. A new CT-based method to quantify radiation-induced lung damage in patients. Radiother Oncol. 2015;117:4–8.CrossRefPubMed Ghobadi G, Wiegman EM, Langendijk JA, et al. A new CT-based method to quantify radiation-induced lung damage in patients. Radiother Oncol. 2015;117:4–8.CrossRefPubMed
51.
go back to reference Li Q, Kim J, Balagurunathan Y et al. Imaging features from pre-treatment CT scans are associated with clinical outcomes in non-small-cell lung cancer patients treated with stereotactic body radiotherapy. Med Phys. 2017. Li Q, Kim J, Balagurunathan Y et al. Imaging features from pre-treatment CT scans are associated with clinical outcomes in non-small-cell lung cancer patients treated with stereotactic body radiotherapy. Med Phys. 2017.
52.
go back to reference Huynh E, Coroller TP, Narayan V, et al. Associations of radiomic data extracted from static and respiratory-gated CT scans with disease recurrence in lung cancer patients treated with SBRT. PLoS One. 2017;12:e0169172.CrossRefPubMedPubMedCentral Huynh E, Coroller TP, Narayan V, et al. Associations of radiomic data extracted from static and respiratory-gated CT scans with disease recurrence in lung cancer patients treated with SBRT. PLoS One. 2017;12:e0169172.CrossRefPubMedPubMedCentral
Metadata
Title
Development and clinical application of radiomics in lung cancer
Authors
Bojiang Chen
Rui Zhang
Yuncui Gan
Lan Yang
Weimin Li
Publication date
01-12-2017
Publisher
BioMed Central
Published in
Radiation Oncology / Issue 1/2017
Electronic ISSN: 1748-717X
DOI
https://doi.org/10.1186/s13014-017-0885-x

Other articles of this Issue 1/2017

Radiation Oncology 1/2017 Go to the issue