Skip to main content
Top
Published in: Journal of Hematology & Oncology 1/2023

Open Access 01-12-2023 | Research

Development and characterization of NILK-2301, a novel CEACAM5xCD3 κλ bispecific antibody for immunotherapy of CEACAM5-expressing cancers

Authors: Anja Seckinger, Sara Majocchi, Valéry Moine, Lise Nouveau, Hoang Ngoc, Bruno Daubeuf, Ulla Ravn, Nicolas Pleche, Sebastien Calloud, Lucile Broyer, Laura Cons, Adeline Lesnier, Laurence Chatel, Anne Papaioannou, Susana Salgado-Pires, Sebastian Krämer, Ines Gockel, Florian Lordick, Krzysztof Masternak, Yves Poitevin, Giovanni Magistrelli, Pauline Malinge, Limin Shang, Sonja Kallendrusch, Klaus Strein, Dirk Hose

Published in: Journal of Hematology & Oncology | Issue 1/2023

Login to get access

Abstract

Background

T-cell retargeting to eliminate CEACAM5-expressing cancer cells via CEACAM5xCD3 bispecific antibodies (BsAbs) showed limited clinical activity so far, mostly due to insufficient T-cell activation, dose-limiting toxicities, and formation of anti-drug antibodies (ADA).

Methods

We present here the generation and preclinical development of NILK-2301, a BsAb composed of a common heavy chain and two different light chains, one kappa and one lambda, determining specificity (so-called κλ body format).

Results

NILK-2301 binds CD3ɛ on T-cells with its lambda light chain arm with an affinity of ≈100 nM, and the CEACAM5 A2 domain on tumor cells by its kappa light chain arm with an affinity of ≈5 nM. FcγR-binding is abrogated by the “LALAPA” mutation (Leu234Ala, Leu235Ala, Pro329Ala). NILK-2301 induced T-cell activation, proliferation, cytokine release, and T-cell dependent cellular cytotoxicity of CEACAM5-positive tumor cell lines (5/5 colorectal, 2/2 gastric, 2/2 lung), e.g., SK-CO-1 (Emax = 89%), MKN-45 (Emax = 84%), and H2122 (Emax = 97%), with EC50 ranging from 0.02 to 0.14 nM. NILK-2301 binds neither to CEACAM5-negative or primary colon epithelial cells nor to other CEACAM family members. NILK-2301 alone or in combination with checkpoint inhibition showed activity in organotypic tumor tissue slices and colorectal cancer organoid models. In vivo, NILK-2301 at 10 mg/kg significantly delayed tumor progression in colon- and a pancreatic adenocarcinoma model. Single-dose pharmacokinetics (PK) and tolerability in cynomolgus monkeys at 0.5 or 10 mg/kg intravenously or 20 mg subcutaneously showed dose-proportional PK, bioavailability ≈100%, and a projected half-life in humans of 13.1 days. NILK-2301 was well-tolerated. Data were confirmed in human FcRn TG32 mice.

Conclusions

In summary, NILK-2301 combines promising preclinical activity and safety with lower probability of ADA-generation due to its format compared to other molecules and is scheduled to enter clinical testing at the end of 2023.
Appendix
Available only for authorised users
Literature
2.
3.
go back to reference Matlung HL, Szilagyi K, Barclay NA, van den Berg TK. The CD47-SIRPalpha signaling axis as an innate immune checkpoint in cancer. Immunol Rev. 2017;276(1):145–64.PubMedCrossRef Matlung HL, Szilagyi K, Barclay NA, van den Berg TK. The CD47-SIRPalpha signaling axis as an innate immune checkpoint in cancer. Immunol Rev. 2017;276(1):145–64.PubMedCrossRef
4.
go back to reference Tapia-Galisteo A, Álvarez-Vallina L, Sanz L. Bi- and trispecific immune cell engagers for immunotherapy of hematological malignancies. J Hematol Oncol. 2023;16(1):83.PubMedPubMedCentralCrossRef Tapia-Galisteo A, Álvarez-Vallina L, Sanz L. Bi- and trispecific immune cell engagers for immunotherapy of hematological malignancies. J Hematol Oncol. 2023;16(1):83.PubMedPubMedCentralCrossRef
5.
8.
go back to reference Mendoza-Valderrey A, Alvarez M, De Maria A, Margolin K, Melero I, Ascierto ML. Next generation immuno-oncology strategies: unleashing NK cells activity. Cells. 2022;11(19):3147.PubMedPubMedCentralCrossRef Mendoza-Valderrey A, Alvarez M, De Maria A, Margolin K, Melero I, Ascierto ML. Next generation immuno-oncology strategies: unleashing NK cells activity. Cells. 2022;11(19):3147.PubMedPubMedCentralCrossRef
9.
go back to reference Mak TWaS, Mary E. T cell activation. The immune response. London: Academic Press; 2006. p. 373–401.CrossRef Mak TWaS, Mary E. T cell activation. The immune response. London: Academic Press; 2006. p. 373–401.CrossRef
10.
go back to reference Mir MA. Chapter 1 - Introduction to Costimulation and Costimulatory Molecules. In: Mir MA, ed. Developing costimulatory molecules for immunotherapy of diseases: academic press; 2015:1–43. Mir MA. Chapter 1 - Introduction to Costimulation and Costimulatory Molecules. In: Mir MA, ed. Developing costimulatory molecules for immunotherapy of diseases: academic press; 2015:1–43.
11.
go back to reference Schuster SJ, Bishop MR, Tam CS, et al. Tisagenlecleucel in adult relapsed or refractory diffuse large B-cell lymphoma. N Engl J Med. 2018;380(1):45–56.PubMedCrossRef Schuster SJ, Bishop MR, Tam CS, et al. Tisagenlecleucel in adult relapsed or refractory diffuse large B-cell lymphoma. N Engl J Med. 2018;380(1):45–56.PubMedCrossRef
12.
go back to reference Munshi NC, Anderson LD, Shah N, et al. Idecabtagene Vicleucel in Relapsed and Refractory Multiple Myeloma. N Engl J Med. 2021;384(8):705–16.PubMedCrossRef Munshi NC, Anderson LD, Shah N, et al. Idecabtagene Vicleucel in Relapsed and Refractory Multiple Myeloma. N Engl J Med. 2021;384(8):705–16.PubMedCrossRef
13.
go back to reference Locke FL, Miklos DB, Jacobson CA, et al. Axicabtagene ciloleucel as second-line therapy for large B-cell lymphoma. N Engl J Med. 2021;386(7):640–54.PubMedCrossRef Locke FL, Miklos DB, Jacobson CA, et al. Axicabtagene ciloleucel as second-line therapy for large B-cell lymphoma. N Engl J Med. 2021;386(7):640–54.PubMedCrossRef
14.
go back to reference Martin T, Usmani SZ, Berdeja JG, et al. Ciltacabtagene autoleucel, an anti-B-cell maturation antigen chimeric antigen receptor T-cell therapy, for relapsed/refractory multiple myeloma: CARTITUDE-1 2-year follow-up. J Clin Oncol. 2023;41(6):1265–74.PubMedCrossRef Martin T, Usmani SZ, Berdeja JG, et al. Ciltacabtagene autoleucel, an anti-B-cell maturation antigen chimeric antigen receptor T-cell therapy, for relapsed/refractory multiple myeloma: CARTITUDE-1 2-year follow-up. J Clin Oncol. 2023;41(6):1265–74.PubMedCrossRef
15.
go back to reference Seckinger A, Delgado JA, Moser S, et al. Target expression, generation, preclinical activity, and pharmacokinetics of the BCMA-T cell bispecific antibody EM801 for multiple myeloma treatment. Cancer Cell. 2017;31(3):396–410.PubMedCrossRef Seckinger A, Delgado JA, Moser S, et al. Target expression, generation, preclinical activity, and pharmacokinetics of the BCMA-T cell bispecific antibody EM801 for multiple myeloma treatment. Cancer Cell. 2017;31(3):396–410.PubMedCrossRef
16.
go back to reference Wong SW, Bar N, Paris L, et al. Alnuctamab (ALNUC; BMS-986349; CC-93269), a B-cell maturation antigen (BCMA) x CD3 T-cell engager (TCE), in patients (pts) with relapsed/refractory multiple myeloma (RRMM): results from a phase 1 first-in-human clinical study. Blood. 2022;140(Supplement 1):400–2.CrossRef Wong SW, Bar N, Paris L, et al. Alnuctamab (ALNUC; BMS-986349; CC-93269), a B-cell maturation antigen (BCMA) x CD3 T-cell engager (TCE), in patients (pts) with relapsed/refractory multiple myeloma (RRMM): results from a phase 1 first-in-human clinical study. Blood. 2022;140(Supplement 1):400–2.CrossRef
17.
go back to reference Usmani SZ, Garfall AL, van de Donk N, et al. Teclistamab, a B-cell maturation antigen x CD3 bispecific antibody, in patients with relapsed or refractory multiple myeloma (MajesTEC-1): a multicentre, open-label, single-arm, phase 1 study. Lancet. 2021;398(10301):665–74.PubMedCrossRef Usmani SZ, Garfall AL, van de Donk N, et al. Teclistamab, a B-cell maturation antigen x CD3 bispecific antibody, in patients with relapsed or refractory multiple myeloma (MajesTEC-1): a multicentre, open-label, single-arm, phase 1 study. Lancet. 2021;398(10301):665–74.PubMedCrossRef
18.
go back to reference Hutchings M, Morschhauser F, Iacoboni G, et al. Glofitamab, a novel, bivalent CD20-targeting T-cell-engaging bispecific antibody, induces durable complete remissions in relapsed or refractory B-cell lymphoma: a Phase I Trial. J Clin Oncol. 2021;39(18):1959–70.PubMedPubMedCentralCrossRef Hutchings M, Morschhauser F, Iacoboni G, et al. Glofitamab, a novel, bivalent CD20-targeting T-cell-engaging bispecific antibody, induces durable complete remissions in relapsed or refractory B-cell lymphoma: a Phase I Trial. J Clin Oncol. 2021;39(18):1959–70.PubMedPubMedCentralCrossRef
20.
go back to reference Gold P, Freedman SO. Demonstration of tumor-specific antigens in human colonic carcinomata by immunological tolerance and absorption techniques. J Exp Med. 1965;121:439–62.PubMedPubMedCentralCrossRef Gold P, Freedman SO. Demonstration of tumor-specific antigens in human colonic carcinomata by immunological tolerance and absorption techniques. J Exp Med. 1965;121:439–62.PubMedPubMedCentralCrossRef
21.
go back to reference Beauchemin N, Arabzadeh A. Carcinoembryonic antigen-related cell adhesion molecules (CEACAMs) in cancer progression and metastasis. Cancer Metastasis Rev. 2013;32(3–4):643–71.PubMedCrossRef Beauchemin N, Arabzadeh A. Carcinoembryonic antigen-related cell adhesion molecules (CEACAMs) in cancer progression and metastasis. Cancer Metastasis Rev. 2013;32(3–4):643–71.PubMedCrossRef
22.
go back to reference Yamamoto Y, Hirakawa E, Mori S, Hamada Y, Kawaguchi N, Matsuura N. Cleavage of carcinoembryonic antigen induces metastatic potential in colorectal carcinoma. Biochem Biophys Res Commun. 2005;333(1):223–9.PubMedCrossRef Yamamoto Y, Hirakawa E, Mori S, Hamada Y, Kawaguchi N, Matsuura N. Cleavage of carcinoembryonic antigen induces metastatic potential in colorectal carcinoma. Biochem Biophys Res Commun. 2005;333(1):223–9.PubMedCrossRef
23.
go back to reference Sack TL, Gum JR, Low MG, Kim YS. Release of carcinoembryonic antigen from human colon cancer cells by phosphatidylinositol-specific phospholipase C. J Clin Investig. 1988;82(2):586–93.PubMedPubMedCentralCrossRef Sack TL, Gum JR, Low MG, Kim YS. Release of carcinoembryonic antigen from human colon cancer cells by phosphatidylinositol-specific phospholipase C. J Clin Investig. 1988;82(2):586–93.PubMedPubMedCentralCrossRef
24.
go back to reference Naghibalhossaini F, Ebadi P. Evidence for CEA release from human colon cancer cells by an endogenous GPI-PLD enzyme. Cancer Lett. 2006;234(2):158–67.PubMedCrossRef Naghibalhossaini F, Ebadi P. Evidence for CEA release from human colon cancer cells by an endogenous GPI-PLD enzyme. Cancer Lett. 2006;234(2):158–67.PubMedCrossRef
25.
go back to reference Pakdel A, Naghibalhossaini F, Mokarram P, Jaberipour M, Hosseini A. Regulation of carcinoembryonic antigen release from colorectal cancer cells. Mol Biol Rep. 2012;39(4):3695–704.PubMedCrossRef Pakdel A, Naghibalhossaini F, Mokarram P, Jaberipour M, Hosseini A. Regulation of carcinoembryonic antigen release from colorectal cancer cells. Mol Biol Rep. 2012;39(4):3695–704.PubMedCrossRef
26.
go back to reference Hammarstrom S. The carcinoembryonic antigen (CEA) family: structures, suggested functions and expression in normal and malignant tissues. Semin Cancer Biol. 1999;9(2):67–81.PubMedCrossRef Hammarstrom S. The carcinoembryonic antigen (CEA) family: structures, suggested functions and expression in normal and malignant tissues. Semin Cancer Biol. 1999;9(2):67–81.PubMedCrossRef
28.
go back to reference Bacac M, Fauti T, Sam J, et al. A novel carcinoembryonic antigen T-Cell bispecific antibody (CEA TCB) for the treatment of solid tumors. Clin Cancer Res. 2016;22(13):3286–97.PubMedCrossRef Bacac M, Fauti T, Sam J, et al. A novel carcinoembryonic antigen T-Cell bispecific antibody (CEA TCB) for the treatment of solid tumors. Clin Cancer Res. 2016;22(13):3286–97.PubMedCrossRef
29.
go back to reference Oberst MD, Fuhrmann S, Mulgrew K, et al. CEA/CD3 bispecific antibody MEDI-565/AMG 211 activation of T cells and subsequent killing of human tumors is independent of mutations commonly found in colorectal adenocarcinomas. MAbs. 2014;6(6):1571–84.PubMedPubMedCentralCrossRef Oberst MD, Fuhrmann S, Mulgrew K, et al. CEA/CD3 bispecific antibody MEDI-565/AMG 211 activation of T cells and subsequent killing of human tumors is independent of mutations commonly found in colorectal adenocarcinomas. MAbs. 2014;6(6):1571–84.PubMedPubMedCentralCrossRef
30.
go back to reference Boucher D, Cournoyer D, Stanners CP, Fuks A. Studies on the control of gene expression of the carcinoembryonic antigen family in human tissue. Cancer Res. 1989;49(4):847–52.PubMed Boucher D, Cournoyer D, Stanners CP, Fuks A. Studies on the control of gene expression of the carcinoembryonic antigen family in human tissue. Cancer Res. 1989;49(4):847–52.PubMed
31.
go back to reference Decary S, Berne PF, Nicolazzi C, et al. Preclinical activity of SAR408701: a novel anti-CEACAM5-maytansinoid antibody-drug conjugate for the treatment of CEACAM5-positive epithelial tumors. Clin Cancer Res. 2020;26(24):6589–99.PubMedCrossRef Decary S, Berne PF, Nicolazzi C, et al. Preclinical activity of SAR408701: a novel anti-CEACAM5-maytansinoid antibody-drug conjugate for the treatment of CEACAM5-positive epithelial tumors. Clin Cancer Res. 2020;26(24):6589–99.PubMedCrossRef
32.
go back to reference Liersch T, Meller J, Kulle B, et al. Phase II trial of carcinoembryonic antigen radioimmunotherapy with 131I-labetuzumab after salvage resection of colorectal metastases in the liver: five-year safety and efficacy results. J Clin Oncol. 2005;23(27):6763–70.PubMedCrossRef Liersch T, Meller J, Kulle B, et al. Phase II trial of carcinoembryonic antigen radioimmunotherapy with 131I-labetuzumab after salvage resection of colorectal metastases in the liver: five-year safety and efficacy results. J Clin Oncol. 2005;23(27):6763–70.PubMedCrossRef
33.
go back to reference Dotan E, Cohen SJ, Starodub AN, et al. Phase I/II Trial of Labetuzumab Govitecan (Anti-CEACAM5/SN-38 antibody-drug conjugate) in patients with refractory or relapsing metastatic colorectal cancer. J Clin Oncol. 2017;35(29):3338–46.PubMedPubMedCentralCrossRef Dotan E, Cohen SJ, Starodub AN, et al. Phase I/II Trial of Labetuzumab Govitecan (Anti-CEACAM5/SN-38 antibody-drug conjugate) in patients with refractory or relapsing metastatic colorectal cancer. J Clin Oncol. 2017;35(29):3338–46.PubMedPubMedCentralCrossRef
34.
go back to reference Tabernero J, Melero I, Ros W, et al. Phase Ia and Ib studies of the novel carcinoembryonic antigen (CEA) T-cell bispecific (CEA CD3 TCB) antibody as a single agent and in combination with atezolizumab: Preliminary efficacy and safety in patients with metastatic colorectal cancer (mCRC). Journal of Clinical Oncology. 2017;35(15_suppl):3002–3002. Tabernero J, Melero I, Ros W, et al. Phase Ia and Ib studies of the novel carcinoembryonic antigen (CEA) T-cell bispecific (CEA CD3 TCB) antibody as a single agent and in combination with atezolizumab: Preliminary efficacy and safety in patients with metastatic colorectal cancer (mCRC). Journal of Clinical Oncology. 2017;35(15_suppl):3002–3002.
35.
go back to reference Pishvaian M, Morse MA, McDevitt J, et al. Phase 1 dose escalation study of MEDI-565, a bispecific T-cell engager that targets human carcinoembryonic antigen, in patients with advanced gastrointestinal adenocarcinomas. Clin Colorectal Cancer. 2016;15(4):345–51.PubMedCrossRef Pishvaian M, Morse MA, McDevitt J, et al. Phase 1 dose escalation study of MEDI-565, a bispecific T-cell engager that targets human carcinoembryonic antigen, in patients with advanced gastrointestinal adenocarcinomas. Clin Colorectal Cancer. 2016;15(4):345–51.PubMedCrossRef
36.
go back to reference Gazzah A, Bedard PL, Hierro C, et al. Safety, pharmacokinetics, and antitumor activity of the anti-CEACAM5-DM4 antibody–drug conjugate tusamitamab ravtansine (SAR408701) in patients with advanced solid tumors: first-in-human dose-escalation study. Ann Oncol. 2022;33(4):416–25.PubMedCrossRef Gazzah A, Bedard PL, Hierro C, et al. Safety, pharmacokinetics, and antitumor activity of the anti-CEACAM5-DM4 antibody–drug conjugate tusamitamab ravtansine (SAR408701) in patients with advanced solid tumors: first-in-human dose-escalation study. Ann Oncol. 2022;33(4):416–25.PubMedCrossRef
37.
go back to reference Moek KL, Fiedler WM, von Einem JC, et al. Phase I study of AMG 211/MEDI-565 administered as continuous intravenous infusion (cIV) for relapsed/refractory gastrointestinal (GI) adenocarcinoma. Ann Oncol. 2018;29:viii139–40. Moek KL, Fiedler WM, von Einem JC, et al. Phase I study of AMG 211/MEDI-565 administered as continuous intravenous infusion (cIV) for relapsed/refractory gastrointestinal (GI) adenocarcinoma. Ann Oncol. 2018;29:viii139–40.
39.
go back to reference Fischer N, Elson G, Magistrelli G, et al. Exploiting light chains for the scalable generation and platform purification of native human bispecific IgG. Nat Commun. 2015;6:6113.PubMedCrossRef Fischer N, Elson G, Magistrelli G, et al. Exploiting light chains for the scalable generation and platform purification of native human bispecific IgG. Nat Commun. 2015;6:6113.PubMedCrossRef
40.
go back to reference Hatterer E, Barba L, Noraz N, et al. Co-engaging CD47 and CD19 with a bispecific antibody abrogates B-cell receptor/CD19 association leading to impaired B-cell proliferation. MAbs. 2019;11(2):322–34.PubMedPubMedCentralCrossRef Hatterer E, Barba L, Noraz N, et al. Co-engaging CD47 and CD19 with a bispecific antibody abrogates B-cell receptor/CD19 association leading to impaired B-cell proliferation. MAbs. 2019;11(2):322–34.PubMedPubMedCentralCrossRef
41.
go back to reference Nouveau L, Buatois V, Cons L, et al. Immunological analysis of the murine anti-CD3-induced cytokine release syndrome model and therapeutic efficacy of anti-cytokine antibodies. Eur J Immunol. 2021;51(8):2074–85.PubMedPubMedCentralCrossRef Nouveau L, Buatois V, Cons L, et al. Immunological analysis of the murine anti-CD3-induced cytokine release syndrome model and therapeutic efficacy of anti-cytokine antibodies. Eur J Immunol. 2021;51(8):2074–85.PubMedPubMedCentralCrossRef
42.
go back to reference Sonnichsen R, Hennig L, Blaschke V, et al. Individual susceptibility analysis using patient-derived slice cultures of colorectal carcinoma. Clin Colorectal Cancer. 2018;17(2):e189–99.PubMedCrossRef Sonnichsen R, Hennig L, Blaschke V, et al. Individual susceptibility analysis using patient-derived slice cultures of colorectal carcinoma. Clin Colorectal Cancer. 2018;17(2):e189–99.PubMedCrossRef
43.
go back to reference Pessano S, Oettgen H, Bhan AK, Terhorst C. The T3/T cell receptor complex: antigenic distinction between the two 20-kd T3 (T3-delta and T3-epsilon) subunits. EMBO J. 1985;4(2):337–44.PubMedPubMedCentralCrossRef Pessano S, Oettgen H, Bhan AK, Terhorst C. The T3/T cell receptor complex: antigenic distinction between the two 20-kd T3 (T3-delta and T3-epsilon) subunits. EMBO J. 1985;4(2):337–44.PubMedPubMedCentralCrossRef
44.
go back to reference Tamm A, Schmidt RE. IgG binding sites on human Fc gamma receptors. Int Rev Immunol. 1997;16(1–2):57–85.PubMedCrossRef Tamm A, Schmidt RE. IgG binding sites on human Fc gamma receptors. Int Rev Immunol. 1997;16(1–2):57–85.PubMedCrossRef
45.
go back to reference Lund J, Pound JD, Jones PT, et al. Multiple binding sites on the CH2 domain of IgG for mouse Fc gamma R11. Mol Immunol. 1992;29(1):53–9.PubMedCrossRef Lund J, Pound JD, Jones PT, et al. Multiple binding sites on the CH2 domain of IgG for mouse Fc gamma R11. Mol Immunol. 1992;29(1):53–9.PubMedCrossRef
46.
go back to reference Shields RL, Namenuk AK, Hong K, et al. High resolution mapping of the binding site on human IgG1 for Fc gamma RI, Fc gamma RII, Fc gamma RIII, and FcRn and design of IgG1 variants with improved binding to the Fc gamma R. J Biol Chem. 2001;276(9):6591–604.PubMedCrossRef Shields RL, Namenuk AK, Hong K, et al. High resolution mapping of the binding site on human IgG1 for Fc gamma RI, Fc gamma RII, Fc gamma RIII, and FcRn and design of IgG1 variants with improved binding to the Fc gamma R. J Biol Chem. 2001;276(9):6591–604.PubMedCrossRef
47.
go back to reference Bailey L, Moreno L, Manigold T, et al. A simple whole blood bioassay detects cytokine responses to anti-CD28SA and anti-CD52 antibodies. J Pharmacol Toxicol Methods. 2013;68(2):231–9.PubMedCrossRef Bailey L, Moreno L, Manigold T, et al. A simple whole blood bioassay detects cytokine responses to anti-CD28SA and anti-CD52 antibodies. J Pharmacol Toxicol Methods. 2013;68(2):231–9.PubMedCrossRef
48.
go back to reference Avery LB, Wang M, Kavosi MS, et al. Utility of a human FcRn transgenic mouse model in drug discovery for early assessment and prediction of human pharmacokinetics of monoclonal antibodies. MAbs. 2016;8(6):1064–78.PubMedPubMedCentralCrossRef Avery LB, Wang M, Kavosi MS, et al. Utility of a human FcRn transgenic mouse model in drug discovery for early assessment and prediction of human pharmacokinetics of monoclonal antibodies. MAbs. 2016;8(6):1064–78.PubMedPubMedCentralCrossRef
50.
go back to reference André T, Shiu K-K, Kim TW, et al. Pembrolizumab in microsatellite-instability–high advanced colorectal cancer. N Engl J Med. 2020;383(23):2207–18.PubMedCrossRef André T, Shiu K-K, Kim TW, et al. Pembrolizumab in microsatellite-instability–high advanced colorectal cancer. N Engl J Med. 2020;383(23):2207–18.PubMedCrossRef
51.
go back to reference Husstegge M, Hoang NA, Rebstock J, et al. PD-1 inhibition in patient derived tissue cultures of human gastric and gastroesophageal adenocarcinoma. Oncoimmunology. 2021;10(1):1960729.PubMedPubMedCentralCrossRef Husstegge M, Hoang NA, Rebstock J, et al. PD-1 inhibition in patient derived tissue cultures of human gastric and gastroesophageal adenocarcinoma. Oncoimmunology. 2021;10(1):1960729.PubMedPubMedCentralCrossRef
52.
53.
go back to reference Dudal S, Hinton H, Giusti AM, et al. Application of a MABEL approach for a T-cell-bispecific monoclonal antibody: CEA TCB. J Immunother. 2016;39(7):279–89.PubMedCrossRef Dudal S, Hinton H, Giusti AM, et al. Application of a MABEL approach for a T-cell-bispecific monoclonal antibody: CEA TCB. J Immunother. 2016;39(7):279–89.PubMedCrossRef
54.
go back to reference Bacac M, Klein C, Umana P. CEA TCB: A novel head-to-tail 2:1 T cell bispecific antibody for treatment of CEA-positive solid tumors. OncoImmunology. 2016;5(8):e1203498.PubMedPubMedCentralCrossRef Bacac M, Klein C, Umana P. CEA TCB: A novel head-to-tail 2:1 T cell bispecific antibody for treatment of CEA-positive solid tumors. OncoImmunology. 2016;5(8):e1203498.PubMedPubMedCentralCrossRef
55.
go back to reference Melero I, Segal NH, Suarez JMS, et al. Pharmacokinetics (PK) and pharmacodynamics (PD) of a novel carcinoembryonic antigen (CEA) T-cell bispecific antibody (CEA CD3 TCB) for the treatment of CEA-expressing solid tumors. J Clinical Oncology. 2017;35(15_suppl):2549–2549. Melero I, Segal NH, Suarez JMS, et al. Pharmacokinetics (PK) and pharmacodynamics (PD) of a novel carcinoembryonic antigen (CEA) T-cell bispecific antibody (CEA CD3 TCB) for the treatment of CEA-expressing solid tumors. J Clinical Oncology. 2017;35(15_suppl):2549–2549.
56.
go back to reference Choudary S, Parupudi A (Medimmune LLC). Formulations of bispecific antibodies; patent application PCT/US2015/047843 (WO2016036678A1); 2015. Choudary S, Parupudi A (Medimmune LLC). Formulations of bispecific antibodies; patent application PCT/US2015/047843 (WO2016036678A1); 2015.
57.
go back to reference Tian Z, Liu M, Zhang Y, Wang X. Bispecific T cell engagers: an emerging therapy for management of hematologic malignancies. J Hematol Oncol. 2021;14(1):75.PubMedPubMedCentralCrossRef Tian Z, Liu M, Zhang Y, Wang X. Bispecific T cell engagers: an emerging therapy for management of hematologic malignancies. J Hematol Oncol. 2021;14(1):75.PubMedPubMedCentralCrossRef
58.
go back to reference Hawkes E, Lewis KL, Wong Doo N, et al. First-in-Human (FIH) Study of the Fully-Human Kappa-Lambda CD19/CD47 Bispecific Antibody TG-1801 in Patients (pts) with B-Cell Lymphoma. Blood. 2022;140(Supplement 1):6599–601.CrossRef Hawkes E, Lewis KL, Wong Doo N, et al. First-in-Human (FIH) Study of the Fully-Human Kappa-Lambda CD19/CD47 Bispecific Antibody TG-1801 in Patients (pts) with B-Cell Lymphoma. Blood. 2022;140(Supplement 1):6599–601.CrossRef
59.
go back to reference Romano E, Medioni J, Rouge TDLM, et al. 707 A Phase 1, open-label, dose finding study of NI-1801, a bispecific mesothelin x CD47 engaging antibody, in patients with mesothelin expressing solid cancers. J Immunother Cancer. 2022;10(Suppl 2):A740–A740. Romano E, Medioni J, Rouge TDLM, et al. 707 A Phase 1, open-label, dose finding study of NI-1801, a bispecific mesothelin x CD47 engaging antibody, in patients with mesothelin expressing solid cancers. J Immunother Cancer. 2022;10(Suppl 2):A740–A740.
60.
go back to reference Claus C, Ferrara C, Xu W, et al. Tumor-targeted 4–1BB agonists for combination with T cell bispecific antibodies as off-the-shelf therapy. Sci Transl Med. 2019;11(496):989.CrossRef Claus C, Ferrara C, Xu W, et al. Tumor-targeted 4–1BB agonists for combination with T cell bispecific antibodies as off-the-shelf therapy. Sci Transl Med. 2019;11(496):989.CrossRef
61.
go back to reference Seckinger AaM, Moine V, Nouveau L, Daubeuf B, Buatois V, Gueneau F, Ravn U, Masternak K, Poitevin Y, Magistrelli G, Malinge P, Shang L, Fischer N, Strein K, Ferlin WG, Hose D. Novel CEAxCD3 (NILK-2301) and CEAxCD28 (NILK-3301) kl bispecific antibodies for next generation immunotherapy of CEA-expressing cancer. ESMO Congress 2022. Ann. Oncol. 2022;33, S888. Seckinger AaM, Moine V, Nouveau L, Daubeuf B, Buatois V, Gueneau F, Ravn U, Masternak K, Poitevin Y, Magistrelli G, Malinge P, Shang L, Fischer N, Strein K, Ferlin WG, Hose D. Novel CEAxCD3 (NILK-2301) and CEAxCD28 (NILK-3301) kl bispecific antibodies for next generation immunotherapy of CEA-expressing cancer. ESMO Congress 2022. Ann. Oncol. 2022;33, S888.
62.
go back to reference Skokos D, Waite JC, Haber L, et al. A class of costimulatory CD28-bispecific antibodies that enhance the antitumor activity of CD3-bispecific antibodies. Sci Transl Medine. 2020;12(525):7888.CrossRef Skokos D, Waite JC, Haber L, et al. A class of costimulatory CD28-bispecific antibodies that enhance the antitumor activity of CD3-bispecific antibodies. Sci Transl Medine. 2020;12(525):7888.CrossRef
63.
go back to reference Seckinger A, Buatois V, Moine V, et al. Novel CEAxCD47 (NILK-2401) and CEAxCD3 (NILK-2301) kl bispecific antibodies for multimodal immunotherapy of CEA-expressing solid cancer. J Immunother Cancer. 2022;10(Suppl 2):A892–A892. Seckinger A, Buatois V, Moine V, et al. Novel CEAxCD47 (NILK-2401) and CEAxCD3 (NILK-2301) kl bispecific antibodies for multimodal immunotherapy of CEA-expressing solid cancer. J Immunother Cancer. 2022;10(Suppl 2):A892–A892.
Metadata
Title
Development and characterization of NILK-2301, a novel CEACAM5xCD3 κλ bispecific antibody for immunotherapy of CEACAM5-expressing cancers
Authors
Anja Seckinger
Sara Majocchi
Valéry Moine
Lise Nouveau
Hoang Ngoc
Bruno Daubeuf
Ulla Ravn
Nicolas Pleche
Sebastien Calloud
Lucile Broyer
Laura Cons
Adeline Lesnier
Laurence Chatel
Anne Papaioannou
Susana Salgado-Pires
Sebastian Krämer
Ines Gockel
Florian Lordick
Krzysztof Masternak
Yves Poitevin
Giovanni Magistrelli
Pauline Malinge
Limin Shang
Sonja Kallendrusch
Klaus Strein
Dirk Hose
Publication date
01-12-2023
Publisher
BioMed Central
Published in
Journal of Hematology & Oncology / Issue 1/2023
Electronic ISSN: 1756-8722
DOI
https://doi.org/10.1186/s13045-023-01516-3

Other articles of this Issue 1/2023

Journal of Hematology & Oncology 1/2023 Go to the issue
Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine