Skip to main content
Top
Published in: Malaria Journal 1/2006

Open Access 01-12-2006 | Methodology

Detection and identification of human Plasmodium species with real-time quantitative nucleic acid sequence-based amplification

Authors: Petra F Mens, Gerard J Schoone, Piet A Kager, Henk DFH Schallig

Published in: Malaria Journal | Issue 1/2006

Login to get access

Abstract

Background

Decisions concerning malaria treatment depend on species identification causing disease. Microscopy is most frequently used, but at low parasitaemia (<20 parasites/μl) the technique becomes less sensitive and time consuming. Rapid diagnostic tests based on Plasmodium antigen detection do often not allow for species discrimination as microscopy does, but also become insensitive at <100 parasites/μl.

Methods

This paper reports the development of a sensitive and specific real-time Quantitative Nucleic Acid Sequence Based Amplification (real-time QT-NASBA) assays, based on the small-subunit 18S rRNA gene, to identify the four human Plasmodium species.

Results

The lower detection limit of the assay is 100 – 1000 molecules in vitro RNA for all species, which corresponds to 0.01 – 0.1 parasite per diagnostic sample (i.e. 50 μl of processed blood). The real-time QT-NASBA was further evaluated using 79 clinical samples from malaria patients: i.e. 11 Plasmodium. falciparum, 37 Plasmodium vivax, seven Plasmodium malariae, four Plasmodium ovale and 20 mixed infections. The initial diagnosis of 69 out of the 79 samples was confirmed with the developed real-time QT-NASBA. Re-analysis of seven available original slides resolved five mismatches. Three of those were initially identified as P. malariae mono-infection, but after re-reading the slides P. falciparum was found, confirming the real-time QT-NASBA result. The other two slides were of poor quality not allowing true species identification. The remaining five discordant results could not be explained by microscopy, but may be due to extreme low numbers of parasites present in the samples. In addition, 12 Plasmodium berghei isolates from mice and 20 blood samples from healthy donors did not show any reaction in the assay.

Conclusion

Real-time QT-NASBA is a very sensitive and specific technique with a detection limit of 0.1 Plasmodium parasite per diagnostic sample (50 μl of blood) and can be used for the detection, identification and quantitative measurement of low parasitaemia of Plasmodium species, thus making it an effective tool for diagnostic purposes and useful for epidemiological and drug studies.
Appendix
Available only for authorised users
Literature
1.
go back to reference World Health Organisation: WHO/CDS/RBM/2000.14. malaria Diagnosis New Perspectives. WHO/MAL/2000.1091-WHO. Basic malaria microscopy – part 1. 1991, WHO, Geneva, Switzerland World Health Organisation: WHO/CDS/RBM/2000.14. malaria Diagnosis New Perspectives. WHO/MAL/2000.1091-WHO. Basic malaria microscopy – part 1. 1991, WHO, Geneva, Switzerland
2.
go back to reference Makler MT, Palmer CJ, Ager AL: A review of practical techniques for the diagnosis of malaria. Ann Trop Med Parasitol. 1998, 92: 419-433. 10.1080/00034989859401.CrossRefPubMed Makler MT, Palmer CJ, Ager AL: A review of practical techniques for the diagnosis of malaria. Ann Trop Med Parasitol. 1998, 92: 419-433. 10.1080/00034989859401.CrossRefPubMed
4.
go back to reference Tham JM, Lee SH, Tan TM, Ting RC, Kara UA: Detection and species determination of malaria parasites by PCR: comparison with microscopy and with ParaSight-F and ICT malaria Pf tests in a clinical environment. J Clin Microbiol. 1999, 37: 1269-1273.PubMedCentralPubMed Tham JM, Lee SH, Tan TM, Ting RC, Kara UA: Detection and species determination of malaria parasites by PCR: comparison with microscopy and with ParaSight-F and ICT malaria Pf tests in a clinical environment. J Clin Microbiol. 1999, 37: 1269-1273.PubMedCentralPubMed
5.
go back to reference Perandin F, Manca N, Calderaro A, Piccolo G, Galati L, Ricci L, Medici MC, Arcangeletti MC, Snounou G, Dettori G, Chezzi C: Development of a real-time PCR assay for detection of Plasmodium falciparum, Plasmodium vivax, and Plasmodium ovale for routine clinical diagnosis. J Clin Microbiol. 2004, 42: 1214-1219. 10.1128/JCM.42.3.1214-1219.2004.PubMedCentralCrossRefPubMed Perandin F, Manca N, Calderaro A, Piccolo G, Galati L, Ricci L, Medici MC, Arcangeletti MC, Snounou G, Dettori G, Chezzi C: Development of a real-time PCR assay for detection of Plasmodium falciparum, Plasmodium vivax, and Plasmodium ovale for routine clinical diagnosis. J Clin Microbiol. 2004, 42: 1214-1219. 10.1128/JCM.42.3.1214-1219.2004.PubMedCentralCrossRefPubMed
6.
go back to reference Rougemont M, Van Saanen M, Sahli R, Hindrikson HP, Bille J, Jaton K: Detection of Four Plasmodium species in blood from humans by 18S rRNA gene subunit-based and Species-Specific Real-Time PCR Assays. J Clin Microbiol. 2004, 42: 5636-5643. 10.1128/JCM.42.12.5636-5643.2004.PubMedCentralCrossRefPubMed Rougemont M, Van Saanen M, Sahli R, Hindrikson HP, Bille J, Jaton K: Detection of Four Plasmodium species in blood from humans by 18S rRNA gene subunit-based and Species-Specific Real-Time PCR Assays. J Clin Microbiol. 2004, 42: 5636-5643. 10.1128/JCM.42.12.5636-5643.2004.PubMedCentralCrossRefPubMed
7.
go back to reference Andrews L, Andersen RF, Webster D, Dunachie S, Walther RM, Bejon P, Hunt-Cooke A, Bergson G, Sanderson F, Hill AV, Gilbert SC: Quantitative real-time polymerase chain reaction for malaria diagnosis and its use in malaria vaccine clinical trials. Am J Trop Med Hyg. 2005, 73: 191-198.PubMed Andrews L, Andersen RF, Webster D, Dunachie S, Walther RM, Bejon P, Hunt-Cooke A, Bergson G, Sanderson F, Hill AV, Gilbert SC: Quantitative real-time polymerase chain reaction for malaria diagnosis and its use in malaria vaccine clinical trials. Am J Trop Med Hyg. 2005, 73: 191-198.PubMed
8.
go back to reference Cools I, Uyttendale M, D'Haese E, Nelis HJ, Debevere J: Development of a real-time NASBA assay for the detection of Campylobacter jejuni cells. J Microbiol Methods. Cools I, Uyttendale M, D'Haese E, Nelis HJ, Debevere J: Development of a real-time NASBA assay for the detection of Campylobacter jejuni cells. J Microbiol Methods.
9.
go back to reference Schneider P, Wolters L, Schoone G, Schallig H, Sillekens P, Hermsen R, Sauerwein R: Real-time nucleic acid sequence-based amplification is more convenient than Real-Time PCR for quantification of Plasmodium falciparum. J Clin Microbiol. 2005, 43: 402-405. 10.1128/JCM.43.1.402-405.2005.PubMedCentralCrossRefPubMed Schneider P, Wolters L, Schoone G, Schallig H, Sillekens P, Hermsen R, Sauerwein R: Real-time nucleic acid sequence-based amplification is more convenient than Real-Time PCR for quantification of Plasmodium falciparum. J Clin Microbiol. 2005, 43: 402-405. 10.1128/JCM.43.1.402-405.2005.PubMedCentralCrossRefPubMed
10.
go back to reference Schoone GJ, Oskam L, Kroon NCM, Schallig HDFH, Omar SA: Detection and quantification of Plasmodium falciparum in blood samples using quantitative nucleic acid sequence based amplification. J Clin Microbiol. 2000, 38: 4072-4075.PubMedCentralPubMed Schoone GJ, Oskam L, Kroon NCM, Schallig HDFH, Omar SA: Detection and quantification of Plasmodium falciparum in blood samples using quantitative nucleic acid sequence based amplification. J Clin Microbiol. 2000, 38: 4072-4075.PubMedCentralPubMed
11.
go back to reference World Health Organization and UNICEF: World Malaria report 2005. WHO/HTM/MAL/2005.1102. 2005, WHO, Geneva, Switzerland World Health Organization and UNICEF: World Malaria report 2005. WHO/HTM/MAL/2005.1102. 2005, WHO, Geneva, Switzerland
12.
go back to reference Boom R, Sol CJ, Salimans MM, Jansen CL, Wertheim-van Dillen PM, Van den Noorda J: Rapid and simple method for purification of nucleic acids. J Clin Microbiol. 1990, 28: 495-503.PubMedCentralPubMed Boom R, Sol CJ, Salimans MM, Jansen CL, Wertheim-van Dillen PM, Van den Noorda J: Rapid and simple method for purification of nucleic acids. J Clin Microbiol. 1990, 28: 495-503.PubMedCentralPubMed
13.
go back to reference Gilles HM, Warrell DA: Bruce-Chwatt's Essential Malariology. 1993, London: Arnold publishers, 27-third Gilles HM, Warrell DA: Bruce-Chwatt's Essential Malariology. 1993, London: Arnold publishers, 27-third
14.
go back to reference Omar SA, Mens PF, Schoone GJ, Yusuf A, Mwangi J, Kaniaru S, Omer GA, Schallig HDFH: Plasmodium falciparum: evaluation of a quantitative nucleic acid sequence-based amplification assay to predict the outcome of sulfadoxine-pyrimethamine treatment of uncomplicated malaria. Exp Parasitol. 2005, 110: 73-79. 10.1016/j.exppara.2005.02.001.CrossRefPubMed Omar SA, Mens PF, Schoone GJ, Yusuf A, Mwangi J, Kaniaru S, Omer GA, Schallig HDFH: Plasmodium falciparum: evaluation of a quantitative nucleic acid sequence-based amplification assay to predict the outcome of sulfadoxine-pyrimethamine treatment of uncomplicated malaria. Exp Parasitol. 2005, 110: 73-79. 10.1016/j.exppara.2005.02.001.CrossRefPubMed
Metadata
Title
Detection and identification of human Plasmodium species with real-time quantitative nucleic acid sequence-based amplification
Authors
Petra F Mens
Gerard J Schoone
Piet A Kager
Henk DFH Schallig
Publication date
01-12-2006
Publisher
BioMed Central
Published in
Malaria Journal / Issue 1/2006
Electronic ISSN: 1475-2875
DOI
https://doi.org/10.1186/1475-2875-5-80

Other articles of this Issue 1/2006

Malaria Journal 1/2006 Go to the issue
Live Webinar | 27-06-2024 | 18:00 (CEST)

Keynote webinar | Spotlight on medication adherence

Live: Thursday 27th June 2024, 18:00-19:30 (CEST)

WHO estimates that half of all patients worldwide are non-adherent to their prescribed medication. The consequences of poor adherence can be catastrophic, on both the individual and population level.

Join our expert panel to discover why you need to understand the drivers of non-adherence in your patients, and how you can optimize medication adherence in your clinics to drastically improve patient outcomes.

Prof. Kevin Dolgin
Prof. Florian Limbourg
Prof. Anoop Chauhan
Developed by: Springer Medicine
Obesity Clinical Trial Summary

At a glance: The STEP trials

A round-up of the STEP phase 3 clinical trials evaluating semaglutide for weight loss in people with overweight or obesity.

Developed by: Springer Medicine

Highlights from the ACC 2024 Congress

Year in Review: Pediatric cardiology

Watch Dr. Anne Marie Valente present the last year's highlights in pediatric and congenital heart disease in the official ACC.24 Year in Review session.

Year in Review: Pulmonary vascular disease

The last year's highlights in pulmonary vascular disease are presented by Dr. Jane Leopold in this official video from ACC.24.

Year in Review: Valvular heart disease

Watch Prof. William Zoghbi present the last year's highlights in valvular heart disease from the official ACC.24 Year in Review session.

Year in Review: Heart failure and cardiomyopathies

Watch this official video from ACC.24. Dr. Biykem Bozkurt discusses last year's major advances in heart failure and cardiomyopathies.