Skip to main content
Top
Published in: Critical Care 1/2017

Open Access 01-12-2017 | Research

Detecting impaired myocardial relaxation in sepsis with a novel tissue Doppler parameter (septal e′/s′)

Authors: David J. Clancy, Michel Slama, Stephen Huang, Timothy Scully, Anthony S. McLean, Sam R. Orde

Published in: Critical Care | Issue 1/2017

Login to get access

Abstract

Background

Left ventricular diastolic dysfunction is associated with mortality outcomes in severe sepsis and septic shock. There are ongoing issues with diagnosing diastolic dysfunction in this cohort, partly owing to the poor applicability of traditional parameters in the hyperdynamic circulation. In this feasibility study, we sought to assess the utility of a novel parameter (septal e′/s′) to identify diastolic dysfunction in patients with severe sepsis and septic shock who had normal systolic function against the 2016 American Society Echocardiography and European Association of Cardiovascular Imaging (ASE/EACI) guidelines on diastolic dysfunction.

Methods

In this prospective observational pilot study, patients identified as having severe sepsis and septic shock underwent transthoracic echocardiography on day 1 and day 3 of their intensive care unit admission. In patients with normal systolic function, septal e′/s′ was calculated using the peak modal velocity of the s′ compared with the e′ from the septal annulus tissue Doppler imaging and compared with their diastolic grade according to the 2016 ASE/EACI guidelines on diastolic dysfunction.

Results

On day 1 of admission, 44 of 62 patients with severe sepsis and septic shock had normal systolic function. There was a strong association of those with diastolic dysfunction having a reduced septal e′/s′ compared with patients with normal diastolic function (AUC 0.91). A similar relationship was seen with patients who had indeterminate diastolic dysfunction. On day 3, 37 patients had normal systolic function. Again, there was a strong association of those with diastolic dysfunction and a reduced septal e′/s′ (AUC 0.95).

Conclusions

A reduction in septal e′/s′ may indicate diastolic dysfunction in patients with severe sepsis and septic shock who have normal systolic function. As opposed to limited traditional measures of diastolic dysfunction, it is applicable in those with hyperdynamic systolic function.
Appendix
Available only for authorised users
Literature
1.
go back to reference Sanfilippo F, Corredor C, Fletcher N, Landesberg G, Benedetto U, Foex P, et al. Diastolic dysfunction and mortality in septic patients: a systematic review and meta-analysis. Intensive Care Med. 2015;41:1004–13.CrossRefPubMed Sanfilippo F, Corredor C, Fletcher N, Landesberg G, Benedetto U, Foex P, et al. Diastolic dysfunction and mortality in septic patients: a systematic review and meta-analysis. Intensive Care Med. 2015;41:1004–13.CrossRefPubMed
2.
go back to reference Brown SM, Pittman JE, Hirshberg EL, Jones JP, Lanspa MJ, Kuttler KG, et al. Diastolic dysfunction and mortality in early severe sepsis and septic shock: a prospective, observational echocardiography study. Crit Ultrasound J. 2012;4:8.CrossRefPubMedPubMedCentral Brown SM, Pittman JE, Hirshberg EL, Jones JP, Lanspa MJ, Kuttler KG, et al. Diastolic dysfunction and mortality in early severe sepsis and septic shock: a prospective, observational echocardiography study. Crit Ultrasound J. 2012;4:8.CrossRefPubMedPubMedCentral
3.
go back to reference Sturgess DJ, Marwick TH, Joyce C, Jenkins C, Jones M, Masci P, et al. Prediction of hospital outcome in septic shock: a prospective comparison of tissue Doppler and cardiac biomarkers. Crit Care. 2010;14:R44.CrossRefPubMedPubMedCentral Sturgess DJ, Marwick TH, Joyce C, Jenkins C, Jones M, Masci P, et al. Prediction of hospital outcome in septic shock: a prospective comparison of tissue Doppler and cardiac biomarkers. Crit Care. 2010;14:R44.CrossRefPubMedPubMedCentral
4.
go back to reference Lanspa MJ, Gutsche AR, Wilson EL, Olsen TD, Hirshberg EL, Knox DB, et al. Application of a simplified definition of diastolic function in severe sepsis and septic shock. Crit Care. 2016;20:243.CrossRefPubMedPubMedCentral Lanspa MJ, Gutsche AR, Wilson EL, Olsen TD, Hirshberg EL, Knox DB, et al. Application of a simplified definition of diastolic function in severe sepsis and septic shock. Crit Care. 2016;20:243.CrossRefPubMedPubMedCentral
5.
go back to reference Mourad M, Chow-Chine L, Faucher M, Sannini A, Brun JP, de Guibert JM, et al. Early diastolic dysfunction is associated with intensive care unit mortality in cancer patients presenting with septic shock. Br J Anaesth. 2013;112:102–9.CrossRefPubMed Mourad M, Chow-Chine L, Faucher M, Sannini A, Brun JP, de Guibert JM, et al. Early diastolic dysfunction is associated with intensive care unit mortality in cancer patients presenting with septic shock. Br J Anaesth. 2013;112:102–9.CrossRefPubMed
6.
go back to reference Nagueh SF, Appleton CP, Gillebert TC, Marino PN, Oh JK, Smiseth OA, et al. Recommendations for the evaluation of left ventricular diastolic function by echocardiography. J Am Soc Echocardiogr. 2009;22:107–33.CrossRefPubMed Nagueh SF, Appleton CP, Gillebert TC, Marino PN, Oh JK, Smiseth OA, et al. Recommendations for the evaluation of left ventricular diastolic function by echocardiography. J Am Soc Echocardiogr. 2009;22:107–33.CrossRefPubMed
7.
go back to reference Pritchett AM, Mahoney DW, Jacobsen SJ, Rodeheffer RJ, Karon BL, Redfield MM. Diastolic dysfunction and left atrial volume: a population-based study. J Am Coll Cardiol. 2005;45:87–92.CrossRefPubMed Pritchett AM, Mahoney DW, Jacobsen SJ, Rodeheffer RJ, Karon BL, Redfield MM. Diastolic dysfunction and left atrial volume: a population-based study. J Am Coll Cardiol. 2005;45:87–92.CrossRefPubMed
8.
go back to reference Nagueh SF, Smiserh OA, Appleton CP, Byrd 3rd BF, Dokainish H, Edvardsen T, et al. Recommendations for the evaluation of left ventricular diastolic function by echocardiography: an update from the American Society of Echocardiography and the European Association of Cardiovascular Imaging. J Am Soc Echocardiogr. 2016;29:277–314.CrossRefPubMed Nagueh SF, Smiserh OA, Appleton CP, Byrd 3rd BF, Dokainish H, Edvardsen T, et al. Recommendations for the evaluation of left ventricular diastolic function by echocardiography: an update from the American Society of Echocardiography and the European Association of Cardiovascular Imaging. J Am Soc Echocardiogr. 2016;29:277–314.CrossRefPubMed
9.
go back to reference Torrent-Guasp F, Buckberg GD, Clemente C, Cox JL, Coghlan HC, Gharib M. The structure and function of the helical heart and its buttress wrapping. I. The normal macroscopic structure of the heart. Semin Thorac Cardiovasc Surg. 2001;13:301–19.CrossRefPubMed Torrent-Guasp F, Buckberg GD, Clemente C, Cox JL, Coghlan HC, Gharib M. The structure and function of the helical heart and its buttress wrapping. I. The normal macroscopic structure of the heart. Semin Thorac Cardiovasc Surg. 2001;13:301–19.CrossRefPubMed
10.
go back to reference Buckberg GD, Clemente C, Cox JL, Coghlan HC, Castella M, Torrent-Guasp F, et al. The structure and function of the helical heart and its buttress wrapping. IV. Concepts of dynamic function from the normal macroscopic helical structure. Semin Thorac Cardiovasc Surg. 2001;13:342–57.CrossRefPubMed Buckberg GD, Clemente C, Cox JL, Coghlan HC, Castella M, Torrent-Guasp F, et al. The structure and function of the helical heart and its buttress wrapping. IV. Concepts of dynamic function from the normal macroscopic helical structure. Semin Thorac Cardiovasc Surg. 2001;13:342–57.CrossRefPubMed
11.
go back to reference Buckberg GD, Hoffman JIE, Coghlan HC, Nanda NC. Ventricular structure-function relations in health and disease: Part I. The normal heart. Eur J Cardiothorac Surg. 2015;47:587–601.CrossRefPubMed Buckberg GD, Hoffman JIE, Coghlan HC, Nanda NC. Ventricular structure-function relations in health and disease: Part I. The normal heart. Eur J Cardiothorac Surg. 2015;47:587–601.CrossRefPubMed
12.
go back to reference Maniu CV, Nishimura RA, Tajik AJ. Tachycardia during the valsalva maneuver: a sign of normal diastolic filling pressures. J Am Soc Echocardiogr. 2004;17:634–7.CrossRefPubMed Maniu CV, Nishimura RA, Tajik AJ. Tachycardia during the valsalva maneuver: a sign of normal diastolic filling pressures. J Am Soc Echocardiogr. 2004;17:634–7.CrossRefPubMed
13.
go back to reference Singer M, Deutschman CS, Seymour CW, Shankar-Hari M, Annane D, Bauer M, et al. The Third International Consensus Definitions for Sepsis and Septic Shock (Sepsis-3). JAMA. 2016;315:801–10.CrossRefPubMedPubMedCentral Singer M, Deutschman CS, Seymour CW, Shankar-Hari M, Annane D, Bauer M, et al. The Third International Consensus Definitions for Sepsis and Septic Shock (Sepsis-3). JAMA. 2016;315:801–10.CrossRefPubMedPubMedCentral
14.
go back to reference Dellinger RP, Levy MM, Rhodes A, Annane D, Gerlach H, Opal SM, et al. Surviving Sepsis Campaign: international guidelines for management of severe sepsis and septic shock, 2012. Intensive Care Med. 2013;39:165–228.CrossRefPubMed Dellinger RP, Levy MM, Rhodes A, Annane D, Gerlach H, Opal SM, et al. Surviving Sepsis Campaign: international guidelines for management of severe sepsis and septic shock, 2012. Intensive Care Med. 2013;39:165–228.CrossRefPubMed
15.
go back to reference Dhutia NM, Zolgharni M, Willson K, Cole G, Nowbar AN, Dawson D, et al. Guidance for accurate and consistent tissue Doppler velocity measurement: comparison of echocardiographic methods using a simple vendor-independent method for local validation. Eur Heart J Cardiovasc Imaging. 2014;15:817–27.CrossRefPubMed Dhutia NM, Zolgharni M, Willson K, Cole G, Nowbar AN, Dawson D, et al. Guidance for accurate and consistent tissue Doppler velocity measurement: comparison of echocardiographic methods using a simple vendor-independent method for local validation. Eur Heart J Cardiovasc Imaging. 2014;15:817–27.CrossRefPubMed
16.
go back to reference Srivastava P, Burrell L, Calafiore P. Lateral vs medial mitral annular tissue Doppler in the echocardiographic assessment of diastolic function and filling pressures: which should we use? Eur J Echocardiogr. 2005;6:97–106.CrossRefPubMed Srivastava P, Burrell L, Calafiore P. Lateral vs medial mitral annular tissue Doppler in the echocardiographic assessment of diastolic function and filling pressures: which should we use? Eur J Echocardiogr. 2005;6:97–106.CrossRefPubMed
17.
go back to reference Vignon P, Allot V, Lesage J, Martaillé JF, Aldigier JC, François B, et al. Diagnosis of left ventricular diastolic dysfunction in the setting of acute changes in loading conditions. Crit Care. 2007;11:R43.CrossRefPubMedPubMedCentral Vignon P, Allot V, Lesage J, Martaillé JF, Aldigier JC, François B, et al. Diagnosis of left ventricular diastolic dysfunction in the setting of acute changes in loading conditions. Crit Care. 2007;11:R43.CrossRefPubMedPubMedCentral
18.
go back to reference Faehnrich JA, Noone Jr RB, White WD, Leone BJ, Hilton AK, Sreeram GM, et al. Effects of positive-pressure ventilation, pericardial effusion, and cardiac tamponade on respiratory variation in transmitral flow velocities. J Cardiothorac Vasc Anesth. 2003;17:45–50.CrossRefPubMed Faehnrich JA, Noone Jr RB, White WD, Leone BJ, Hilton AK, Sreeram GM, et al. Effects of positive-pressure ventilation, pericardial effusion, and cardiac tamponade on respiratory variation in transmitral flow velocities. J Cardiothorac Vasc Anesth. 2003;17:45–50.CrossRefPubMed
19.
go back to reference Storaa C, Aberg P, Lind B, Brodin LA. Effect of angular error on tissue Doppler velocities and strain. Echocardiography. 2003;20:581–7.CrossRefPubMed Storaa C, Aberg P, Lind B, Brodin LA. Effect of angular error on tissue Doppler velocities and strain. Echocardiography. 2003;20:581–7.CrossRefPubMed
20.
go back to reference Royse CF, Ruizhi N, Huynh AL, Royese AG. The effect of a hyperdynamic circulation on tissue Doppler values: a simulation in young adults during exercise. Anesthesiol Res Pract. 2011;2011:165874.PubMedPubMedCentral Royse CF, Ruizhi N, Huynh AL, Royese AG. The effect of a hyperdynamic circulation on tissue Doppler values: a simulation in young adults during exercise. Anesthesiol Res Pract. 2011;2011:165874.PubMedPubMedCentral
21.
go back to reference Russell JA, Walley KR, Singer J, Gordon AC, Hébert PC, Cooper DJ, et al. Vasopressin versus norepinephrine infusion in patients with septic shock. N Engl J Med. 2008;358:877–87.CrossRefPubMed Russell JA, Walley KR, Singer J, Gordon AC, Hébert PC, Cooper DJ, et al. Vasopressin versus norepinephrine infusion in patients with septic shock. N Engl J Med. 2008;358:877–87.CrossRefPubMed
22.
go back to reference Morelli A, Ertmer C, Westphal M, Rehberg S, Kampmeier T, Ligges S, et al. Effect of heart rate control with esmolol on hemodynamic and clinical outcomes in patients with septic shock: a randomized clinical trial. JAMA. 2013;310:1683–91.CrossRefPubMed Morelli A, Ertmer C, Westphal M, Rehberg S, Kampmeier T, Ligges S, et al. Effect of heart rate control with esmolol on hemodynamic and clinical outcomes in patients with septic shock: a randomized clinical trial. JAMA. 2013;310:1683–91.CrossRefPubMed
23.
go back to reference Astuto M. Sepsis and beta-blockade: a look into diastolic function. Curr Med Res Opin. 2015;31:1827–8.CrossRefPubMed Astuto M. Sepsis and beta-blockade: a look into diastolic function. Curr Med Res Opin. 2015;31:1827–8.CrossRefPubMed
24.
go back to reference Joulin O, Marechaux S, Hassoun S, Montaigne D, Lancel S, Neviere R. Cardiac force-frequency relationship and frequency-dependent acceleration of relaxation are impaired in LPS-treated rats. Crit Care. 2009;13:R14.CrossRefPubMedPubMedCentral Joulin O, Marechaux S, Hassoun S, Montaigne D, Lancel S, Neviere R. Cardiac force-frequency relationship and frequency-dependent acceleration of relaxation are impaired in LPS-treated rats. Crit Care. 2009;13:R14.CrossRefPubMedPubMedCentral
25.
go back to reference Landesberg G, Jaffe AS, Gilon D, Levin PD, Goodman S, Abu-Baih A, et al. Troponin elevation in severe sepsis and septic shock: the role of left ventricular diastolic dysfunction and right ventricular dilatation. Crit Care Med. 2014;42:790–800.CrossRefPubMed Landesberg G, Jaffe AS, Gilon D, Levin PD, Goodman S, Abu-Baih A, et al. Troponin elevation in severe sepsis and septic shock: the role of left ventricular diastolic dysfunction and right ventricular dilatation. Crit Care Med. 2014;42:790–800.CrossRefPubMed
26.
go back to reference Weng L, Liu YT, Du B, Zhou JF, Guo XX, Peng JM, et al. The prognostic value of left ventricular systolic function measured by tissue Doppler imaging in septic shock. Crit Care. 2012;16:R71.CrossRefPubMedPubMedCentral Weng L, Liu YT, Du B, Zhou JF, Guo XX, Peng JM, et al. The prognostic value of left ventricular systolic function measured by tissue Doppler imaging in septic shock. Crit Care. 2012;16:R71.CrossRefPubMedPubMedCentral
Metadata
Title
Detecting impaired myocardial relaxation in sepsis with a novel tissue Doppler parameter (septal e′/s′)
Authors
David J. Clancy
Michel Slama
Stephen Huang
Timothy Scully
Anthony S. McLean
Sam R. Orde
Publication date
01-12-2017
Publisher
BioMed Central
Published in
Critical Care / Issue 1/2017
Electronic ISSN: 1364-8535
DOI
https://doi.org/10.1186/s13054-017-1727-9

Other articles of this Issue 1/2017

Critical Care 1/2017 Go to the issue