Skip to main content
Top
Published in: Journal of Hematology & Oncology 1/2023

Open Access 01-12-2023 | Review

Payload diversification: a key step in the development of antibody–drug conjugates

Authors: Louise Conilh, Lenka Sadilkova, Warren Viricel, Charles Dumontet

Published in: Journal of Hematology & Oncology | Issue 1/2023

Login to get access

Abstract

Antibody–drug conjugates (ADCs) is a fast moving class of targeted biotherapeutics that currently combines the selectivity of monoclonal antibodies with the potency of a payload consisting of cytotoxic agents. For many years microtubule targeting and DNA-intercalating agents were at the forefront of ADC development. The recent approval and clinical success of trastuzumab deruxtecan (Enhertu®) and sacituzumab govitecan (Trodelvy®), two topoisomerase 1 inhibitor-based ADCs, has shown the potential of conjugating unconventional payloads with differentiated mechanisms of action. Among future developments in the ADC field, payload diversification is expected to play a key role as illustrated by a growing number of preclinical and clinical stage unconventional payload-conjugated ADCs. This review presents a comprehensive overview of validated, forgotten and newly developed payloads with different mechanisms of action.
Literature
1.
go back to reference Strebhardt K, Ullrich A. Paul Ehrlich’s magic bullet concept: 100 years of progress. Nat Rev Cancer. 2008;8:473–80.CrossRef Strebhardt K, Ullrich A. Paul Ehrlich’s magic bullet concept: 100 years of progress. Nat Rev Cancer. 2008;8:473–80.CrossRef
2.
go back to reference Beck A, Goetsch L, Dumontet C, Corvaïa N. Strategies and challenges for the next generation of antibody-drug conjugates. Nat Rev Drug Discov. 2017;16:315–37.CrossRef Beck A, Goetsch L, Dumontet C, Corvaïa N. Strategies and challenges for the next generation of antibody-drug conjugates. Nat Rev Drug Discov. 2017;16:315–37.CrossRef
3.
go back to reference Bross PF, et al. Approval summary: gemtuzumab ozogamicin in relapsed acute myeloid leukemia. Clin Cancer Res. 2001;7:1490–6. Bross PF, et al. Approval summary: gemtuzumab ozogamicin in relapsed acute myeloid leukemia. Clin Cancer Res. 2001;7:1490–6.
4.
go back to reference Petersdorf SH, et al. A phase 3 study of gemtuzumab ozogamicin during induction and postconsolidation therapy in younger patients with acute myeloid leukemia. Blood. 2013;121:4854–60.CrossRef Petersdorf SH, et al. A phase 3 study of gemtuzumab ozogamicin during induction and postconsolidation therapy in younger patients with acute myeloid leukemia. Blood. 2013;121:4854–60.CrossRef
5.
go back to reference Drago JZ, Modi S, Chandarlapaty S. Unlocking the potential of antibody-drug conjugates for cancer therapy. Nat Rev Clin Oncol. 2021;18:327–44.CrossRef Drago JZ, Modi S, Chandarlapaty S. Unlocking the potential of antibody-drug conjugates for cancer therapy. Nat Rev Clin Oncol. 2021;18:327–44.CrossRef
6.
go back to reference do Pazo C, Nawaz K, Webster RM. The oncology market for antibody–drug conjugates. Nat Rev Drug Discov. 2021;20:583–4.CrossRef do Pazo C, Nawaz K, Webster RM. The oncology market for antibody–drug conjugates. Nat Rev Drug Discov. 2021;20:583–4.CrossRef
7.
go back to reference Arlotta KJ, Owen SC. Antibody and antibody derivatives as cancer therapeutics. Wiley Interdiscip Rev Nanomed Nanobiotechnol. 2019;11: e1556.CrossRef Arlotta KJ, Owen SC. Antibody and antibody derivatives as cancer therapeutics. Wiley Interdiscip Rev Nanomed Nanobiotechnol. 2019;11: e1556.CrossRef
8.
go back to reference Liu R, Oldham RJ, Teal E, Beers SA, Cragg MS. Fc-engineering for modulated effector functions—improving antibodies for cancer treatment. Antibodies. 2020;9(4):64.CrossRef Liu R, Oldham RJ, Teal E, Beers SA, Cragg MS. Fc-engineering for modulated effector functions—improving antibodies for cancer treatment. Antibodies. 2020;9(4):64.CrossRef
9.
go back to reference Qiao J, Al-Tamimi M, Baker RI, Andrews RK, Gardiner EE. The platelet Fc receptor. FcγRIIa Immunol Rev. 2015;268:241–52.CrossRef Qiao J, Al-Tamimi M, Baker RI, Andrews RK, Gardiner EE. The platelet Fc receptor. FcγRIIa Immunol Rev. 2015;268:241–52.CrossRef
10.
go back to reference Uppal H, et al. Potential mechanisms for thrombocytopenia development with trastuzumab emtansine (T-DM1). Clin Cancer Res. 2015;21:123–33.CrossRef Uppal H, et al. Potential mechanisms for thrombocytopenia development with trastuzumab emtansine (T-DM1). Clin Cancer Res. 2015;21:123–33.CrossRef
11.
go back to reference Pegram MD, et al. First-in-human, phase 1 dose-escalation study of biparatopic anti-HER2 antibody-drug conjugate MEDI4276 in patients with HER2-positive advanced breast or gastric cancer. Mol Cancer Ther. 2021;20:1442–53.CrossRef Pegram MD, et al. First-in-human, phase 1 dose-escalation study of biparatopic anti-HER2 antibody-drug conjugate MEDI4276 in patients with HER2-positive advanced breast or gastric cancer. Mol Cancer Ther. 2021;20:1442–53.CrossRef
12.
go back to reference Deonarain MP. Miniaturised ’antibody’-drug conjugates for solid tumours? Drug Discov Today Technol. 2018;30:47–53.CrossRef Deonarain MP. Miniaturised ’antibody’-drug conjugates for solid tumours? Drug Discov Today Technol. 2018;30:47–53.CrossRef
13.
go back to reference Deonarain MP, Yahioglu G. Current strategies for the discovery and bioconjugation of smaller, targetable drug conjugates tailored for solid tumor therapy. Expert Opin Drug Discov. 2021;16:613–24.CrossRef Deonarain MP, Yahioglu G. Current strategies for the discovery and bioconjugation of smaller, targetable drug conjugates tailored for solid tumor therapy. Expert Opin Drug Discov. 2021;16:613–24.CrossRef
14.
go back to reference Deonarain MP, et al. Small-format drug conjugates: a viable alternative to ADCs for solid tumours? Antibodies. 2018;7(2):16.CrossRef Deonarain MP, et al. Small-format drug conjugates: a viable alternative to ADCs for solid tumours? Antibodies. 2018;7(2):16.CrossRef
15.
go back to reference Rypáček F, Drobník J, Chmelař V, Kálal J. The renal excretion and retention of macromolecules. Pflugers Arch. 1982;392:211–7.CrossRef Rypáček F, Drobník J, Chmelař V, Kálal J. The renal excretion and retention of macromolecules. Pflugers Arch. 1982;392:211–7.CrossRef
16.
go back to reference Pyzik M, et al. The neonatal Fc receptor (FcRn): a misnomer? Front Immunol. 2019;10:1540.CrossRef Pyzik M, et al. The neonatal Fc receptor (FcRn): a misnomer? Front Immunol. 2019;10:1540.CrossRef
17.
go back to reference Carter PJ, Lazar GA. Next generation antibody drugs: pursuit of the ‘high-hanging fruit.’ Nat Rev Drug Discov. 2018;17:197–223.CrossRef Carter PJ, Lazar GA. Next generation antibody drugs: pursuit of the ‘high-hanging fruit.’ Nat Rev Drug Discov. 2018;17:197–223.CrossRef
18.
go back to reference Tsuchikama K, An Z. Antibody-drug conjugates: recent advances in conjugation and linker chemistries. Protein Cell. 2018;9:33–46.CrossRef Tsuchikama K, An Z. Antibody-drug conjugates: recent advances in conjugation and linker chemistries. Protein Cell. 2018;9:33–46.CrossRef
19.
go back to reference Herrera AF, et al. Anti-CD79B antibody-drug conjugate DCDS0780A in patients with B-cell non-hodgkin lymphoma: phase 1 dose-escalation study. Clin Cancer Res. 2022;28:1294–301.CrossRef Herrera AF, et al. Anti-CD79B antibody-drug conjugate DCDS0780A in patients with B-cell non-hodgkin lymphoma: phase 1 dose-escalation study. Clin Cancer Res. 2022;28:1294–301.CrossRef
20.
go back to reference Zhou Q. Site-specific antibody conjugation for ADC and beyond. Biomedicines. 2017;5:E64.CrossRef Zhou Q. Site-specific antibody conjugation for ADC and beyond. Biomedicines. 2017;5:E64.CrossRef
21.
go back to reference Duivelshof BL, et al. Glycan-mediated technology for obtaining homogeneous site-specific conjugated antibody-drug conjugates: synthesis and analytical characterization by using complementary middle-up LC/HRMS analysis. Anal Chem. 2020;92:8170–7.CrossRef Duivelshof BL, et al. Glycan-mediated technology for obtaining homogeneous site-specific conjugated antibody-drug conjugates: synthesis and analytical characterization by using complementary middle-up LC/HRMS analysis. Anal Chem. 2020;92:8170–7.CrossRef
22.
go back to reference Zhang L, et al. A simple and efficient method to generate dual site-specific conjugation ADCs with cysteine residue and an unnatural amino acid. Bioconjugate Chem. 2021;32:1094–104.CrossRef Zhang L, et al. A simple and efficient method to generate dual site-specific conjugation ADCs with cysteine residue and an unnatural amino acid. Bioconjugate Chem. 2021;32:1094–104.CrossRef
23.
go back to reference Hussain AF, et al. Toward homogenous antibody drug conjugates using enzyme-based conjugation approaches. Pharmaceuticals. 2021;14(4):343.CrossRef Hussain AF, et al. Toward homogenous antibody drug conjugates using enzyme-based conjugation approaches. Pharmaceuticals. 2021;14(4):343.CrossRef
24.
go back to reference Dai Z, et al. Synthesis of site-specific antibody-drug conjugates by ADP-ribosyl cyclases. Sci Adv. 2020;6(23):eaba6752.CrossRef Dai Z, et al. Synthesis of site-specific antibody-drug conjugates by ADP-ribosyl cyclases. Sci Adv. 2020;6(23):eaba6752.CrossRef
25.
go back to reference Puthenveetil S, et al. Multivalent peptidic linker enables identification of preferred sites of conjugation for a potent thialanstatin antibody drug conjugate. PLoS ONE. 2017;12: e0178452.CrossRef Puthenveetil S, et al. Multivalent peptidic linker enables identification of preferred sites of conjugation for a potent thialanstatin antibody drug conjugate. PLoS ONE. 2017;12: e0178452.CrossRef
26.
go back to reference Buecheler JW, Winzer M, Tonillo J, Weber C, Gieseler H. Impact of payload hydrophobicity on the stability of antibody-drug conjugates. Mol Pharm. 2018;15:2656–64.CrossRef Buecheler JW, Winzer M, Tonillo J, Weber C, Gieseler H. Impact of payload hydrophobicity on the stability of antibody-drug conjugates. Mol Pharm. 2018;15:2656–64.CrossRef
27.
go back to reference Ratanji KD, Derrick JP, Dearman RJ, Kimber I. Immunogenicity of therapeutic proteins: influence of aggregation. J Immunotoxicol. 2014;11:99–109.CrossRef Ratanji KD, Derrick JP, Dearman RJ, Kimber I. Immunogenicity of therapeutic proteins: influence of aggregation. J Immunotoxicol. 2014;11:99–109.CrossRef
28.
go back to reference Lyon RP, et al. Reducing hydrophobicity of homogeneous antibody-drug conjugates improves pharmacokinetics and therapeutic index. Nat Biotechnol. 2015;33:733–5.CrossRef Lyon RP, et al. Reducing hydrophobicity of homogeneous antibody-drug conjugates improves pharmacokinetics and therapeutic index. Nat Biotechnol. 2015;33:733–5.CrossRef
29.
go back to reference Hamblett KJ, et al. Effects of drug loading on the antitumor activity of a monoclonal antibody drug conjugate. Clin Cancer Res. 2004;10:7063–70.CrossRef Hamblett KJ, et al. Effects of drug loading on the antitumor activity of a monoclonal antibody drug conjugate. Clin Cancer Res. 2004;10:7063–70.CrossRef
30.
go back to reference Simmons JK, Burke PJ, Cochran JH, Pittman PG, Lyon RP. Reducing the antigen-independent toxicity of antibody-drug conjugates by minimizing their non-specific clearance through PEGylation. Toxicol Appl Pharmacol. 2020;392: 114932.CrossRef Simmons JK, Burke PJ, Cochran JH, Pittman PG, Lyon RP. Reducing the antigen-independent toxicity of antibody-drug conjugates by minimizing their non-specific clearance through PEGylation. Toxicol Appl Pharmacol. 2020;392: 114932.CrossRef
31.
go back to reference Li Q, et al. PEG linker improves antitumor efficacy and safety of affibody-based drug conjugates. Int J Mol Sci. 2021;22:1540.CrossRef Li Q, et al. PEG linker improves antitumor efficacy and safety of affibody-based drug conjugates. Int J Mol Sci. 2021;22:1540.CrossRef
32.
go back to reference Shao S, et al. Site-specific and hydrophilic ADCs through disulfide-bridged linker and branched PEG. Bioorg Med Chem Lett. 2018;28:1363–70.CrossRef Shao S, et al. Site-specific and hydrophilic ADCs through disulfide-bridged linker and branched PEG. Bioorg Med Chem Lett. 2018;28:1363–70.CrossRef
33.
go back to reference Burke PJ, et al. Optimization of a PEGylated glucuronide-monomethylauristatin E linker for antibody-drug conjugates. Mol Cancer Ther. 2017;16:116–23.CrossRef Burke PJ, et al. Optimization of a PEGylated glucuronide-monomethylauristatin E linker for antibody-drug conjugates. Mol Cancer Ther. 2017;16:116–23.CrossRef
34.
go back to reference Sonzini S, et al. Improved physical stability of an antibody-drug conjugate using host-guest chemistry. Bioconjug Chem. 2020;31:123–9.CrossRef Sonzini S, et al. Improved physical stability of an antibody-drug conjugate using host-guest chemistry. Bioconjug Chem. 2020;31:123–9.CrossRef
35.
go back to reference Viricel W, et al. Monodisperse polysarcosine-based highly-loaded antibody-drug conjugates. Chem Sci. 2019;10:4048–53.CrossRef Viricel W, et al. Monodisperse polysarcosine-based highly-loaded antibody-drug conjugates. Chem Sci. 2019;10:4048–53.CrossRef
36.
go back to reference Conilh L, et al. Exatecan antibody drug conjugates based on a hydrophilic polysarcosine drug-linker platform. Pharmaceuticals. 2021;14(3):247.CrossRef Conilh L, et al. Exatecan antibody drug conjugates based on a hydrophilic polysarcosine drug-linker platform. Pharmaceuticals. 2021;14(3):247.CrossRef
37.
go back to reference Dovgan I, et al. On the use of DNA as a linker in antibody-drug conjugates: synthesis, stability and in vitro potency. Sci Rep. 2020;10:7691.CrossRef Dovgan I, et al. On the use of DNA as a linker in antibody-drug conjugates: synthesis, stability and in vitro potency. Sci Rep. 2020;10:7691.CrossRef
38.
go back to reference Yurkovetskiy AV, et al. A polymer-based antibody-Vinca drug conjugate platform: characterization and preclinical efficacy. Cancer Res. 2015;75:3365–72.CrossRef Yurkovetskiy AV, et al. A polymer-based antibody-Vinca drug conjugate platform: characterization and preclinical efficacy. Cancer Res. 2015;75:3365–72.CrossRef
39.
go back to reference Okajima D, et al. Datopotamab Deruxtecan, a novel TROP2-directed antibody–drug conjugate, demonstrates potent antitumor activity by efficient drug delivery to tumor cells. Mol Cancer Ther. 2021;20:2329–40.CrossRef Okajima D, et al. Datopotamab Deruxtecan, a novel TROP2-directed antibody–drug conjugate, demonstrates potent antitumor activity by efficient drug delivery to tumor cells. Mol Cancer Ther. 2021;20:2329–40.CrossRef
40.
go back to reference Teicher BA, Chari RVJ. Antibody conjugate therapeutics: challenges and potential. Clin Cancer Res. 2011;17:6389–97.CrossRef Teicher BA, Chari RVJ. Antibody conjugate therapeutics: challenges and potential. Clin Cancer Res. 2011;17:6389–97.CrossRef
42.
go back to reference Widdison WC, Chari RVJ. Factors involved in the design of cytotoxic payloads for antibody–drug conjugates. In: Phillips GL editor Antibody-drug conjugates and immunotoxins: from pre-clinical development to therapeutic applications. Springer; 2013. pp. 93–115. https://doi.org/10.1007/978-1-4614-5456-4_6. Widdison WC, Chari RVJ. Factors involved in the design of cytotoxic payloads for antibody–drug conjugates. In: Phillips GL editor Antibody-drug conjugates and immunotoxins: from pre-clinical development to therapeutic applications. Springer; 2013. pp. 93–115. https://​doi.​org/​10.​1007/​978-1-4614-5456-4_​6.
43.
go back to reference Mantaj J, Jackson PJM, Rahman KM, Thurston DE. From anthramycin to pyrrolobenzodiazepine (PBD)-containing antibody-drug conjugates (ADCs). Angew Chem Int Ed Engl. 2017;56:462–88.CrossRef Mantaj J, Jackson PJM, Rahman KM, Thurston DE. From anthramycin to pyrrolobenzodiazepine (PBD)-containing antibody-drug conjugates (ADCs). Angew Chem Int Ed Engl. 2017;56:462–88.CrossRef
44.
go back to reference Yaghoubi S, et al. Potential drugs used in the antibody–drug conjugate (ADC) architecture for cancer therapy. J Cell Physiol. 2020;235:31–64.CrossRef Yaghoubi S, et al. Potential drugs used in the antibody–drug conjugate (ADC) architecture for cancer therapy. J Cell Physiol. 2020;235:31–64.CrossRef
45.
go back to reference Saber H, Simpson N, Ricks TK, Leighton JK. An FDA oncology analysis of toxicities associated with PBD-containing antibody-drug conjugates. Regul Toxicol Pharmacol. 2019;107: 104429.CrossRef Saber H, Simpson N, Ricks TK, Leighton JK. An FDA oncology analysis of toxicities associated with PBD-containing antibody-drug conjugates. Regul Toxicol Pharmacol. 2019;107: 104429.CrossRef
46.
go back to reference Hartley JA. Antibody-drug conjugates (ADCs) delivering pyrrolobenzodiazepine (PBD) dimers for cancer therapy. Expert Opin Biol Ther. 2021;21:931–43.CrossRef Hartley JA. Antibody-drug conjugates (ADCs) delivering pyrrolobenzodiazepine (PBD) dimers for cancer therapy. Expert Opin Biol Ther. 2021;21:931–43.CrossRef
47.
48.
49.
50.
go back to reference Criscitiello C, Morganti S, Curigliano G. Antibody–drug conjugates in solid tumors: a look into novel targets. J Hematol Oncol. 2021;14:20.CrossRef Criscitiello C, Morganti S, Curigliano G. Antibody–drug conjugates in solid tumors: a look into novel targets. J Hematol Oncol. 2021;14:20.CrossRef
51.
go back to reference Moek KL, de Groot DJA, de Vries EGE, Fehrmann RSN. The antibody-drug conjugate target landscape across a broad range of tumour types. Ann Oncol. 2017;28:3083–91.CrossRef Moek KL, de Groot DJA, de Vries EGE, Fehrmann RSN. The antibody-drug conjugate target landscape across a broad range of tumour types. Ann Oncol. 2017;28:3083–91.CrossRef
52.
go back to reference Ogitani Y, et al. DS-8201a, a novel HER2-targeting ADC with a novel DNA topoisomerase I inhibitor, demonstrates a promising antitumor efficacy with differentiation from T-DM1. Clin Cancer Res. 2016;22:5097–108.CrossRef Ogitani Y, et al. DS-8201a, a novel HER2-targeting ADC with a novel DNA topoisomerase I inhibitor, demonstrates a promising antitumor efficacy with differentiation from T-DM1. Clin Cancer Res. 2016;22:5097–108.CrossRef
53.
go back to reference Goldenberg DM, Cardillo TM, Govindan SV, Rossi EA, Sharkey RM. Trop-2 is a novel target for solid cancer therapy with sacituzumab govitecan (IMMU-132), an antibody-drug conjugate (ADC). Oncotarget. 2015;6:22496–512.CrossRef Goldenberg DM, Cardillo TM, Govindan SV, Rossi EA, Sharkey RM. Trop-2 is a novel target for solid cancer therapy with sacituzumab govitecan (IMMU-132), an antibody-drug conjugate (ADC). Oncotarget. 2015;6:22496–512.CrossRef
54.
go back to reference Pommier Y. Topoisomerase I inhibitors: camptothecins and beyond. Nat Rev Cancer. 2006;6:789–802.CrossRef Pommier Y. Topoisomerase I inhibitors: camptothecins and beyond. Nat Rev Cancer. 2006;6:789–802.CrossRef
55.
go back to reference Pommier Y, Leo E, Zhang H, Marchand C. DNA topoisomerases and their poisoning by anticancer and antibacterial drugs. Chem Biol. 2010;17:421–33.CrossRef Pommier Y, Leo E, Zhang H, Marchand C. DNA topoisomerases and their poisoning by anticancer and antibacterial drugs. Chem Biol. 2010;17:421–33.CrossRef
56.
go back to reference Pommier Y. Drugging topoisomerases: lessons and challenges. ACS Chem Biol. 2013;8:82–95.CrossRef Pommier Y. Drugging topoisomerases: lessons and challenges. ACS Chem Biol. 2013;8:82–95.CrossRef
57.
go back to reference Tanizawa A, Fujimori A, Fujimori Y, Pommier Y. Comparison of topoisomerase I inhibition, DNA damage, and cytotoxicity of camptothecin derivatives presently in clinical trials. J Natl Cancer Inst. 1994;86:836–42.CrossRef Tanizawa A, Fujimori A, Fujimori Y, Pommier Y. Comparison of topoisomerase I inhibition, DNA damage, and cytotoxicity of camptothecin derivatives presently in clinical trials. J Natl Cancer Inst. 1994;86:836–42.CrossRef
58.
go back to reference Zunino F, Pratesi G. Camptothecins in clinical development. Expert Opin Investig Drugs. 2004;13:269–84.CrossRef Zunino F, Pratesi G. Camptothecins in clinical development. Expert Opin Investig Drugs. 2004;13:269–84.CrossRef
59.
go back to reference Bailly C. Irinotecan: 25 years of cancer treatment. Pharmacol Res. 2019;148: 104398.CrossRef Bailly C. Irinotecan: 25 years of cancer treatment. Pharmacol Res. 2019;148: 104398.CrossRef
60.
go back to reference Thomas A, Pommier Y. Targeting topoisomerase I in the era of precision medicine. Clin Cancer Res. 2019;25:6581–9.CrossRef Thomas A, Pommier Y. Targeting topoisomerase I in the era of precision medicine. Clin Cancer Res. 2019;25:6581–9.CrossRef
61.
go back to reference Takegawa N, et al. DS-8201a, a new HER2-targeting antibody–drug conjugate incorporating a novel DNA topoisomerase I inhibitor, overcomes HER2-positive gastric cancer T-DM1 resistance. Int J Cancer. 2017;141:1682–9.CrossRef Takegawa N, et al. DS-8201a, a new HER2-targeting antibody–drug conjugate incorporating a novel DNA topoisomerase I inhibitor, overcomes HER2-positive gastric cancer T-DM1 resistance. Int J Cancer. 2017;141:1682–9.CrossRef
62.
go back to reference Abou-Alfa GK, et al. Phase II study of sorafenib in patients with advanced hepatocellular carcinoma. J Clin Oncol. 2006;24:4293–300.CrossRef Abou-Alfa GK, et al. Phase II study of sorafenib in patients with advanced hepatocellular carcinoma. J Clin Oncol. 2006;24:4293–300.CrossRef
63.
go back to reference Ogitani Y, et al. Wide application of a novel topoisomerase I inhibitor-based drug conjugation technology. Bioorg Med Chem Lett. 2016;26:5069–72.CrossRef Ogitani Y, et al. Wide application of a novel topoisomerase I inhibitor-based drug conjugation technology. Bioorg Med Chem Lett. 2016;26:5069–72.CrossRef
64.
go back to reference Ogitani Y, Hagihara K, Oitate M, Naito H, Agatsuma T. Bystander killing effect of DS-8201a, a novel anti-human epidermal growth factor receptor 2 antibody–drug conjugate, in tumors with human epidermal growth factor receptor 2 heterogeneity. Cancer Sci. 2016;107:1039–46.CrossRef Ogitani Y, Hagihara K, Oitate M, Naito H, Agatsuma T. Bystander killing effect of DS-8201a, a novel anti-human epidermal growth factor receptor 2 antibody–drug conjugate, in tumors with human epidermal growth factor receptor 2 heterogeneity. Cancer Sci. 2016;107:1039–46.CrossRef
65.
go back to reference Takegawa N, et al. DS-8201a, a new HER2-targeting antibody–drug conjugate incorporating a novel DNA topoisomerase I inhibitor, overcomes HER2-positive gastric cancer T-DM1 resistance. Int J Cancer. 2017;141:1682–9.CrossRef Takegawa N, et al. DS-8201a, a new HER2-targeting antibody–drug conjugate incorporating a novel DNA topoisomerase I inhibitor, overcomes HER2-positive gastric cancer T-DM1 resistance. Int J Cancer. 2017;141:1682–9.CrossRef
66.
go back to reference Iwata TN, et al. A HER2-targeting antibody-drug conjugate, trastuzumab deruxtecan (DS-8201a), enhances antitumor immunity in a mouse model. Mol Cancer Ther. 2018;17:1494–503.CrossRef Iwata TN, et al. A HER2-targeting antibody-drug conjugate, trastuzumab deruxtecan (DS-8201a), enhances antitumor immunity in a mouse model. Mol Cancer Ther. 2018;17:1494–503.CrossRef
67.
go back to reference Nagai Y, Oitate M, Shiozawa H, Ando O. Comprehensive preclinical pharmacokinetic evaluations of trastuzumab deruxtecan (DS-8201a), a HER2-targeting antibody-drug conjugate, in cynomolgus monkeys. Xenobiotica. 2019;49:1086–96.CrossRef Nagai Y, Oitate M, Shiozawa H, Ando O. Comprehensive preclinical pharmacokinetic evaluations of trastuzumab deruxtecan (DS-8201a), a HER2-targeting antibody-drug conjugate, in cynomolgus monkeys. Xenobiotica. 2019;49:1086–96.CrossRef
68.
go back to reference Modi S, et al. Trastuzumab deruxtecan in previously treated HER2-positive breast cancer. N Engl J Med. 2020;382:610–21.CrossRef Modi S, et al. Trastuzumab deruxtecan in previously treated HER2-positive breast cancer. N Engl J Med. 2020;382:610–21.CrossRef
69.
go back to reference Shitara K, et al. Trastuzumab deruxtecan in previously treated HER2-positive gastric cancer. N Engl J Med. 2020;382:2419–30.CrossRef Shitara K, et al. Trastuzumab deruxtecan in previously treated HER2-positive gastric cancer. N Engl J Med. 2020;382:2419–30.CrossRef
70.
go back to reference Research, C. for D. E. and. FDA grants accelerated approval to fam-trastuzumab deruxtecan-nxki for HER2-mutant non-small cell lung cancer. FDA. 2022. Research, C. for D. E. and. FDA grants accelerated approval to fam-trastuzumab deruxtecan-nxki for HER2-mutant non-small cell lung cancer. FDA. 2022.
71.
go back to reference Cortés J, et al. Trastuzumab deruxtecan versus trastuzumab emtansine for breast cancer. N Engl J Med. 2022;386:1143–54.CrossRef Cortés J, et al. Trastuzumab deruxtecan versus trastuzumab emtansine for breast cancer. N Engl J Med. 2022;386:1143–54.CrossRef
72.
go back to reference Li BT, et al. Trastuzumab deruxtecan in HER2-mutant non–small-cell lung cancer. N Engl J Med. 2022;386:241–51.CrossRef Li BT, et al. Trastuzumab deruxtecan in HER2-mutant non–small-cell lung cancer. N Engl J Med. 2022;386:241–51.CrossRef
73.
go back to reference Siena S, et al. Trastuzumab deruxtecan (DS-8201) in patients with HER2-expressing metastatic colorectal cancer (DESTINY-CRC01): a multicentre, open-label, phase 2 trial. Lancet Oncol. 2021;22:779–89.CrossRef Siena S, et al. Trastuzumab deruxtecan (DS-8201) in patients with HER2-expressing metastatic colorectal cancer (DESTINY-CRC01): a multicentre, open-label, phase 2 trial. Lancet Oncol. 2021;22:779–89.CrossRef
75.
go back to reference Liu H, et al. Abstract P196: novel hydrophilic drug linkers enable exatecan-based antibody-drug conjugates with promising physiochemical properties and in vivo activity. Mol Cancer Ther. 2021;20:P196.CrossRef Liu H, et al. Abstract P196: novel hydrophilic drug linkers enable exatecan-based antibody-drug conjugates with promising physiochemical properties and in vivo activity. Mol Cancer Ther. 2021;20:P196.CrossRef
79.
go back to reference Li W, et al. Synthesis and evaluation of camptothecin antibody-drug conjugates. ACS Med Chem Lett. 2019;10:1386–92.CrossRef Li W, et al. Synthesis and evaluation of camptothecin antibody-drug conjugates. ACS Med Chem Lett. 2019;10:1386–92.CrossRef
81.
go back to reference Gupta E, et al. Metabolic fate of irinotecan in humans: correlation of glucuronidation with diarrhea. Cancer Res. 1994;54:3723–5. Gupta E, et al. Metabolic fate of irinotecan in humans: correlation of glucuronidation with diarrhea. Cancer Res. 1994;54:3723–5.
82.
go back to reference Haaz MC, Rivory L, Riché C, Vernillet L, Robert J. Metabolism of irinotecan (CPT-11) by human hepatic microsomes: participation of cytochrome P-450 3A and drug interactions. Cancer Res. 1998;58:468–72. Haaz MC, Rivory L, Riché C, Vernillet L, Robert J. Metabolism of irinotecan (CPT-11) by human hepatic microsomes: participation of cytochrome P-450 3A and drug interactions. Cancer Res. 1998;58:468–72.
83.
84.
go back to reference Moon S-J, et al. Antibody conjugates of 7-ethyl-10-hydroxycamptothecin (SN-38) for targeted cancer chemotherapy. J Med Chem. 2008;51:6916–26.CrossRef Moon S-J, et al. Antibody conjugates of 7-ethyl-10-hydroxycamptothecin (SN-38) for targeted cancer chemotherapy. J Med Chem. 2008;51:6916–26.CrossRef
85.
go back to reference Govindan SV, Cardillo TM, Moon S-J, Hansen HJ, Goldenberg DM. CEACAM5-targeted therapy of human colonic and pancreatic cancer xenografts with potent labetuzumab-SN-38 immunoconjugates. Clin Cancer Res. 2009;15:6052–61.CrossRef Govindan SV, Cardillo TM, Moon S-J, Hansen HJ, Goldenberg DM. CEACAM5-targeted therapy of human colonic and pancreatic cancer xenografts with potent labetuzumab-SN-38 immunoconjugates. Clin Cancer Res. 2009;15:6052–61.CrossRef
86.
go back to reference Govindan SV, et al. Improving the therapeutic index in cancer therapy by using antibody-drug conjugates designed with a moderately cytotoxic drug. Mol Pharm. 2015;12:1836–47.CrossRef Govindan SV, et al. Improving the therapeutic index in cancer therapy by using antibody-drug conjugates designed with a moderately cytotoxic drug. Mol Pharm. 2015;12:1836–47.CrossRef
87.
go back to reference Cardillo TM, et al. IMMU-140, a novel SN-38 antibody-drug conjugate targeting HLA-DR, mediates dual cytotoxic effects in hematologic cancers and malignant melanoma. Mol Cancer Ther. 2018;17:150–60.CrossRef Cardillo TM, et al. IMMU-140, a novel SN-38 antibody-drug conjugate targeting HLA-DR, mediates dual cytotoxic effects in hematologic cancers and malignant melanoma. Mol Cancer Ther. 2018;17:150–60.CrossRef
88.
go back to reference Sharkey RM, Govindan SV, Cardillo TM, Goldenberg DM. Epratuzumab-SN-38: a new antibody-drug conjugate for the therapy of hematologic malignancies. Mol Cancer Ther. 2012;11:224–34.CrossRef Sharkey RM, Govindan SV, Cardillo TM, Goldenberg DM. Epratuzumab-SN-38: a new antibody-drug conjugate for the therapy of hematologic malignancies. Mol Cancer Ther. 2012;11:224–34.CrossRef
89.
go back to reference Govindan SV, et al. Milatuzumab-SN-38 conjugates for the treatment of CD74+ cancers. Mol Cancer Ther. 2013;12:968–78.CrossRef Govindan SV, et al. Milatuzumab-SN-38 conjugates for the treatment of CD74+ cancers. Mol Cancer Ther. 2013;12:968–78.CrossRef
90.
go back to reference Yao Y, et al. Synthesis, characterization and targeting chemotherapy for ovarian cancer of trastuzumab-SN-38 conjugates. J Control Release. 2015;220:5–17.CrossRef Yao Y, et al. Synthesis, characterization and targeting chemotherapy for ovarian cancer of trastuzumab-SN-38 conjugates. J Control Release. 2015;220:5–17.CrossRef
91.
go back to reference Yasunaga M, Manabe S, Tarin D, Matsumura Y. Tailored immunoconjugate therapy depending on a quantity of tumor stroma. Cancer Sci. 2013;104:231–7.CrossRef Yasunaga M, Manabe S, Tarin D, Matsumura Y. Tailored immunoconjugate therapy depending on a quantity of tumor stroma. Cancer Sci. 2013;104:231–7.CrossRef
92.
go back to reference Yasunaga M, Manabe S, Tarin D, Matsumura Y. Cancer-stroma targeting therapy by cytotoxic immunoconjugate bound to the collagen 4 network in the tumor tissue. Bioconjugate Chem. 2011;22:1776–83.CrossRef Yasunaga M, Manabe S, Tarin D, Matsumura Y. Cancer-stroma targeting therapy by cytotoxic immunoconjugate bound to the collagen 4 network in the tumor tissue. Bioconjugate Chem. 2011;22:1776–83.CrossRef
93.
go back to reference Yasunaga M, Manabe S, Matsumura Y. Immunoregulation by IL-7R-targeting antibody-drug conjugates: overcoming steroid-resistance in cancer and autoimmune disease. Sci Rep. 2017;7:10735.CrossRef Yasunaga M, Manabe S, Matsumura Y. Immunoregulation by IL-7R-targeting antibody-drug conjugates: overcoming steroid-resistance in cancer and autoimmune disease. Sci Rep. 2017;7:10735.CrossRef
94.
go back to reference Burke PJ, et al. Design, synthesis, and biological evaluation of antibody−drug conjugates comprised of potent camptothecin analogues. Bioconjugate Chem. 2009;20:1242–50.CrossRef Burke PJ, et al. Design, synthesis, and biological evaluation of antibody−drug conjugates comprised of potent camptothecin analogues. Bioconjugate Chem. 2009;20:1242–50.CrossRef
95.
go back to reference Gupta N, et al. Development of a facile antibody–drug conjugate platform for increased stability and homogeneity. Chem Sci. 2017;8:2387–95.CrossRef Gupta N, et al. Development of a facile antibody–drug conjugate platform for increased stability and homogeneity. Chem Sci. 2017;8:2387–95.CrossRef
96.
go back to reference Lyski RD, et al. Development of novel antibody-camptothecin conjugates. Mol Cancer Ther. 2021;20:329–39.CrossRef Lyski RD, et al. Development of novel antibody-camptothecin conjugates. Mol Cancer Ther. 2021;20:329–39.CrossRef
97.
go back to reference Ryan M, et al. SGN-CD30C, an investigational CD30-Directed camptothecin antibody-drug conjugate (ADC), Shows strong anti tumor activity and superior tolerability in preclinical studies. Blood. 2020;136:41–2.CrossRef Ryan M, et al. SGN-CD30C, an investigational CD30-Directed camptothecin antibody-drug conjugate (ADC), Shows strong anti tumor activity and superior tolerability in preclinical studies. Blood. 2020;136:41–2.CrossRef
98.
go back to reference Lyski R, et al. Abstract 2885: discovery of a tripeptide-based camptothecin drug-linker for antibody-drug conjugates with potent antitumor activity and a broad therapeutic window. Can Res. 2020;80:2885.CrossRef Lyski R, et al. Abstract 2885: discovery of a tripeptide-based camptothecin drug-linker for antibody-drug conjugates with potent antitumor activity and a broad therapeutic window. Can Res. 2020;80:2885.CrossRef
99.
go back to reference Kummar S, et al. Clinical and pharmacologic evaluation of two dosing schedules of indotecan (LMP400), a novel indenoisoquinoline, in patients with advanced solid tumors. Cancer Chemother Pharmacol. 2016;78:73–81.CrossRef Kummar S, et al. Clinical and pharmacologic evaluation of two dosing schedules of indotecan (LMP400), a novel indenoisoquinoline, in patients with advanced solid tumors. Cancer Chemother Pharmacol. 2016;78:73–81.CrossRef
100.
go back to reference Lv P-C, et al. Design, synthesis, and biological evaluation of potential prodrugs related to the experimental anticancer agent indotecan (LMP400). J Med Chem. 2016;59:4890–9.CrossRef Lv P-C, et al. Design, synthesis, and biological evaluation of potential prodrugs related to the experimental anticancer agent indotecan (LMP400). J Med Chem. 2016;59:4890–9.CrossRef
101.
go back to reference Kurtzberg LS, et al. Genz-644282, a novel non-camptothecin topoisomerase I inhibitor for cancer treatment. Clin Cancer Res. 2011;17:2777–87.CrossRef Kurtzberg LS, et al. Genz-644282, a novel non-camptothecin topoisomerase I inhibitor for cancer treatment. Clin Cancer Res. 2011;17:2777–87.CrossRef
102.
go back to reference Sooryakumar D, Dexheimer TS, Teicher BA, Pommier Y. Molecular and cellular pharmacology of the novel noncamptothecin topoisomerase I inhibitor Genz-644282. Mol Cancer Ther. 2011;10:1490–9.CrossRef Sooryakumar D, Dexheimer TS, Teicher BA, Pommier Y. Molecular and cellular pharmacology of the novel noncamptothecin topoisomerase I inhibitor Genz-644282. Mol Cancer Ther. 2011;10:1490–9.CrossRef
103.
go back to reference Marzi L, et al. Novel fluoroindenoisoquinoline non-camptothecin topoisomerase I inhibitors. Mol Cancer Ther. 2018;17:1694–704.CrossRef Marzi L, et al. Novel fluoroindenoisoquinoline non-camptothecin topoisomerase I inhibitors. Mol Cancer Ther. 2018;17:1694–704.CrossRef
105.
go back to reference Elias DJ, et al. Phase I clinical comparative study of monoclonal antibody KS1/4 and KS1/4-methotrexate immunconjugate in patients with non-small cell lung carcinoma1. Can Res. 1990;50:4154–9. Elias DJ, et al. Phase I clinical comparative study of monoclonal antibody KS1/4 and KS1/4-methotrexate immunconjugate in patients with non-small cell lung carcinoma1. Can Res. 1990;50:4154–9.
106.
go back to reference Saleh MN, et al. Phase I trial of the anti-Lewis Y drug immunoconjugate BR96-doxorubicin in patients with lewis Y-expressing epithelial tumors. J Clin Oncol. 2000;18:2282–92.CrossRef Saleh MN, et al. Phase I trial of the anti-Lewis Y drug immunoconjugate BR96-doxorubicin in patients with lewis Y-expressing epithelial tumors. J Clin Oncol. 2000;18:2282–92.CrossRef
107.
go back to reference Tolcher AW, et al. Randomized phase II study of BR96-doxorubicin conjugate in patients with metastatic breast cancer. J Clin Oncol. 1999;17:478–84.CrossRef Tolcher AW, et al. Randomized phase II study of BR96-doxorubicin conjugate in patients with metastatic breast cancer. J Clin Oncol. 1999;17:478–84.CrossRef
108.
go back to reference Sapra P, et al. Anti-CD74 antibody-doxorubicin conjugate, IMMU-110, in a human multiple myeloma xenograft and in monkeys. Clin Cancer Res. 2005;11:5257–64.CrossRef Sapra P, et al. Anti-CD74 antibody-doxorubicin conjugate, IMMU-110, in a human multiple myeloma xenograft and in monkeys. Clin Cancer Res. 2005;11:5257–64.CrossRef
109.
go back to reference Luong A, Issarapanichkit T, Kong SD, Fong R, Yang J. pH-Sensitive, N-ethoxybenzylimidazole (NEBI) bifunctional crosslinkers enable triggered release of therapeutics from drug delivery carriers. Org Biomol Chem. 2010;8:5105–9.CrossRef Luong A, Issarapanichkit T, Kong SD, Fong R, Yang J. pH-Sensitive, N-ethoxybenzylimidazole (NEBI) bifunctional crosslinkers enable triggered release of therapeutics from drug delivery carriers. Org Biomol Chem. 2010;8:5105–9.CrossRef
110.
go back to reference Stefan N, et al. Highly potent, anthracycline-based antibody-drug conjugates generated by enzymatic, Site-specific Conjugation. Mol Cancer Ther. 2017;16:879–92.CrossRef Stefan N, et al. Highly potent, anthracycline-based antibody-drug conjugates generated by enzymatic, Site-specific Conjugation. Mol Cancer Ther. 2017;16:879–92.CrossRef
111.
go back to reference Junttila MR, et al. Targeting LGR5+ cells with an antibody-drug conjugate for the treatment of colon cancer. Sci Transl Med. 2015;7(314):314ra186.CrossRef Junttila MR, et al. Targeting LGR5+ cells with an antibody-drug conjugate for the treatment of colon cancer. Sci Transl Med. 2015;7(314):314ra186.CrossRef
113.
go back to reference Sadilkova LK, et al. Abstract 1204: SO-N102, a novel CLDN182-targeting antibody-drug conjugate with strong anti-tumor effect in various solid tumors expressing low target levels. Cancer Res. 2021;81:1204.CrossRef Sadilkova LK, et al. Abstract 1204: SO-N102, a novel CLDN182-targeting antibody-drug conjugate with strong anti-tumor effect in various solid tumors expressing low target levels. Cancer Res. 2021;81:1204.CrossRef
114.
go back to reference Yu S-F, et al. A novel anti-CD22 anthracycline-based antibody-drug conjugate (ADC) that overcomes resistance to auristatin-based ADCs. Clin Cancer Res. 2015;21:3298–306.CrossRef Yu S-F, et al. A novel anti-CD22 anthracycline-based antibody-drug conjugate (ADC) that overcomes resistance to auristatin-based ADCs. Clin Cancer Res. 2015;21:3298–306.CrossRef
115.
go back to reference D’Amico L, et al. A novel anti-HER2 anthracycline-based antibody-drug conjugate induces adaptive anti-tumor immunity and potentiates PD-1 blockade in breast cancer. J Immunother Cancer. 2019;7:16.CrossRef D’Amico L, et al. A novel anti-HER2 anthracycline-based antibody-drug conjugate induces adaptive anti-tumor immunity and potentiates PD-1 blockade in breast cancer. J Immunother Cancer. 2019;7:16.CrossRef
116.
go back to reference Dal Corso A, Gébleux R, Murer P, Soltermann A, Neri D. A non-internalizing antibody-drug conjugate based on an anthracycline payload displays potent therapeutic activity in vivo. J Control Release. 2017;264:211–8.CrossRef Dal Corso A, Gébleux R, Murer P, Soltermann A, Neri D. A non-internalizing antibody-drug conjugate based on an anthracycline payload displays potent therapeutic activity in vivo. J Control Release. 2017;264:211–8.CrossRef
117.
go back to reference Holte D, et al. Evaluation of PNU-159682 antibody drug conjugates (ADCs). Bioorg Med Chem Lett. 2020;30: 127640.CrossRef Holte D, et al. Evaluation of PNU-159682 antibody drug conjugates (ADCs). Bioorg Med Chem Lett. 2020;30: 127640.CrossRef
119.
go back to reference Nilchan N, et al. Dual-mechanistic antibody-drug conjugate via site-specific selenocysteine/cysteine conjugation. Antib Ther. 2019;2:71–8. Nilchan N, et al. Dual-mechanistic antibody-drug conjugate via site-specific selenocysteine/cysteine conjugation. Antib Ther. 2019;2:71–8.
120.
go back to reference Kato Y, et al. A novel method of conjugation of daunomycin with antibody with a poly-L-glutamic acid derivative as intermediate drug carrier. An anti-alpha-fetoprotein antibody-daunomycin conjugate. J Med Chem. 1984;27:1602–7.CrossRef Kato Y, et al. A novel method of conjugation of daunomycin with antibody with a poly-L-glutamic acid derivative as intermediate drug carrier. An anti-alpha-fetoprotein antibody-daunomycin conjugate. J Med Chem. 1984;27:1602–7.CrossRef
122.
go back to reference Pietersz GA, Smyth MJ, McKenzie IF. Immunochemotherapy of a murine thymoma with the use of idarubicin monoclonal antibody conjugates. Cancer Res. 1988;48:926–31. Pietersz GA, Smyth MJ, McKenzie IF. Immunochemotherapy of a murine thymoma with the use of idarubicin monoclonal antibody conjugates. Cancer Res. 1988;48:926–31.
123.
go back to reference Rowland AJ, Pietersz GA, McKenzie IF. Preclinical investigation of the antitumour effects of anti-CD19-idarubicin immunoconjugates. Cancer Immunol Immunother. 1993;37:195–202.CrossRef Rowland AJ, Pietersz GA, McKenzie IF. Preclinical investigation of the antitumour effects of anti-CD19-idarubicin immunoconjugates. Cancer Immunol Immunother. 1993;37:195–202.CrossRef
124.
go back to reference Ghanemi M, et al. Specific targeting of HER2-positive head and neck squamous cell carcinoma line HN5 by idarubicin-ZHER2 affibody conjugate. Curr Cancer Drug Targets. 2019;19:65–73.CrossRef Ghanemi M, et al. Specific targeting of HER2-positive head and neck squamous cell carcinoma line HN5 by idarubicin-ZHER2 affibody conjugate. Curr Cancer Drug Targets. 2019;19:65–73.CrossRef
125.
go back to reference Laham-Karam N, Pinto GP, Poso A, Kokkonen P. Transcription and translation inhibitors in cancer treatment. Front Chem. 2020;8:276.CrossRef Laham-Karam N, Pinto GP, Poso A, Kokkonen P. Transcription and translation inhibitors in cancer treatment. Front Chem. 2020;8:276.CrossRef
126.
go back to reference Lindell TJ, Weinberg F, Morris PW, Roeder RG, Rutter WJ. Specific inhibition of nuclear RNA polymerase II by α-amanitin. Science. 1970;170:447–9.CrossRef Lindell TJ, Weinberg F, Morris PW, Roeder RG, Rutter WJ. Specific inhibition of nuclear RNA polymerase II by α-amanitin. Science. 1970;170:447–9.CrossRef
127.
go back to reference Letschert K, Faulstich H, Keller D, Keppler D. Molecular characterization and inhibition of amanitin uptake into human hepatocytes. Toxicol Sci. 2006;91:140–9.CrossRef Letschert K, Faulstich H, Keller D, Keppler D. Molecular characterization and inhibition of amanitin uptake into human hepatocytes. Toxicol Sci. 2006;91:140–9.CrossRef
128.
go back to reference Garcia J, et al. Amanita phalloides poisoning: mechanisms of toxicity and treatment. Food Chem Toxicol. 2015;86:41–55.CrossRef Garcia J, et al. Amanita phalloides poisoning: mechanisms of toxicity and treatment. Food Chem Toxicol. 2015;86:41–55.CrossRef
129.
go back to reference Pahl A, Lutz C, Hechler T. Amanitins and their development as a payload for antibody-drug conjugates. Drug Discov Today Technol. 2018;30:85–9.CrossRef Pahl A, Lutz C, Hechler T. Amanitins and their development as a payload for antibody-drug conjugates. Drug Discov Today Technol. 2018;30:85–9.CrossRef
130.
go back to reference Barbanti-Brodano G, Fiume L. Selective killing of macrophages by amanitin-albumin conjugates. Nat New Biol. 1973;243:281–3.CrossRef Barbanti-Brodano G, Fiume L. Selective killing of macrophages by amanitin-albumin conjugates. Nat New Biol. 1973;243:281–3.CrossRef
131.
go back to reference Danielczyk A, et al. PankoMab: a potent new generation anti-tumour MUC1 antibody. Cancer Immunol Immunother. 2006;55:1337–47.CrossRef Danielczyk A, et al. PankoMab: a potent new generation anti-tumour MUC1 antibody. Cancer Immunol Immunother. 2006;55:1337–47.CrossRef
132.
go back to reference Hechler T, Kulke M, Mueller C, Pahl A, Anderl J. Abstract 664: amanitin-based antibody-drug conjugates targeting the prostate-specific membrane antigen. Can Res. 2014;74:664.CrossRef Hechler T, Kulke M, Mueller C, Pahl A, Anderl J. Abstract 664: amanitin-based antibody-drug conjugates targeting the prostate-specific membrane antigen. Can Res. 2014;74:664.CrossRef
133.
go back to reference Gallo F, et al. Enhancing the pharmacokinetics and antitumor activity of an α-amanitin-based small-molecule drug conjugate via conjugation with an Fc domain. J Med Chem. 2021;64:4117–29.CrossRef Gallo F, et al. Enhancing the pharmacokinetics and antitumor activity of an α-amanitin-based small-molecule drug conjugate via conjugation with an Fc domain. J Med Chem. 2021;64:4117–29.CrossRef
134.
go back to reference Davis MT, Preston JF. A conjugate of alpha-amanitin and monoclonal immunoglobulin G to Thy 1.2 antigen is selectively toxic to T lymphoma cells. Science. 1981;213:1385–8.CrossRef Davis MT, Preston JF. A conjugate of alpha-amanitin and monoclonal immunoglobulin G to Thy 1.2 antigen is selectively toxic to T lymphoma cells. Science. 1981;213:1385–8.CrossRef
135.
go back to reference Figueroa-Vazquez V, et al. HDP-101, an anti-BCMA antibody-drug conjugate, safely delivers amanitin to induce cell death in proliferating and resting multiple myeloma cells. Mol Cancer Ther. 2021;20:367–78.CrossRef Figueroa-Vazquez V, et al. HDP-101, an anti-BCMA antibody-drug conjugate, safely delivers amanitin to induce cell death in proliferating and resting multiple myeloma cells. Mol Cancer Ther. 2021;20:367–78.CrossRef
137.
go back to reference Moldenhauer G, et al. Therapeutic potential of amanitin-conjugated anti-epithelial cell adhesion molecule monoclonal antibody against pancreatic carcinoma. J Natl Cancer Inst. 2012;104:622–34.CrossRef Moldenhauer G, et al. Therapeutic potential of amanitin-conjugated anti-epithelial cell adhesion molecule monoclonal antibody against pancreatic carcinoma. J Natl Cancer Inst. 2012;104:622–34.CrossRef
138.
go back to reference Kulke M, et al. Abstract 735: SAR of amanitin and optimization of linker-amanitin derivatives for solid tumors. Can Res. 2018;78:735.CrossRef Kulke M, et al. Abstract 735: SAR of amanitin and optimization of linker-amanitin derivatives for solid tumors. Can Res. 2018;78:735.CrossRef
139.
go back to reference Świderska KW, Szlachcic A, Opaliński Ł, Zakrzewska M, Otlewski J. FGF2 dual warhead conjugate with monomethyl auristatin E and α-amanitin displays a cytotoxic effect towards cancer cells overproducing FGF receptor 1. Int J Mol Sci. 2018;19:2098.CrossRef Świderska KW, Szlachcic A, Opaliński Ł, Zakrzewska M, Otlewski J. FGF2 dual warhead conjugate with monomethyl auristatin E and α-amanitin displays a cytotoxic effect towards cancer cells overproducing FGF receptor 1. Int J Mol Sci. 2018;19:2098.CrossRef
140.
go back to reference Barbanti-Brodano G, Derenzini M, Fiume L. Toxic action of a phalloidin-albumin conjugate on cells with a high protein uptake. Nature. 1974;248:63–5.CrossRef Barbanti-Brodano G, Derenzini M, Fiume L. Toxic action of a phalloidin-albumin conjugate on cells with a high protein uptake. Nature. 1974;248:63–5.CrossRef
141.
go back to reference Hinman, L. M. & Yarranton, G. Chapter 25. New approaches to non-immunogenic monoclonal antibody cancer therapies. In: Bristol JA editor Annual Reports in Medicinal Chemistry, 1993. vol. 28, pp. 237–246. Hinman, L. M. & Yarranton, G. Chapter 25. New approaches to non-immunogenic monoclonal antibody cancer therapies. In: Bristol JA editor Annual Reports in Medicinal Chemistry, 1993. vol. 28, pp. 237–246.
142.
go back to reference Nielsen C, Casteel M, Didier A, Dietrich R, Märtlbauer E. Trichothecene-induced cytotoxicity on human cell lines. Mycotoxin Res. 2009;25:77–84.CrossRef Nielsen C, Casteel M, Didier A, Dietrich R, Märtlbauer E. Trichothecene-induced cytotoxicity on human cell lines. Mycotoxin Res. 2009;25:77–84.CrossRef
143.
go back to reference Liu X, Bushnell DA, Kornberg RD. RNA polymerase II transcription: structure and mechanism. Biochim Biophys Acta. 2013;1829:2–8.CrossRef Liu X, Bushnell DA, Kornberg RD. RNA polymerase II transcription: structure and mechanism. Biochim Biophys Acta. 2013;1829:2–8.CrossRef
144.
go back to reference Noel P, et al. Triptolide and its derivatives as cancer therapies. Trends Pharmacol Sci. 2019;40:327–41.CrossRef Noel P, et al. Triptolide and its derivatives as cancer therapies. Trends Pharmacol Sci. 2019;40:327–41.CrossRef
145.
go back to reference Hayashi M, et al. Novel antibody-drug conjugate with anti-CD26 humanized monoclonal antibody and transcription factor IIH (TFIIH) inhibitor, triptolide, inhibits tumor growth via impairing mRNA synthesis. Cancers. 2019;11:E1138.CrossRef Hayashi M, et al. Novel antibody-drug conjugate with anti-CD26 humanized monoclonal antibody and transcription factor IIH (TFIIH) inhibitor, triptolide, inhibits tumor growth via impairing mRNA synthesis. Cancers. 2019;11:E1138.CrossRef
146.
go back to reference Zhang K, et al. Cetuximab-triptolide conjugate suppresses the growth of EGFR-overexpressing lung cancers through targeting RNA polymerase II. Mol Ther Oncolytics. 2020;18:304–16.CrossRef Zhang K, et al. Cetuximab-triptolide conjugate suppresses the growth of EGFR-overexpressing lung cancers through targeting RNA polymerase II. Mol Ther Oncolytics. 2020;18:304–16.CrossRef
147.
go back to reference Wei D, et al. Site-specific construction of triptolide-based antibody-drug conjugates. Bioorg Med Chem. 2021;51: 116497.CrossRef Wei D, et al. Site-specific construction of triptolide-based antibody-drug conjugates. Bioorg Med Chem. 2021;51: 116497.CrossRef
149.
go back to reference McClure JJ, Li X, Chou CJ. Advances and challenges of HDAC inhibitors in cancer therapeutics. Adv Cancer Res. 2018;138:183–211.CrossRef McClure JJ, Li X, Chou CJ. Advances and challenges of HDAC inhibitors in cancer therapeutics. Adv Cancer Res. 2018;138:183–211.CrossRef
150.
go back to reference Cini E, et al. Antibody drug conjugates (ADCs) charged with HDAC inhibitor for targeted epigenetic modulation †Electronic supplementary information (ESI) available: experimental procedures, biological activity data, NMR spectra for characterisation. Chem Sci. 2018;9:6490–6. https://doi.org/10.1039/c7sc05266a.CrossRef Cini E, et al. Antibody drug conjugates (ADCs) charged with HDAC inhibitor for targeted epigenetic modulation †Electronic supplementary information (ESI) available: experimental procedures, biological activity data, NMR spectra for characterisation. Chem Sci. 2018;9:6490–6. https://​doi.​org/​10.​1039/​c7sc05266a.CrossRef
151.
go back to reference Milazzo FM, et al. ErbB2 targeted epigenetic modulation: anti-tumor efficacy of the ADC trastuzumab-HDACi ST8176AA1. Front Oncol. 2020;9:1534.CrossRef Milazzo FM, et al. ErbB2 targeted epigenetic modulation: anti-tumor efficacy of the ADC trastuzumab-HDACi ST8176AA1. Front Oncol. 2020;9:1534.CrossRef
152.
go back to reference Cianferotti C, et al. Antibody drug conjugates with hydroxamic acid cargos for histone deacetylase (HDAC) inhibition. Chem Commun. 2021;57:867–70.CrossRef Cianferotti C, et al. Antibody drug conjugates with hydroxamic acid cargos for histone deacetylase (HDAC) inhibition. Chem Commun. 2021;57:867–70.CrossRef
153.
go back to reference Kale J, Osterlund EJ, Andrews DW. BCL-2 family proteins: changing partners in the dance towards death. Cell Death Differ. 2018;25:65–80.CrossRef Kale J, Osterlund EJ, Andrews DW. BCL-2 family proteins: changing partners in the dance towards death. Cell Death Differ. 2018;25:65–80.CrossRef
154.
go back to reference Tse C, et al. ABT-263: a potent and orally bioavailable Bcl-2 family inhibitor. Cancer Res. 2008;68:3421–8.CrossRef Tse C, et al. ABT-263: a potent and orally bioavailable Bcl-2 family inhibitor. Cancer Res. 2008;68:3421–8.CrossRef
155.
go back to reference Souers AJ, et al. ABT-199, a potent and selective BCL-2 inhibitor, achieves antitumor activity while sparing platelets. Nat Med. 2013;19:202–8.CrossRef Souers AJ, et al. ABT-199, a potent and selective BCL-2 inhibitor, achieves antitumor activity while sparing platelets. Nat Med. 2013;19:202–8.CrossRef
156.
go back to reference Trudel S, et al. Preclinical studies of the pan-Bcl inhibitor obatoclax (GX015-070) in multiple myeloma. Blood. 2007;109:5430–8.CrossRef Trudel S, et al. Preclinical studies of the pan-Bcl inhibitor obatoclax (GX015-070) in multiple myeloma. Blood. 2007;109:5430–8.CrossRef
157.
go back to reference Baggstrom MQ, et al. A phase II study of AT-101 (Gossypol) in chemotherapy-sensitive recurrent extensive-stage small cell lung cancer. J Thorac Oncol. 2011;6:1757–60.CrossRef Baggstrom MQ, et al. A phase II study of AT-101 (Gossypol) in chemotherapy-sensitive recurrent extensive-stage small cell lung cancer. J Thorac Oncol. 2011;6:1757–60.CrossRef
158.
go back to reference Hu Y, et al. Sabutoclax, pan-active BCL-2 protein family antagonist, overcomes drug resistance and eliminates cancer stem cells in breast cancer. Cancer Lett. 2018;423:47–59.CrossRef Hu Y, et al. Sabutoclax, pan-active BCL-2 protein family antagonist, overcomes drug resistance and eliminates cancer stem cells in breast cancer. Cancer Lett. 2018;423:47–59.CrossRef
159.
go back to reference Lessene G, et al. Structure-guided design of a selective BCL-X(L) inhibitor. Nat Chem Biol. 2013;9:390–7.CrossRef Lessene G, et al. Structure-guided design of a selective BCL-X(L) inhibitor. Nat Chem Biol. 2013;9:390–7.CrossRef
160.
go back to reference Zhang H, et al. Bcl-2 family proteins are essential for platelet survival. Cell Death Differ. 2007;14:943–51.CrossRef Zhang H, et al. Bcl-2 family proteins are essential for platelet survival. Cell Death Differ. 2007;14:943–51.CrossRef
161.
162.
go back to reference Roskoski R. Properties of FDA-approved small molecule protein kinase inhibitors: a 2020 update. Pharmacol Res. 2020;152: 104609.CrossRef Roskoski R. Properties of FDA-approved small molecule protein kinase inhibitors: a 2020 update. Pharmacol Res. 2020;152: 104609.CrossRef
163.
go back to reference Jaiswal N, Akhtar J, Singh SP, Badruddeen, Ahsan F. An overview on genistein and its various formulations. Drug Res. 2019;69:305–13.CrossRef Jaiswal N, Akhtar J, Singh SP, Badruddeen, Ahsan F. An overview on genistein and its various formulations. Drug Res. 2019;69:305–13.CrossRef
164.
go back to reference Messinger Y, et al. In vivo toxicity and pharmacokinetic features of B43 (anti-CD19)-genistein immunoconjugate in nonhuman primates. Clin Cancer Res. 1998;4:165–70. Messinger Y, et al. In vivo toxicity and pharmacokinetic features of B43 (anti-CD19)-genistein immunoconjugate in nonhuman primates. Clin Cancer Res. 1998;4:165–70.
165.
go back to reference Ek O, et al. In vivo toxicity and pharmacokinetic features of B43(Anti-CD19)-Genistein immunoconjugate. Leuk Lymphoma. 1998;30:389–94.CrossRef Ek O, et al. In vivo toxicity and pharmacokinetic features of B43(Anti-CD19)-Genistein immunoconjugate. Leuk Lymphoma. 1998;30:389–94.CrossRef
166.
go back to reference Chen C-L, et al. Clinical pharmacokinetics of the CD19 receptor-directed tyrosine kinase inhibitor B43-genistein in patients with B-lineage lymphoid malignancies. J Clin Pharmacol. 1999;39:1248–55.CrossRef Chen C-L, et al. Clinical pharmacokinetics of the CD19 receptor-directed tyrosine kinase inhibitor B43-genistein in patients with B-lineage lymphoid malignancies. J Clin Pharmacol. 1999;39:1248–55.CrossRef
167.
go back to reference Uckun FM, et al. Treatment of therapy-refractory B-lineage acute lymphoblastic leukemia with an apoptosis-inducing CD19-directed tyrosine kinase inhibitor. Clin Cancer Res. 1999;5:3906–13. Uckun FM, et al. Treatment of therapy-refractory B-lineage acute lymphoblastic leukemia with an apoptosis-inducing CD19-directed tyrosine kinase inhibitor. Clin Cancer Res. 1999;5:3906–13.
168.
go back to reference Uckun FM, et al. In vivo toxicity, pharmacokinetics, and anticancer activity of Genistein linked to recombinant human epidermal growth factor. Clin Cancer Res. 1998;4:1125–34. Uckun FM, et al. In vivo toxicity, pharmacokinetics, and anticancer activity of Genistein linked to recombinant human epidermal growth factor. Clin Cancer Res. 1998;4:1125–34.
169.
go back to reference Gentile MS, et al. Targeting colon cancer cells with genistein-17.1A immunoconjugate. Int J Oncol. 2003;22:955–9. Gentile MS, et al. Targeting colon cancer cells with genistein-17.1A immunoconjugate. Int J Oncol. 2003;22:955–9.
170.
go back to reference Zhou D, et al. Novel PIKK inhibitor antibody-drug conjugates: synthesis and anti-tumor activity. Bioorg Med Chem Lett. 2019;29:943–7.CrossRef Zhou D, et al. Novel PIKK inhibitor antibody-drug conjugates: synthesis and anti-tumor activity. Bioorg Med Chem Lett. 2019;29:943–7.CrossRef
171.
go back to reference Wang RE, et al. An immunosuppressive antibody-drug conjugate. J Am Chem Soc. 2015;137:3229–32.CrossRef Wang RE, et al. An immunosuppressive antibody-drug conjugate. J Am Chem Soc. 2015;137:3229–32.CrossRef
172.
go back to reference Chao W-T, et al. Abstract 3729: developing cetuximab-staurosporine conjugate as the therapeutic medicine in KRAS/BRAF mutated colon cancer cells. Can Res. 2018;78:3729.CrossRef Chao W-T, et al. Abstract 3729: developing cetuximab-staurosporine conjugate as the therapeutic medicine in KRAS/BRAF mutated colon cancer cells. Can Res. 2018;78:3729.CrossRef
173.
go back to reference Amouzegar A, Chelvanambi M, Filderman JN, Storkus WJ, Luke JJ. STING Agonists as Cancer Therapeutics. Cancers. 2021;13:2695.CrossRef Amouzegar A, Chelvanambi M, Filderman JN, Storkus WJ, Luke JJ. STING Agonists as Cancer Therapeutics. Cancers. 2021;13:2695.CrossRef
176.
go back to reference Ackerman SE, et al. Immune-stimulating antibody conjugates elicit robust myeloid activation and durable antitumor immunity. Nat Cancer. 2021;2:18–33.CrossRef Ackerman SE, et al. Immune-stimulating antibody conjugates elicit robust myeloid activation and durable antitumor immunity. Nat Cancer. 2021;2:18–33.CrossRef
177.
go back to reference Ackerman SE, et al. Abstract 1559: TLR7/8 immune-stimulating antibody conjugates elicit robust myeloid activation leading to enhanced effector function and anti-tumor immunity in pre-clinical models. Can Res. 2019;79:1559.CrossRef Ackerman SE, et al. Abstract 1559: TLR7/8 immune-stimulating antibody conjugates elicit robust myeloid activation leading to enhanced effector function and anti-tumor immunity in pre-clinical models. Can Res. 2019;79:1559.CrossRef
182.
go back to reference Metz H, et al. SBT6050, a HER2-directed TLR8 therapeutic, as a systemically administered, tumor-targeted human myeloid cell agonist. JCO. 2020;38:3110–3110.CrossRef Metz H, et al. SBT6050, a HER2-directed TLR8 therapeutic, as a systemically administered, tumor-targeted human myeloid cell agonist. JCO. 2020;38:3110–3110.CrossRef
183.
go back to reference Comeau MR, et al. Abstract 4537: SBT6050, a HER2-directed TLR8 ImmunoTACTMtherapeutic, is a potent human myeloid cell agonist that provides opportunity for single agent clinical activity. Can Res. 2020;80:4537.CrossRef Comeau MR, et al. Abstract 4537: SBT6050, a HER2-directed TLR8 ImmunoTACTMtherapeutic, is a potent human myeloid cell agonist that provides opportunity for single agent clinical activity. Can Res. 2020;80:4537.CrossRef
184.
go back to reference Gadd AJR, Greco F, Cobb AJA, Edwards AD. Targeted activation of toll-like receptors: conjugation of a toll-like receptor 7 agonist to a monoclonal antibody maintains antigen binding and specificity. Bioconjugate Chem. 2015;26:1743–52.CrossRef Gadd AJR, Greco F, Cobb AJA, Edwards AD. Targeted activation of toll-like receptors: conjugation of a toll-like receptor 7 agonist to a monoclonal antibody maintains antigen binding and specificity. Bioconjugate Chem. 2015;26:1743–52.CrossRef
185.
go back to reference Ackerman SE, et al. Immune-stimulating antibody conjugates elicit robust myeloid activation and durable antitumor immunity. Nat Cancer. 2021;2:18–33.CrossRef Ackerman SE, et al. Immune-stimulating antibody conjugates elicit robust myeloid activation and durable antitumor immunity. Nat Cancer. 2021;2:18–33.CrossRef
186.
go back to reference He L, et al. Immune modulating antibody-drug conjugate (IM-ADC) for cancer immunotherapy. J Med Chem. 2021;64:15716–26.CrossRef He L, et al. Immune modulating antibody-drug conjugate (IM-ADC) for cancer immunotherapy. J Med Chem. 2021;64:15716–26.CrossRef
189.
go back to reference Banerjee M, et al. Abstract LB-061: CRD5500: a versatile small molecule STING agonist amenable to bioconjugation as an ADC. Cancer Research. 2019;79:LB-061.CrossRef Banerjee M, et al. Abstract LB-061: CRD5500: a versatile small molecule STING agonist amenable to bioconjugation as an ADC. Cancer Research. 2019;79:LB-061.CrossRef
191.
go back to reference Duvall JR, et al. Abstract 1738: XMT-2056, a well-tolerated, immunosynthen-based STING-agonist antibody-drug conjugate which induces anti-tumor immune activity. Can Res. 2021;81:1738.CrossRef Duvall JR, et al. Abstract 1738: XMT-2056, a well-tolerated, immunosynthen-based STING-agonist antibody-drug conjugate which induces anti-tumor immune activity. Can Res. 2021;81:1738.CrossRef
193.
go back to reference Scott AM, et al. A phase I trial of humanized monoclonal antibody A33 in patients with colorectal carcinoma: biodistribution, pharmacokinetics, and quantitative tumor uptake. Clin Cancer Res. 2005;11:4810–7.CrossRef Scott AM, et al. A phase I trial of humanized monoclonal antibody A33 in patients with colorectal carcinoma: biodistribution, pharmacokinetics, and quantitative tumor uptake. Clin Cancer Res. 2005;11:4810–7.CrossRef
194.
go back to reference Park H-K, et al. Unleashing the full potential of Hsp90 inhibitors as cancer therapeutics through simultaneous inactivation of Hsp90, Grp94, and TRAP1. Exp Mol Med. 2020;52:79–91.CrossRef Park H-K, et al. Unleashing the full potential of Hsp90 inhibitors as cancer therapeutics through simultaneous inactivation of Hsp90, Grp94, and TRAP1. Exp Mol Med. 2020;52:79–91.CrossRef
195.
go back to reference Mandler R, Dadachova E, Brechbiel JK, Waldmann TA, Brechbiel MW. Synthesis and evaluation of antiproliferative activity of a geldanamycin-Herceptin immunoconjugate. Bioorg Med Chem Lett. 2000;10:1025–8.CrossRef Mandler R, Dadachova E, Brechbiel JK, Waldmann TA, Brechbiel MW. Synthesis and evaluation of antiproliferative activity of a geldanamycin-Herceptin immunoconjugate. Bioorg Med Chem Lett. 2000;10:1025–8.CrossRef
196.
go back to reference Mandler R, Kobayashi H, Davis MY, Waldmann TA, Brechbiel MW. Modifications in synthesis strategy improve the yield and efficacy of geldanamycin−herceptin immunoconjugates. Bioconjugate Chem. 2002;13:786–91.CrossRef Mandler R, Kobayashi H, Davis MY, Waldmann TA, Brechbiel MW. Modifications in synthesis strategy improve the yield and efficacy of geldanamycin−herceptin immunoconjugates. Bioconjugate Chem. 2002;13:786–91.CrossRef
197.
go back to reference Mandler R, Kobayashi H, Hinson ER, Brechbiel MW, Waldmann TA. Herceptin-geldanamycin immunoconjugates: pharmacokinetics, biodistribution, and enhanced antitumor activity. Cancer Res. 2004;64:1460–7.CrossRef Mandler R, Kobayashi H, Hinson ER, Brechbiel MW, Waldmann TA. Herceptin-geldanamycin immunoconjugates: pharmacokinetics, biodistribution, and enhanced antitumor activity. Cancer Res. 2004;64:1460–7.CrossRef
198.
go back to reference Burke PJ, et al. Novel immunoconjugates comprised of streptonigrin and 17-amino-geldanamycin attached via a dipeptide-p-aminobenzyl-amine linker system. Bioorg Med Chem Lett. 2009;19:2650–3.CrossRef Burke PJ, et al. Novel immunoconjugates comprised of streptonigrin and 17-amino-geldanamycin attached via a dipeptide-p-aminobenzyl-amine linker system. Bioorg Med Chem Lett. 2009;19:2650–3.CrossRef
199.
go back to reference Lim KS, Lee DY, Han S, Bull DA, Won Y-W. Targeted delivery of heat shock protein 90 inhibitors prevents growth of HER2-positive tumor. Biomaterials. 2021;273: 120817.CrossRef Lim KS, Lee DY, Han S, Bull DA, Won Y-W. Targeted delivery of heat shock protein 90 inhibitors prevents growth of HER2-positive tumor. Biomaterials. 2021;273: 120817.CrossRef
200.
go back to reference Effenberger KA, Urabe VK, Jurica MS. Modulating splicing with small molecular inhibitors of the spliceosome. Wiley Interdiscip Rev RNA. 2017;8(2):e1381.CrossRef Effenberger KA, Urabe VK, Jurica MS. Modulating splicing with small molecular inhibitors of the spliceosome. Wiley Interdiscip Rev RNA. 2017;8(2):e1381.CrossRef
201.
go back to reference Lee SC-W, Abdel-Wahab O. Therapeutic targeting of splicing in cancer. Nat Med. 2016;22:976–86.CrossRef Lee SC-W, Abdel-Wahab O. Therapeutic targeting of splicing in cancer. Nat Med. 2016;22:976–86.CrossRef
202.
go back to reference Puthenveetil S, et al. Natural product splicing inhibitors: a new class of antibody-drug conjugate (ADC) payloads. Bioconjug Chem. 2016;27:1880–8.CrossRef Puthenveetil S, et al. Natural product splicing inhibitors: a new class of antibody-drug conjugate (ADC) payloads. Bioconjug Chem. 2016;27:1880–8.CrossRef
203.
go back to reference Gandhi V, Plunkett W, Cortes JE. Omacetaxine: a protein translation inhibitor for treatment of chronic myelogenous leukemia. Clin Cancer Res. 2014;20:1735–40.CrossRef Gandhi V, Plunkett W, Cortes JE. Omacetaxine: a protein translation inhibitor for treatment of chronic myelogenous leukemia. Clin Cancer Res. 2014;20:1735–40.CrossRef
204.
go back to reference Jeffrey SC, De Brabander J, Miyamoto J, Senter PD. Expanded utility of the β-glucuronide linker: ADCs that deliver phenolic cytotoxic agents. ACS Med Chem Lett. 2010;1:277–80.CrossRef Jeffrey SC, De Brabander J, Miyamoto J, Senter PD. Expanded utility of the β-glucuronide linker: ADCs that deliver phenolic cytotoxic agents. ACS Med Chem Lett. 2010;1:277–80.CrossRef
205.
go back to reference Almaliti J, et al. Exploration of the carmaphycins as payloads in antibody drug conjugate anticancer agents. Eur J Med Chem. 2019;161:416–32.CrossRef Almaliti J, et al. Exploration of the carmaphycins as payloads in antibody drug conjugate anticancer agents. Eur J Med Chem. 2019;161:416–32.CrossRef
206.
go back to reference Stanton BZ, Chory EJ, Crabtree GR. Chemically induced proximity in biology and medicine. Science. 2018;359:eaao5902.CrossRef Stanton BZ, Chory EJ, Crabtree GR. Chemically induced proximity in biology and medicine. Science. 2018;359:eaao5902.CrossRef
209.
go back to reference Pillow TH, et al. Antibody Conjugation of a chimeric BET degrader enables in vivo activity. ChemMedChem. 2020;15:17–25.CrossRef Pillow TH, et al. Antibody Conjugation of a chimeric BET degrader enables in vivo activity. ChemMedChem. 2020;15:17–25.CrossRef
210.
go back to reference Dragovich PS, et al. Antibody-mediated delivery of chimeric BRD4 degraders. Part 1: exploration of antibody linker, payload loading, and payload molecular properties. J Med Chem. 2021;64:2534–75.CrossRef Dragovich PS, et al. Antibody-mediated delivery of chimeric BRD4 degraders. Part 1: exploration of antibody linker, payload loading, and payload molecular properties. J Med Chem. 2021;64:2534–75.CrossRef
211.
go back to reference Dragovich PS, et al. Antibody-mediated delivery of chimeric BRD4 degraders. Part 2: improvement of in vitro antiproliferation activity and in vivo antitumor efficacy. J Med Chem. 2021;64:2576–607.CrossRef Dragovich PS, et al. Antibody-mediated delivery of chimeric BRD4 degraders. Part 2: improvement of in vitro antiproliferation activity and in vivo antitumor efficacy. J Med Chem. 2021;64:2576–607.CrossRef
212.
go back to reference Maneiro M, et al. Antibody–PROTAC conjugates enable HER2-dependent targeted protein degradation of BRD4. ACS Chem Biol. 2020;15:1306–12.CrossRef Maneiro M, et al. Antibody–PROTAC conjugates enable HER2-dependent targeted protein degradation of BRD4. ACS Chem Biol. 2020;15:1306–12.CrossRef
213.
go back to reference Chuang SH et al. Conjugués Anticorps-Protac. 2019 Chuang SH et al. Conjugués Anticorps-Protac. 2019
214.
go back to reference Dragovich PS, et al. Antibody-mediated delivery of chimeric protein degraders which target estrogen receptor alpha (ERα). Bioorg Med Chem Lett. 2020;30: 126907.CrossRef Dragovich PS, et al. Antibody-mediated delivery of chimeric protein degraders which target estrogen receptor alpha (ERα). Bioorg Med Chem Lett. 2020;30: 126907.CrossRef
216.
go back to reference Neumann CS, et al. Targeted delivery of cytotoxic NAMPT inhibitors using antibody-drug conjugates. Mol Cancer Ther. 2018;17:2633–42.CrossRef Neumann CS, et al. Targeted delivery of cytotoxic NAMPT inhibitors using antibody-drug conjugates. Mol Cancer Ther. 2018;17:2633–42.CrossRef
217.
go back to reference Karpov AS, et al. Nicotinamide phosphoribosyltransferase inhibitor as a novel payload for antibody-drug conjugates. ACS Med Chem Lett. 2018;9:838–42.CrossRef Karpov AS, et al. Nicotinamide phosphoribosyltransferase inhibitor as a novel payload for antibody-drug conjugates. ACS Med Chem Lett. 2018;9:838–42.CrossRef
218.
go back to reference El-Nassan HB. Advances in the discovery of kinesin spindle protein (Eg5) inhibitors as antitumor agents. Eur J Med Chem. 2013;62:614–31.CrossRef El-Nassan HB. Advances in the discovery of kinesin spindle protein (Eg5) inhibitors as antitumor agents. Eur J Med Chem. 2013;62:614–31.CrossRef
219.
go back to reference Lerchen H-G, et al. Antibody-drug conjugates with pyrrole-based KSP inhibitors as the payload class. Angew Chem Int Ed Engl. 2018;57:15243–7.CrossRef Lerchen H-G, et al. Antibody-drug conjugates with pyrrole-based KSP inhibitors as the payload class. Angew Chem Int Ed Engl. 2018;57:15243–7.CrossRef
220.
go back to reference Lerchen H-G, et al. Tailored linker chemistries for the efficient and selective activation of ADCs with KSPi payloads. Bioconjugate Chem. 2020;31:1893–8.CrossRef Lerchen H-G, et al. Tailored linker chemistries for the efficient and selective activation of ADCs with KSPi payloads. Bioconjugate Chem. 2020;31:1893–8.CrossRef
221.
go back to reference Karpov AS, et al. Discovery of potent and selective antibody-drug conjugates with Eg5 inhibitors through linker and payload optimization. ACS Med Chem Lett. 2019;10:1674–9.CrossRef Karpov AS, et al. Discovery of potent and selective antibody-drug conjugates with Eg5 inhibitors through linker and payload optimization. ACS Med Chem Lett. 2019;10:1674–9.CrossRef
222.
go back to reference Criscitiello C, Morganti S, Curigliano G. Antibody-drug conjugates in solid tumors: a look into novel targets. J Hematol Oncol. 2021;14:20.CrossRef Criscitiello C, Morganti S, Curigliano G. Antibody-drug conjugates in solid tumors: a look into novel targets. J Hematol Oncol. 2021;14:20.CrossRef
223.
go back to reference Su Z, et al. Antibody–drug conjugates: recent advances in linker chemistry. Acta Pharmaceutica Sinica B. 2021;11:3889–907.CrossRef Su Z, et al. Antibody–drug conjugates: recent advances in linker chemistry. Acta Pharmaceutica Sinica B. 2021;11:3889–907.CrossRef
225.
go back to reference Xiao D, et al. A bifunctional molecule-based strategy for the development of theranostic antibody-drug conjugate. Theranostics. 2021;11:2550–63.CrossRef Xiao D, et al. A bifunctional molecule-based strategy for the development of theranostic antibody-drug conjugate. Theranostics. 2021;11:2550–63.CrossRef
226.
go back to reference Joubert N, Denevault-Sabourin C, Bryden F, Viaud-Massuard M-C. Towards antibody-drug conjugates and prodrug strategies with extracellular stimuli-responsive drug delivery in the tumor microenvironment for cancer therapy. Eur J Med Chem. 2017;142:393–415.CrossRef Joubert N, Denevault-Sabourin C, Bryden F, Viaud-Massuard M-C. Towards antibody-drug conjugates and prodrug strategies with extracellular stimuli-responsive drug delivery in the tumor microenvironment for cancer therapy. Eur J Med Chem. 2017;142:393–415.CrossRef
227.
go back to reference Staudacher AH, Brown MP. Antibody drug conjugates and bystander killing: is antigen-dependent internalisation required? Br J Cancer. 2017;117:1736–42.CrossRef Staudacher AH, Brown MP. Antibody drug conjugates and bystander killing: is antigen-dependent internalisation required? Br J Cancer. 2017;117:1736–42.CrossRef
228.
go back to reference Szot C, et al. Tumor stroma-targeted antibody-drug conjugate triggers localized anticancer drug release. J Clin Invest. 2018;128:2927–43.CrossRef Szot C, et al. Tumor stroma-targeted antibody-drug conjugate triggers localized anticancer drug release. J Clin Invest. 2018;128:2927–43.CrossRef
229.
go back to reference Love EA, et al. Developing an antibody-drug conjugate approach to selective inhibition of an extracellular protein. ChemBioChem. 2019;20:754–8.CrossRef Love EA, et al. Developing an antibody-drug conjugate approach to selective inhibition of an extracellular protein. ChemBioChem. 2019;20:754–8.CrossRef
231.
go back to reference Theocharopoulos C, Lialios P-P, Samarkos M, Gogas H, Ziogas DC. Antibody-drug conjugates: functional principles and applications in oncology and beyond. Vaccines. 2021;9:1111.CrossRef Theocharopoulos C, Lialios P-P, Samarkos M, Gogas H, Ziogas DC. Antibody-drug conjugates: functional principles and applications in oncology and beyond. Vaccines. 2021;9:1111.CrossRef
232.
go back to reference Dragovich PS. Antibody-drug conjugates for immunology. J Med Chem. 2022;65:4496–9.CrossRef Dragovich PS. Antibody-drug conjugates for immunology. J Med Chem. 2022;65:4496–9.CrossRef
233.
go back to reference Hobson AD, et al. Design and development of glucocorticoid receptor modulators as immunology antibody-drug conjugate payloads. J Med Chem. 2022;65:4500–33.CrossRef Hobson AD, et al. Design and development of glucocorticoid receptor modulators as immunology antibody-drug conjugate payloads. J Med Chem. 2022;65:4500–33.CrossRef
234.
go back to reference Dragovich PS. Antibody-drug conjugates for immunology. J Med Chem. 2022;65:4496–9.CrossRef Dragovich PS. Antibody-drug conjugates for immunology. J Med Chem. 2022;65:4496–9.CrossRef
235.
go back to reference Lehar SM, et al. Novel antibody-antibiotic conjugate eliminates intracellular S. aureus. Nature. 2015;527:323–8.CrossRef Lehar SM, et al. Novel antibody-antibiotic conjugate eliminates intracellular S. aureus. Nature. 2015;527:323–8.CrossRef
236.
go back to reference Lim RKV, et al. Targeted delivery of LXR agonist using a site-specific antibody-drug conjugate. Bioconjug Chem. 2015;26:2216–22.CrossRef Lim RKV, et al. Targeted delivery of LXR agonist using a site-specific antibody-drug conjugate. Bioconjug Chem. 2015;26:2216–22.CrossRef
237.
go back to reference Trudel S, et al. Targeting B-Cell maturation antigen with GSK2857916 antibody-drug conjugate in relapsed or refractory multiple myeloma: a dose-escalation and expansion phase 1 trial (BMA117159). Lancet Oncol. 2018;19:1641–53.CrossRef Trudel S, et al. Targeting B-Cell maturation antigen with GSK2857916 antibody-drug conjugate in relapsed or refractory multiple myeloma: a dose-escalation and expansion phase 1 trial (BMA117159). Lancet Oncol. 2018;19:1641–53.CrossRef
238.
go back to reference Lonial S, et al. Belantamab mafodotin for relapsed or refractory multiple myeloma (DREAMM-2): a two-arm, randomised, open-label, phase 2 study. Lancet Oncol. 2020;21:207–21.CrossRef Lonial S, et al. Belantamab mafodotin for relapsed or refractory multiple myeloma (DREAMM-2): a two-arm, randomised, open-label, phase 2 study. Lancet Oncol. 2020;21:207–21.CrossRef
239.
go back to reference Swain SM, et al. Multidisciplinary clinical guidance on trastuzumab deruxtecan (T-DXd)-related interstitial lung disease/pneumonitis-Focus on proactive monitoring, diagnosis, and management. Cancer Treat Rev. 2022;106: 102378.CrossRef Swain SM, et al. Multidisciplinary clinical guidance on trastuzumab deruxtecan (T-DXd)-related interstitial lung disease/pneumonitis-Focus on proactive monitoring, diagnosis, and management. Cancer Treat Rev. 2022;106: 102378.CrossRef
Metadata
Title
Payload diversification: a key step in the development of antibody–drug conjugates
Authors
Louise Conilh
Lenka Sadilkova
Warren Viricel
Charles Dumontet
Publication date
01-12-2023
Publisher
BioMed Central
Published in
Journal of Hematology & Oncology / Issue 1/2023
Electronic ISSN: 1756-8722
DOI
https://doi.org/10.1186/s13045-022-01397-y

Other articles of this Issue 1/2023

Journal of Hematology & Oncology 1/2023 Go to the issue
Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine