Skip to main content
Top
Published in: Journal of Translational Medicine 1/2015

Open Access 01-12-2015 | Research

Detecting primitive hematopoietic stem cells in total nucleated and mononuclear cell fractions from umbilical cord blood segments and units

Authors: John Patterson, Cally H Moore, Emily Palser, Jason C Hearn, Daniela Dumitru, Holli A Harper, Ivan N Rich

Published in: Journal of Translational Medicine | Issue 1/2015

Login to get access

Abstract

Background

Rare hematopoietic stem cell populations are responsible for the transplantation engraftment process. Umbilical cord blood (UCB) is usually processed to the total nucleated cell (TNC), but not to the mononuclear cell (MNC) fraction. TNC counts are used to determine UCB unit storage, release for transplantation and correlation with time to engraftment. However, the TNC fraction contains varying concentrations of red blood cells, granulocytes, platelets and other cells that dilute and mask the stem cells from being detected. This does not allow the quality and potency of the stem cells to be reliably measured.

Methods

63 UCB segments and 10 UCB units plus segments were analyzed for the response of both primitive lympho-hematopoietic and primitive hematopoietic stem cells in both the TNC and MNC fractions. The samples were analyzed using a highly sensitive, standardized and validated adenosine triphosphate (ATP) bioluminescence stem cell proliferation assay verified against the colony-forming unit (CFU) assay. Dye exclusion and metabolic viability were also determined.

Results

Regardless of whether the cells were derived from a segment or unit, the TNC fraction always produced a significantly lower and more variable stem cell response than that derived from the MNC fraction. Routine dye exclusion cell viability did not correspond with metabolic viability and stem cell response. Paired UCB segments produced highly variable results, and the UCB segment did not produce similar results to the unit.

Discussion

The TNC fraction underestimates the ability and capacity of the stem cells in both the UCB segment and unit and therefore provides an erroneous interpretation of the of the results. Dye exclusion viability can result in false positive values, when in fact the stem cells may be dead or incapable of proliferation. The difference in response between the segment and unit calls into question the ability to use the segment as a representative sample of the UCB unit. It is apparent that present UCB processing and testing methods are inadequate to properly determine the quality and potency of the unit for release and use in a patient.
Literature
1.
go back to reference Messner HA, Fauser AA, Lepine J, Martin M. Properties of human pluripotent hematopoietic progenitors. Blood Cells. 1980;6:595–607.PubMed Messner HA, Fauser AA, Lepine J, Martin M. Properties of human pluripotent hematopoietic progenitors. Blood Cells. 1980;6:595–607.PubMed
2.
go back to reference Hodgson GS, Bradley TR, Radley JM. The organization of hematopoietic tissue as inferred from the effects of 5-fluoruracil. Exp Hemat. 1982;10:26–35.PubMed Hodgson GS, Bradley TR, Radley JM. The organization of hematopoietic tissue as inferred from the effects of 5-fluoruracil. Exp Hemat. 1982;10:26–35.PubMed
3.
go back to reference Johnson GR. Methodology for the identification and characterization of hematopoietic cells. Clonal assays for multipotential hematopoietic cells in vitro. Bibl Haematol. 1984;48:63–80.PubMed Johnson GR. Methodology for the identification and characterization of hematopoietic cells. Clonal assays for multipotential hematopoietic cells in vitro. Bibl Haematol. 1984;48:63–80.PubMed
4.
go back to reference Bradley TR, Hodgson GS, Bertoncello I. High proliferative potential colony forming cells. Methods Mol Biol. 1990;5:289–97.PubMed Bradley TR, Hodgson GS, Bertoncello I. High proliferative potential colony forming cells. Methods Mol Biol. 1990;5:289–97.PubMed
5.
go back to reference Stephenson JR, Axelrad AA, McLeod DL, Shreeve MM. Induction of colonies of hemoglobin-synthesizing cells by erythropoietin in vitro. Proc Natl Acad Sci USA. 1971;68:1542–6.CrossRefPubMedCentralPubMed Stephenson JR, Axelrad AA, McLeod DL, Shreeve MM. Induction of colonies of hemoglobin-synthesizing cells by erythropoietin in vitro. Proc Natl Acad Sci USA. 1971;68:1542–6.CrossRefPubMedCentralPubMed
6.
go back to reference Iscove NN, Sieber F, Winterhalter KH. Erythroid colony formation in cultures of mouse and human bone marrow: analysis of the requirement for erythropoietin by gel filtration and affinity chromatography on agarose-concanavalin A. J Cell Physiol. 1974;83:309–20.CrossRefPubMed Iscove NN, Sieber F, Winterhalter KH. Erythroid colony formation in cultures of mouse and human bone marrow: analysis of the requirement for erythropoietin by gel filtration and affinity chromatography on agarose-concanavalin A. J Cell Physiol. 1974;83:309–20.CrossRefPubMed
7.
go back to reference Cottler-Fox M. Hematopoietic progenitor cells. In: Burt RK, Deeg HJ, Lothian ST, Santos GW, editors. On Call in … Bone Marrow Transplantation. London, UK: Chapman and Hall; 1996. p. 69–75. Cottler-Fox M. Hematopoietic progenitor cells. In: Burt RK, Deeg HJ, Lothian ST, Santos GW, editors. On Call in … Bone Marrow Transplantation. London, UK: Chapman and Hall; 1996. p. 69–75.
8.
go back to reference Broxmeyer HE. Cord blood hematopoietic stem cell transplantation. In: StemBook.org. Cambridge, MA: Harvard Stem Cell Institute; 2010. Broxmeyer HE. Cord blood hematopoietic stem cell transplantation. In: StemBook.org. Cambridge, MA: Harvard Stem Cell Institute; 2010.
9.
go back to reference Ruggeri A, Labopin M, Sormani MP, Sanz G, Sanz J, Volt F, et al. Engraftment kinetics and graft failure after single umbilical cord blood transplantation using myeloablative conditioning regimen. Haematologica. 2014;99:1509–15. doi:10.3324/haematol.2014.CrossRefPubMed Ruggeri A, Labopin M, Sormani MP, Sanz G, Sanz J, Volt F, et al. Engraftment kinetics and graft failure after single umbilical cord blood transplantation using myeloablative conditioning regimen. Haematologica. 2014;99:1509–15. doi:10.3324/haematol.2014.CrossRefPubMed
10.
go back to reference Page KM, Xhang L, Mendizabal A, Wease S, Carter S, Gentry T, et al. Total colony-forming units are a strong, independent predictor of neutrophil and platelet engraftment after unrelated umbilical cord blood transplantation: a single center analysis of 435 cord blood transplants. Biol Blood Marrow Transplant. 2011;17:1362–74. doi:10.1016/j.bbmt.2011.01.011.CrossRefPubMed Page KM, Xhang L, Mendizabal A, Wease S, Carter S, Gentry T, et al. Total colony-forming units are a strong, independent predictor of neutrophil and platelet engraftment after unrelated umbilical cord blood transplantation: a single center analysis of 435 cord blood transplants. Biol Blood Marrow Transplant. 2011;17:1362–74. doi:10.1016/j.bbmt.2011.01.011.CrossRefPubMed
11.
go back to reference Sutherland DR, Keating A, Nayar R, Anania S, Stewart AK. Sensitive detection and enumeration of CD34+ cells in peripheral and cord blood by flow cytometry. Exp Hematol. 1994;22:1003–10.PubMed Sutherland DR, Keating A, Nayar R, Anania S, Stewart AK. Sensitive detection and enumeration of CD34+ cells in peripheral and cord blood by flow cytometry. Exp Hematol. 1994;22:1003–10.PubMed
12.
go back to reference Gluckman E, Broxmeyer HA, Auerbach AD, Friedman HS, Douglas GW, Devergie A, et al. Hematopoietic reconstitution in a patient with Fanconi’s anemia by means of umbilical-cord blood from an HLA-identical sibling. N Engl J Med. 1989;321:1174–8.CrossRefPubMed Gluckman E, Broxmeyer HA, Auerbach AD, Friedman HS, Douglas GW, Devergie A, et al. Hematopoietic reconstitution in a patient with Fanconi’s anemia by means of umbilical-cord blood from an HLA-identical sibling. N Engl J Med. 1989;321:1174–8.CrossRefPubMed
13.
go back to reference Bradley TR, Metcalf D. The growth of mouse bone marrow cells in vitro. Aust J Exp Biol Med Sci. 1966;44:287–99.CrossRefPubMed Bradley TR, Metcalf D. The growth of mouse bone marrow cells in vitro. Aust J Exp Biol Med Sci. 1966;44:287–99.CrossRefPubMed
14.
go back to reference Pluznik DH, Sachs L. The induction of clones of normal mast cells by a substance from conditioned medium. Exp Cell Res. 1966;43:553–63.CrossRefPubMed Pluznik DH, Sachs L. The induction of clones of normal mast cells by a substance from conditioned medium. Exp Cell Res. 1966;43:553–63.CrossRefPubMed
15.
go back to reference Pike BL, Robinson WA. Human bone marrow colony growth in agar-gel. J Cell Physiol. 1970;76:77–84.CrossRefPubMed Pike BL, Robinson WA. Human bone marrow colony growth in agar-gel. J Cell Physiol. 1970;76:77–84.CrossRefPubMed
16.
go back to reference Kriegler AB, Bradley TR, Hodgson GS, McNiece IK. A colorimetric liquid culture assays of a growth factor for primitive murine macrophage progenitor cells. J Immunol Meth. 1987;103:93–102.CrossRef Kriegler AB, Bradley TR, Hodgson GS, McNiece IK. A colorimetric liquid culture assays of a growth factor for primitive murine macrophage progenitor cells. J Immunol Meth. 1987;103:93–102.CrossRef
17.
go back to reference Monner DA. An assay for growth of mouse bone marrow cells in microtiter liquid culture using the tetrazolium salt MTT, and its application to studies of myelopoiesis. Immunol Lett. 1988;19:261–8.CrossRefPubMed Monner DA. An assay for growth of mouse bone marrow cells in microtiter liquid culture using the tetrazolium salt MTT, and its application to studies of myelopoiesis. Immunol Lett. 1988;19:261–8.CrossRefPubMed
18.
go back to reference Horowitz D, King AG. Colorimetric determination of inhibition of hematopoietic progenitor cells in soft agar. J Immunol Meth. 2000;244:49–58.CrossRef Horowitz D, King AG. Colorimetric determination of inhibition of hematopoietic progenitor cells in soft agar. J Immunol Meth. 2000;244:49–58.CrossRef
19.
go back to reference Rich IN, Hall KM. Validation and development of a predictive paradigm for hemotoxicity using a multifunctional bioluminescence colony-forming proliferation assay. Tox Sci. 2005;87:427–41.CrossRef Rich IN, Hall KM. Validation and development of a predictive paradigm for hemotoxicity using a multifunctional bioluminescence colony-forming proliferation assay. Tox Sci. 2005;87:427–41.CrossRef
20.
go back to reference Reems J-A, Hall KM, Gebru LH, Taber G, Rich IN. Development of a novel assay to evaluate the functional potential of umbilical cord blood progenitors. Transfusion. 2008;48:620–8.CrossRefPubMed Reems J-A, Hall KM, Gebru LH, Taber G, Rich IN. Development of a novel assay to evaluate the functional potential of umbilical cord blood progenitors. Transfusion. 2008;48:620–8.CrossRefPubMed
21.
go back to reference Crouch SP, Kozlowski R, Slater KJ, Fletcher J. The use of ATP bioluminescence s a measure of cell proliferation and cytotoxicity. J Immunol Meth. 1993;160:81–8.CrossRef Crouch SP, Kozlowski R, Slater KJ, Fletcher J. The use of ATP bioluminescence s a measure of cell proliferation and cytotoxicity. J Immunol Meth. 1993;160:81–8.CrossRef
22.
go back to reference Solves P, Planelles D, Mirabet V, Blanquer A, Carbonell-Uberos F. Qualitative and quantitative cell recovery in umbilical cord blood processed by two automated devices in routine cord blood banking: a comparative study. Blood Transfus. 2013;11:405–11.PubMedCentralPubMed Solves P, Planelles D, Mirabet V, Blanquer A, Carbonell-Uberos F. Qualitative and quantitative cell recovery in umbilical cord blood processed by two automated devices in routine cord blood banking: a comparative study. Blood Transfus. 2013;11:405–11.PubMedCentralPubMed
23.
go back to reference Harris DT. Collection, processing, and banking of umbilical cord blood stem cells for clinical use in transplantation and regenerative medicine. Labmedicine. 2008;39:173–8. doi:10.1309/64QG394K1M639L8A. Harris DT. Collection, processing, and banking of umbilical cord blood stem cells for clinical use in transplantation and regenerative medicine. Labmedicine. 2008;39:173–8. doi:10.1309/64QG394K1M639L8A.
24.
go back to reference Basford C, Forraz N, Habibollah S, Hanger K, McGuckin C. The cord blood separation league table: a comparison of major clinical grade harvesting techniques for cord blood stem cells. Intl J Stem Cell. 2010;3:32–45.CrossRef Basford C, Forraz N, Habibollah S, Hanger K, McGuckin C. The cord blood separation league table: a comparison of major clinical grade harvesting techniques for cord blood stem cells. Intl J Stem Cell. 2010;3:32–45.CrossRef
25.
go back to reference Aroviita PI, Teramo K, Westman P, Hiilesmaa V, Kekomaki R. Associations among nucleated cell, CD34+ cell and colony-forming cell contents in cord blood units obtained through a standardized banking process. Vox Sang. 2003;84:219–27.CrossRefPubMed Aroviita PI, Teramo K, Westman P, Hiilesmaa V, Kekomaki R. Associations among nucleated cell, CD34+ cell and colony-forming cell contents in cord blood units obtained through a standardized banking process. Vox Sang. 2003;84:219–27.CrossRefPubMed
26.
go back to reference George TJ, Sugrue MW, George SN, Wingard JR. Factors associated with parameters of engraftment potential of umbilical cord blood. Transfusion. 2006;46:1803–12.CrossRefPubMed George TJ, Sugrue MW, George SN, Wingard JR. Factors associated with parameters of engraftment potential of umbilical cord blood. Transfusion. 2006;46:1803–12.CrossRefPubMed
27.
go back to reference Spellman S, Hurley CK, Brady C, Phillips-Johnson L, Chow R, Laughlin M, et al. Guidelines for the development and validation of new potency assays for the evaluation of umbilical cord blood. National Marrow Donor Program Advisory Group. Cytotherapy. 2011;13:848–55.CrossRefPubMed Spellman S, Hurley CK, Brady C, Phillips-Johnson L, Chow R, Laughlin M, et al. Guidelines for the development and validation of new potency assays for the evaluation of umbilical cord blood. National Marrow Donor Program Advisory Group. Cytotherapy. 2011;13:848–55.CrossRefPubMed
28.
go back to reference Pamphillon D, Selogie E, McMenna D, Cancelas-Peres JA, Szczepiorkowski ZM, Cacher R, et al. Current practices and prospects for standardization of the hematopoietic colony-forming unit assay: a report by the cellular therapy team of the Biomedical Excellence for Safer Transfusion (BEST) Collaborative. Cytotherapy. 2013;15:255–62.CrossRef Pamphillon D, Selogie E, McMenna D, Cancelas-Peres JA, Szczepiorkowski ZM, Cacher R, et al. Current practices and prospects for standardization of the hematopoietic colony-forming unit assay: a report by the cellular therapy team of the Biomedical Excellence for Safer Transfusion (BEST) Collaborative. Cytotherapy. 2013;15:255–62.CrossRef
29.
go back to reference Rich IN, Kubanek B. The effect of reduced oxygen tension on colony formation of erythropoietic cells in vitro. Brit J Haematol. 1982;52:579–88.CrossRef Rich IN, Kubanek B. The effect of reduced oxygen tension on colony formation of erythropoietic cells in vitro. Brit J Haematol. 1982;52:579–88.CrossRef
30.
go back to reference Olaharski AJ, Uppal H, Cooper M, Platz S, Zabka TS, Kolaja KL. In vitro to in vivo concordance of a high throughput assay for bone marrow toxicity across a diverse set of drug candidates. Toxicol Let. 2009;188:98–103.CrossRef Olaharski AJ, Uppal H, Cooper M, Platz S, Zabka TS, Kolaja KL. In vitro to in vivo concordance of a high throughput assay for bone marrow toxicity across a diverse set of drug candidates. Toxicol Let. 2009;188:98–103.CrossRef
31.
go back to reference Hall KM, Rich IN. Bioluminescence assays for assessing potency of cellular therapeutic products. In: Areman EM, Loper K, editors. Cellular therapy: principles, methods and regulations. Bethesda, MD: AABB. ISBN 978-1-56395-296-8; 2009. p. 581–91. Hall KM, Rich IN. Bioluminescence assays for assessing potency of cellular therapeutic products. In: Areman EM, Loper K, editors. Cellular therapy: principles, methods and regulations. Bethesda, MD: AABB. ISBN 978-1-56395-296-8; 2009. p. 581–91.
34.
go back to reference Rich IN. Measurement of hematopoietic stem cell proliferation, self-renewal, and expansion potential. In: Rich IN, editor. Stem Cell Protocols, Methods Mol Biol, vol. 1235. 2015. p. 7–17. doi:10.1007/978-1-4939-1785-3_4.CrossRef Rich IN. Measurement of hematopoietic stem cell proliferation, self-renewal, and expansion potential. In: Rich IN, editor. Stem Cell Protocols, Methods Mol Biol, vol. 1235. 2015. p. 7–17. doi:10.1007/978-1-4939-1785-3_4.CrossRef
36.
go back to reference Harper H, Rich IN. Measure the potency of a stem cell therapeutic. In Stem Cell Protocols, Methods Mol Biol. Edited by Rich IN. 2015, 1235:33–48. doi:10.1007/978-1-4939-1785-3_4. Harper H, Rich IN. Measure the potency of a stem cell therapeutic. In Stem Cell Protocols, Methods Mol Biol. Edited by Rich IN. 2015, 1235:33–48. doi:10.1007/978-1-4939-1785-3_4.
38.
go back to reference Gutensohn K, Odendahl M, Kersten JF, Tonn T. Validation of cord blood split products prepared by an automated method. Transfus Med. 2013;23:48–51.CrossRefPubMed Gutensohn K, Odendahl M, Kersten JF, Tonn T. Validation of cord blood split products prepared by an automated method. Transfus Med. 2013;23:48–51.CrossRefPubMed
39.
go back to reference Rodriguez L, Garcia J, Querol S. Predictive utility of the attached segment in the quality control of a cord blood graft. Bio Blood Marrow Transplant. 2005;11:247–51.CrossRef Rodriguez L, Garcia J, Querol S. Predictive utility of the attached segment in the quality control of a cord blood graft. Bio Blood Marrow Transplant. 2005;11:247–51.CrossRef
40.
go back to reference De Vos J, Birebent B, Faucher C, Giet O, Hicheri Y, Lemarie C, et al. Quality controls on cord blood unit contiguous segments: Recommendation of the SFGM-TC. Path Biol. 2014;62:218–20.CrossRef De Vos J, Birebent B, Faucher C, Giet O, Hicheri Y, Lemarie C, et al. Quality controls on cord blood unit contiguous segments: Recommendation of the SFGM-TC. Path Biol. 2014;62:218–20.CrossRef
42.
go back to reference Zumpe C, Bachmann CL, Metzger AU, Wiedermann N. Comparison of potency assays using different read-out systems and their suitability for quality control. J Immunol Meth. 2010;360:129–40.CrossRef Zumpe C, Bachmann CL, Metzger AU, Wiedermann N. Comparison of potency assays using different read-out systems and their suitability for quality control. J Immunol Meth. 2010;360:129–40.CrossRef
43.
go back to reference Rich IN. In vitro hematotoxicity testing in drug development: a review of past, present and future applications. Curr Opinion in Drug Disc Develop. 2003;6:100–9. Rich IN. In vitro hematotoxicity testing in drug development: a review of past, present and future applications. Curr Opinion in Drug Disc Develop. 2003;6:100–9.
44.
go back to reference Pretti RA, Chan WS, Kurtzburg J, Dornsife RE, Wallace PK, Furlage R, et al. Multi-site evaluation of the BD stem cell enumeration kit for CD34+ cell enumeration on the BD FACSCanta II and BD FACSCalibur flow cytometers. Cytotherapy. 2014;16:1558–74.CrossRef Pretti RA, Chan WS, Kurtzburg J, Dornsife RE, Wallace PK, Furlage R, et al. Multi-site evaluation of the BD stem cell enumeration kit for CD34+ cell enumeration on the BD FACSCanta II and BD FACSCalibur flow cytometers. Cytotherapy. 2014;16:1558–74.CrossRef
45.
go back to reference Pope B, Hokin B, Grant R. Effect of umbilical cord blood prefreeze variables on postthaw viability. Transfusion 2014, doi:10.1111/trf.12873. Pope B, Hokin B, Grant R. Effect of umbilical cord blood prefreeze variables on postthaw viability. Transfusion 2014, doi:10.1111/trf.12873.
46.
go back to reference Salge-Bartels U, Huber HM, Kleiner K, Volkers P, Seitz R, Heiden M. Evaluation of quality parameters for cord blood donations. Transf Med Hemother. 2009;36:317–24.CrossRef Salge-Bartels U, Huber HM, Kleiner K, Volkers P, Seitz R, Heiden M. Evaluation of quality parameters for cord blood donations. Transf Med Hemother. 2009;36:317–24.CrossRef
47.
go back to reference Scaradavou A, Smith KM, Hawke R, Schaible A, Abboud M, Kerman NA, et al. Cord blood units with low CD34+ cell viability have a low probability of engraftment after double unit transplantation. Biol Blood Marrow Transplant. 2010;16:500–8.CrossRefPubMed Scaradavou A, Smith KM, Hawke R, Schaible A, Abboud M, Kerman NA, et al. Cord blood units with low CD34+ cell viability have a low probability of engraftment after double unit transplantation. Biol Blood Marrow Transplant. 2010;16:500–8.CrossRefPubMed
48.
go back to reference Querol S, Gomez SG, Pagliuca A, Torrabadella M, Madrigal JA. Quality rather than quantity: the cord blood bank dilemma. Bone Marrow Transplant. 2010;50:265. Querol S, Gomez SG, Pagliuca A, Torrabadella M, Madrigal JA. Quality rather than quantity: the cord blood bank dilemma. Bone Marrow Transplant. 2010;50:265.
50.
go back to reference Page KM, Mendizabal A, Betz-Stablein B, Wease S, Shoulars K, Gentry T, et al. Optimizing donor selection for public cord blood banking: influence of maternal, infant, and collection characteristics on cord blood quality. Transfusion. 2014;54:340–52.PubMedCentralPubMed Page KM, Mendizabal A, Betz-Stablein B, Wease S, Shoulars K, Gentry T, et al. Optimizing donor selection for public cord blood banking: influence of maternal, infant, and collection characteristics on cord blood quality. Transfusion. 2014;54:340–52.PubMedCentralPubMed
51.
go back to reference Bart T, Boo M, Balabanova S, Fisher Y, Nicolosco G, Foeken L, et al. Selection and sustainability: impact on selection of the cord blood units from the United States and Swiss registries on the cost of banking operations. Transfus Med Hemother. 2013;40:14–20.CrossRefPubMedCentralPubMed Bart T, Boo M, Balabanova S, Fisher Y, Nicolosco G, Foeken L, et al. Selection and sustainability: impact on selection of the cord blood units from the United States and Swiss registries on the cost of banking operations. Transfus Med Hemother. 2013;40:14–20.CrossRefPubMedCentralPubMed
Metadata
Title
Detecting primitive hematopoietic stem cells in total nucleated and mononuclear cell fractions from umbilical cord blood segments and units
Authors
John Patterson
Cally H Moore
Emily Palser
Jason C Hearn
Daniela Dumitru
Holli A Harper
Ivan N Rich
Publication date
01-12-2015
Publisher
BioMed Central
Published in
Journal of Translational Medicine / Issue 1/2015
Electronic ISSN: 1479-5876
DOI
https://doi.org/10.1186/s12967-015-0434-z

Other articles of this Issue 1/2015

Journal of Translational Medicine 1/2015 Go to the issue
Live Webinar | 27-06-2024 | 18:00 (CEST)

Keynote webinar | Spotlight on medication adherence

Live: Thursday 27th June 2024, 18:00-19:30 (CEST)

WHO estimates that half of all patients worldwide are non-adherent to their prescribed medication. The consequences of poor adherence can be catastrophic, on both the individual and population level.

Join our expert panel to discover why you need to understand the drivers of non-adherence in your patients, and how you can optimize medication adherence in your clinics to drastically improve patient outcomes.

Prof. Kevin Dolgin
Prof. Florian Limbourg
Prof. Anoop Chauhan
Developed by: Springer Medicine
Obesity Clinical Trial Summary

At a glance: The STEP trials

A round-up of the STEP phase 3 clinical trials evaluating semaglutide for weight loss in people with overweight or obesity.

Developed by: Springer Medicine

Highlights from the ACC 2024 Congress

Year in Review: Pediatric cardiology

Watch Dr. Anne Marie Valente present the last year's highlights in pediatric and congenital heart disease in the official ACC.24 Year in Review session.

Year in Review: Pulmonary vascular disease

The last year's highlights in pulmonary vascular disease are presented by Dr. Jane Leopold in this official video from ACC.24.

Year in Review: Valvular heart disease

Watch Prof. William Zoghbi present the last year's highlights in valvular heart disease from the official ACC.24 Year in Review session.

Year in Review: Heart failure and cardiomyopathies

Watch this official video from ACC.24. Dr. Biykem Bozkurt discusses last year's major advances in heart failure and cardiomyopathies.