Skip to main content
Top
Published in: Brain Structure and Function 2/2015

Open Access 01-03-2015 | Original Article

Descriptive anatomy of Heschl’s gyri in 430 healthy volunteers, including 198 left-handers

Authors: D. Marie, G. Jobard, F. Crivello, G. Perchey, L. Petit, E. Mellet, M. Joliot, L. Zago, B. Mazoyer, N. Tzourio-Mazoyer

Published in: Brain Structure and Function | Issue 2/2015

Login to get access

Abstract

This study describes the gyrification patterns and surface areas of Heschl’s gyrus (HG) in 430 healthy volunteers mapped with magnetic resonance imaging. Among the 232 right-handers, we found a large occurrence of duplication (64 %), especially on the right (49 vs. 37 % on the left). Partial duplication was twice more frequent on the left than complete duplication. On the opposite, in the right hemisphere, complete duplication was 10 % more frequent than partial duplication. The most frequent inter-hemispheric gyrification patterns were bilateral single HG (36 %) and left single-right duplication (27 %). The least common patterns were left duplication-right single (22 %) and bilateral duplication (15 %). Duplication was associated with decreased anterior HG surface area on the corresponding side, independently of the type of duplication, and increased total HG surface area (including the second gyrus). Inter-hemispheric gyrification patterns strongly influenced both anterior and total HG surface area asymmetries, leftward asymmetry of the anterior HG surface was observed in all patterns except double left HG, and total HG surface asymmetry favored the side of duplication. Compared to right-handers, the 198 left-handers exhibited lower occurrence of duplication, and larger right anterior HG surface and total HG surface areas. Left-handers’ HG surface asymmetries were thus significantly different from those of right-handers, with a loss of leftward asymmetry of their anterior HG surface, and with significant rightward asymmetry of their total HG surface. In summary, gyrification patterns have a strong impact on HG surface and asymmetry. The observed reduced lateralization of HG duplications and anterior HG asymmetry in left-handers highlights HG inter-hemispheric gyrification patterns as a potential candidate marker of speech lateralization.
Footnotes
1
Note that in subjects exhibiting no duplication, aHG and totHG were strictly equivalent. However, conducting different analyses on these two dependent variables provides information about potentially different effects of duplication on the aHG and the totHG measurements.
 
Literature
go back to reference Abdul-Kareem IA, Sluming V (2008) Heschl gyrus and its included primary auditory cortex: structural MRI studies in healthy and diseased subjects. J Magn Reson Imaging 28:287–299CrossRefPubMed Abdul-Kareem IA, Sluming V (2008) Heschl gyrus and its included primary auditory cortex: structural MRI studies in healthy and diseased subjects. J Magn Reson Imaging 28:287–299CrossRefPubMed
go back to reference Brodmann K (1909) Vergleichende lokalisationslehre der grosshirnrinde in ihren prinzipien dargestellt auf grund des zellenbaues. Vergleichende lokalisationslehre der grosshirnrinde in ihren prinzipien dargestellt auf grund des zellenbaues—Leipzig Brodmann K (1909) Vergleichende lokalisationslehre der grosshirnrinde in ihren prinzipien dargestellt auf grund des zellenbaues. Vergleichende lokalisationslehre der grosshirnrinde in ihren prinzipien dargestellt auf grund des zellenbaues—Leipzig
go back to reference Campain R, Minckler J (1976) A note on the gross configuration of the human auditory cortex. Brain Lang 3:318–323CrossRefPubMed Campain R, Minckler J (1976) A note on the gross configuration of the human auditory cortex. Brain Lang 3:318–323CrossRefPubMed
go back to reference Clarke S, Rivier F (1998) Compartments within human primary auditory cortex: evidence from cytochrome oxidase and acetylcholinesterase staining. Eur J Neurosci 10:741–745CrossRefPubMed Clarke S, Rivier F (1998) Compartments within human primary auditory cortex: evidence from cytochrome oxidase and acetylcholinesterase staining. Eur J Neurosci 10:741–745CrossRefPubMed
go back to reference Diallo B, Dolidon F, Travere JM, Mazoyer B (1998) VoxeLine: a software for 3D real-time visualization of biomedical images. Comput Med Imaging Graph 22:275–289CrossRefPubMed Diallo B, Dolidon F, Travere JM, Mazoyer B (1998) VoxeLine: a software for 3D real-time visualization of biomedical images. Comput Med Imaging Graph 22:275–289CrossRefPubMed
go back to reference Dorsaint-Pierre R, Penhune VB, Watkins KE, Neelin P, Lerch JP, Bouffard M, Zatorre RJ (2006) Asymmetries of the planum temporale and Heschl’s gyrus: relationship to language lateralization. Brain 129:1164–1176. doi:10.1093/brain/awl055Brain CrossRefPubMed Dorsaint-Pierre R, Penhune VB, Watkins KE, Neelin P, Lerch JP, Bouffard M, Zatorre RJ (2006) Asymmetries of the planum temporale and Heschl’s gyrus: relationship to language lateralization. Brain 129:1164–1176. doi:10.​1093/​brain/​awl055Brain CrossRefPubMed
go back to reference Fleiss JL, Cohen J, Everitt BS (1969) Large sample standard errors of kappa and weighted kappa. Psychol Bull 72:323CrossRef Fleiss JL, Cohen J, Everitt BS (1969) Large sample standard errors of kappa and weighted kappa. Psychol Bull 72:323CrossRef
go back to reference Galaburda AM, Sanides F (1980) Cytoarchitectonic organization of the human auditory cortex. J Comp Neurol 190:597–610CrossRefPubMed Galaburda AM, Sanides F (1980) Cytoarchitectonic organization of the human auditory cortex. J Comp Neurol 190:597–610CrossRefPubMed
go back to reference Geschwind N, Levitsky W (1968) Human brain left-right asymmetries in temporal speech region. Science 161:186–187CrossRefPubMed Geschwind N, Levitsky W (1968) Human brain left-right asymmetries in temporal speech region. Science 161:186–187CrossRefPubMed
go back to reference Gilbert AN, Wysocki CJ (1992) Hand preference and age in the United States. Neuropsychologia 30:601–608CrossRefPubMed Gilbert AN, Wysocki CJ (1992) Hand preference and age in the United States. Neuropsychologia 30:601–608CrossRefPubMed
go back to reference Hackett TA, Preuss TM, Kaas JH (2001) Architectonic identification of the core region in auditory cortex of macaques, chimpanzees, and humans. J Comp Neurol 441:197–222CrossRefPubMed Hackett TA, Preuss TM, Kaas JH (2001) Architectonic identification of the core region in auditory cortex of macaques, chimpanzees, and humans. J Comp Neurol 441:197–222CrossRefPubMed
go back to reference Hubl D, Dougoud-Chauvin V, Zeller M, Federspiel A, Boesch C, Strik W, Dierks T, Koenig T (2009) Structural analysis of Heschl’s Gyrus in schizophrenia patients with auditory hallucinations. Neuropsychobiology 61:1–9. doi:10.1159/000258637 CrossRefPubMed Hubl D, Dougoud-Chauvin V, Zeller M, Federspiel A, Boesch C, Strik W, Dierks T, Koenig T (2009) Structural analysis of Heschl’s Gyrus in schizophrenia patients with auditory hallucinations. Neuropsychobiology 61:1–9. doi:10.​1159/​000258637 CrossRefPubMed
go back to reference Hund-Georgiadis M, Lex U, Friederici AD, von Cramon DY (2002) Non-invasive regime for language lateralization in right- and left- handers by means of functional MRI and dichotic listening. Exp Brain Res 145:166–176CrossRefPubMed Hund-Georgiadis M, Lex U, Friederici AD, von Cramon DY (2002) Non-invasive regime for language lateralization in right- and left- handers by means of functional MRI and dichotic listening. Exp Brain Res 145:166–176CrossRefPubMed
go back to reference Johnsrude IS, Penhune VB, Zatorre RJ (2000) Functional specificity in the right human auditory cortex for perceiving pitch direction. Brain 123:155–163CrossRefPubMed Johnsrude IS, Penhune VB, Zatorre RJ (2000) Functional specificity in the right human auditory cortex for perceiving pitch direction. Brain 123:155–163CrossRefPubMed
go back to reference Josse G, Tzourio-Mazoyer N (2004) Hemispheric specialization for language. Brain Res Brain Res Rev 44:1–12CrossRefPubMed Josse G, Tzourio-Mazoyer N (2004) Hemispheric specialization for language. Brain Res Brain Res Rev 44:1–12CrossRefPubMed
go back to reference Josse G, Mazoyer B, Crivello F, Tzourio-Mazoyer N (2003) Left planum temporale: an anatomical marker of left hemispheric specialization for language comprehension. Cognit Brain Res 18:1–14CrossRef Josse G, Mazoyer B, Crivello F, Tzourio-Mazoyer N (2003) Left planum temporale: an anatomical marker of left hemispheric specialization for language comprehension. Cognit Brain Res 18:1–14CrossRef
go back to reference Knecht S, Dräger B, Deppe M, Bobe L, Lohmann H, Flöel A, Ringelstein EB, Henningsen H (2000) Handedness and hemispheric language dominance in healthy humans. Brain 123:2512–2518CrossRefPubMed Knecht S, Dräger B, Deppe M, Bobe L, Lohmann H, Flöel A, Ringelstein EB, Henningsen H (2000) Handedness and hemispheric language dominance in healthy humans. Brain 123:2512–2518CrossRefPubMed
go back to reference Kulynych JJ, Vladar K, Jones DW, Weinberger DR (1994) Gender differences in the normal lateralization of the supratemporal cortex: MRI surface-rendering morphometry of Heschl’s gyrus and the planum temporale. Cereb Cortex 4:107–118CrossRefPubMed Kulynych JJ, Vladar K, Jones DW, Weinberger DR (1994) Gender differences in the normal lateralization of the supratemporal cortex: MRI surface-rendering morphometry of Heschl’s gyrus and the planum temporale. Cereb Cortex 4:107–118CrossRefPubMed
go back to reference Leonard CM, Voeller KK, Lombardino LJ, Morris MK, Hynd GW, Alexander AW, Andersen HG, Garofalakis M, Honeyman JC, Mao J (1993) Anomalous cerebral structure in dyslexia revealed with magnetic resonance imaging. Arch Neurol 50:461–469CrossRefPubMed Leonard CM, Voeller KK, Lombardino LJ, Morris MK, Hynd GW, Alexander AW, Andersen HG, Garofalakis M, Honeyman JC, Mao J (1993) Anomalous cerebral structure in dyslexia revealed with magnetic resonance imaging. Arch Neurol 50:461–469CrossRefPubMed
go back to reference Leonard CM, Puranik C, Kuldau JM, Lombardino LJ (1998) Normal variation in the frequency and location of human auditory cortex landmarks. Heschl’s gyrus: where is it? Cereb Cortex 8:397–406CrossRefPubMed Leonard CM, Puranik C, Kuldau JM, Lombardino LJ (1998) Normal variation in the frequency and location of human auditory cortex landmarks. Heschl’s gyrus: where is it? Cereb Cortex 8:397–406CrossRefPubMed
go back to reference Leonard CM, Eckert MA, Lombardino LJ, Oakland T, Kranzler J, Mohr CM, King WM, Freeman A (2001) Anatomical risk factors for phonological dyslexia. Cereb Cortex 11:148–157CrossRefPubMed Leonard CM, Eckert MA, Lombardino LJ, Oakland T, Kranzler J, Mohr CM, King WM, Freeman A (2001) Anatomical risk factors for phonological dyslexia. Cereb Cortex 11:148–157CrossRefPubMed
go back to reference Liégeois-Chauvel C, de Graaf JB, Laguitton V, Chauvel P (1999) Specialization of left auditory cortex for speech perception in man depends on temporal coding. Cereb Cortex 9:484–496CrossRefPubMed Liégeois-Chauvel C, de Graaf JB, Laguitton V, Chauvel P (1999) Specialization of left auditory cortex for speech perception in man depends on temporal coding. Cereb Cortex 9:484–496CrossRefPubMed
go back to reference Liégeois-Chauvel C, Giraud K, Badier JM, Marquis P, Chauvel P (2001) Intracerebral evoked potentials in pitch perception reveal a functional asymmetry of the human auditory cortex. Ann N Y Acad Sci 930:117–132CrossRefPubMed Liégeois-Chauvel C, Giraud K, Badier JM, Marquis P, Chauvel P (2001) Intracerebral evoked potentials in pitch perception reveal a functional asymmetry of the human auditory cortex. Ann N Y Acad Sci 930:117–132CrossRefPubMed
go back to reference Meyer M, Liem F, Hirsiger S, Jäncke L, Hänggi J (2013) Cortical surface area and cortical thickness demonstrate differential structural asymmetry in auditory-related areas of the human cortex. Cereb Cortex. doi:10.1093/cercor/bht094 PubMedCentral Meyer M, Liem F, Hirsiger S, Jäncke L, Hänggi J (2013) Cortical surface area and cortical thickness demonstrate differential structural asymmetry in auditory-related areas of the human cortex. Cereb Cortex. doi:10.​1093/​cercor/​bht094 PubMedCentral
go back to reference Morosan P, Rademacher J, Schleicher A, Amunts K, Schormann T, Zilles K (2001) Human primary auditory cortex: cytoarchitectonic subdivisions and mapping into a spatial reference system. Neuroimage 13:684–701. doi:10.1006/nimg 2000.0715CrossRefPubMed Morosan P, Rademacher J, Schleicher A, Amunts K, Schormann T, Zilles K (2001) Human primary auditory cortex: cytoarchitectonic subdivisions and mapping into a spatial reference system. Neuroimage 13:684–701. doi:10.​1006/​nimg 2000.0715CrossRefPubMed
go back to reference Musiek FE, Reeves AG (1990) Asymmetries of the auditory areas of the cerebrum. J Am Acad Audiol 1:240–245PubMed Musiek FE, Reeves AG (1990) Asymmetries of the auditory areas of the cerebrum. J Am Acad Audiol 1:240–245PubMed
go back to reference Oldfield RC (1971) The assessment and analysis of handedness: the Edinburgh inventory. Neuropsychologia 9:97–113CrossRefPubMed Oldfield RC (1971) The assessment and analysis of handedness: the Edinburgh inventory. Neuropsychologia 9:97–113CrossRefPubMed
go back to reference Patterson RD, Uppenkamp S, Johnsrude IS, Griffiths TD (2002) The processing of temporal pitch and melody information in auditory cortex. Neuron 36:767–776CrossRefPubMed Patterson RD, Uppenkamp S, Johnsrude IS, Griffiths TD (2002) The processing of temporal pitch and melody information in auditory cortex. Neuron 36:767–776CrossRefPubMed
go back to reference Penhune VB, Zatorre RJ, MacDonald JD, Evans AC (1996) Interhemispheric anatomical differences in human primary auditory cortex: probabilistic mapping and volume measurement from magnetic resonance scans. Cereb Cortex 6:661–672CrossRefPubMed Penhune VB, Zatorre RJ, MacDonald JD, Evans AC (1996) Interhemispheric anatomical differences in human primary auditory cortex: probabilistic mapping and volume measurement from magnetic resonance scans. Cereb Cortex 6:661–672CrossRefPubMed
go back to reference Penhune VB, Cismaru R, Dorsaint-Pierre R, Petitto LA, Zatorre RJ (2003) The morphometry of auditory cortex in the congenitally deaf measured using MRI. Neuroimage 20:1215–1225CrossRefPubMed Penhune VB, Cismaru R, Dorsaint-Pierre R, Petitto LA, Zatorre RJ (2003) The morphometry of auditory cortex in the congenitally deaf measured using MRI. Neuroimage 20:1215–1225CrossRefPubMed
go back to reference Pfeifer RA (1920) Myelogenetisch-anatomische Untersuchungen über das kortikale Ende der Hörleitung. BG Teubner Pfeifer RA (1920) Myelogenetisch-anatomische Untersuchungen über das kortikale Ende der Hörleitung. BG Teubner
go back to reference Poeppel D (2003) The analysis of speech in different temporal integration windows: cerebral lateralization as asymmetric sampling in time. Speech Commun 41:245–255CrossRef Poeppel D (2003) The analysis of speech in different temporal integration windows: cerebral lateralization as asymmetric sampling in time. Speech Commun 41:245–255CrossRef
go back to reference Rademacher J, Caviness VS, Steinmetz H, Galaburda AM (1993) Topographical variation of the human primary cortices: implications for neuroimaging, brain mapping, and neurobiology. Cereb Cortex 3:313–329CrossRefPubMed Rademacher J, Caviness VS, Steinmetz H, Galaburda AM (1993) Topographical variation of the human primary cortices: implications for neuroimaging, brain mapping, and neurobiology. Cereb Cortex 3:313–329CrossRefPubMed
go back to reference Rademacher J, Morosan P, Schleicher A, Freund HJ, Zilles K (2001) Human primary auditory cortex in women and men. NeuroReport 12:1561–1565CrossRefPubMed Rademacher J, Morosan P, Schleicher A, Freund HJ, Zilles K (2001) Human primary auditory cortex in women and men. NeuroReport 12:1561–1565CrossRefPubMed
go back to reference Raznahan A, Lerch JP, Lee N, Greenstein D, Wallace GL, Stockman M, Clasen L, Shaw PW, Giedd JN (2011) Patterns of coordinated anatomical change in human cortical development: a longitudinal neuroimaging study of maturational coupling. Neuron 72:873–884. doi:10.1016/j.neuron.2011.09.028 CrossRefPubMed Raznahan A, Lerch JP, Lee N, Greenstein D, Wallace GL, Stockman M, Clasen L, Shaw PW, Giedd JN (2011) Patterns of coordinated anatomical change in human cortical development: a longitudinal neuroimaging study of maturational coupling. Neuron 72:873–884. doi:10.​1016/​j.​neuron.​2011.​09.​028 CrossRefPubMed
go back to reference Schneider P, Scherg M, Dosch HG, Specht HJ, Gutschalk A, Rupp A (2002) Morphology of Heschl’s gyrus reflects enhanced activation in the auditory cortex of musicians. Nat Neurosci 5:688–694CrossRefPubMed Schneider P, Scherg M, Dosch HG, Specht HJ, Gutschalk A, Rupp A (2002) Morphology of Heschl’s gyrus reflects enhanced activation in the auditory cortex of musicians. Nat Neurosci 5:688–694CrossRefPubMed
go back to reference Schneider P, Sluming V, Roberts N, Scherg M, Goebel R, Specht HJ, Dosch HG, Bleeck S, Stippich C, Rupp A (2005) Structural and functional asymmetry of lateral Heschl’s gyrus reflects pitch perception preference. Nat Neurosci 8:1241–1247. doi:10.1038/nn1530 CrossRefPubMed Schneider P, Sluming V, Roberts N, Scherg M, Goebel R, Specht HJ, Dosch HG, Bleeck S, Stippich C, Rupp A (2005) Structural and functional asymmetry of lateral Heschl’s gyrus reflects pitch perception preference. Nat Neurosci 8:1241–1247. doi:10.​1038/​nn1530 CrossRefPubMed
go back to reference Smith KM, Mecoli MD, Altaye M, Komlos M, Maitra R, Eaton KP, Egelhoff JC, Holland SK (2011) Morphometric differences in the Heschl’s Gyrus of hearing impaired and normal hearing infants. Cereb Cortex 21:991–998CrossRefPubMedCentralPubMed Smith KM, Mecoli MD, Altaye M, Komlos M, Maitra R, Eaton KP, Egelhoff JC, Holland SK (2011) Morphometric differences in the Heschl’s Gyrus of hearing impaired and normal hearing infants. Cereb Cortex 21:991–998CrossRefPubMedCentralPubMed
go back to reference Szaflarski JP, Binder JR, Possing ET, McKiernan KA, Ward BD, Hammeke TA (2002) Language lateralization in left-handed and ambidextrous people: fMRI data. Neurology 59:238–244CrossRefPubMed Szaflarski JP, Binder JR, Possing ET, McKiernan KA, Ward BD, Hammeke TA (2002) Language lateralization in left-handed and ambidextrous people: fMRI data. Neurology 59:238–244CrossRefPubMed
go back to reference Tzourio N, Nkanga-Ngila B, Mazoyer B (1998) Left planum temporale surface correlates with functional dominance during story listening. NeuroReport 9:829–833CrossRefPubMed Tzourio N, Nkanga-Ngila B, Mazoyer B (1998) Left planum temporale surface correlates with functional dominance during story listening. NeuroReport 9:829–833CrossRefPubMed
go back to reference Tzourio-Mazoyer N, Josse G, Crivello F, Mazoyer B (2004) Interindividual variability in the hemispheric organization for speech. Neuroimage 21:422–435CrossRefPubMed Tzourio-Mazoyer N, Josse G, Crivello F, Mazoyer B (2004) Interindividual variability in the hemispheric organization for speech. Neuroimage 21:422–435CrossRefPubMed
go back to reference Tzourio-Mazoyer N, Simon G, Crivello F, Jobard G, Zago L, Perchey G, Hervé PY, Joliot M, Petit L, Mellet E, Mazoyer B (2010) Effect of familial sinistrality on planum temporale surface and brain tissue asymmetries. Cereb Cortex 20:1476–1485. doi:10.1093/cercor/bhp209 CrossRefPubMed Tzourio-Mazoyer N, Simon G, Crivello F, Jobard G, Zago L, Perchey G, Hervé PY, Joliot M, Petit L, Mellet E, Mazoyer B (2010) Effect of familial sinistrality on planum temporale surface and brain tissue asymmetries. Cereb Cortex 20:1476–1485. doi:10.​1093/​cercor/​bhp209 CrossRefPubMed
go back to reference Von Economo C, Horn L (1930) Über Windungsrelief, Maße und Rindenarchitektonik der Supratemporalfläche, ihre individuellen und ihre Seitenunterschiede. Zeitschrift für die gesamte Neurologie und Psychiatrie 130:678–757CrossRef Von Economo C, Horn L (1930) Über Windungsrelief, Maße und Rindenarchitektonik der Supratemporalfläche, ihre individuellen und ihre Seitenunterschiede. Zeitschrift für die gesamte Neurologie und Psychiatrie 130:678–757CrossRef
go back to reference Von Economo CB, Koskinas GN (1925) The cytoarchitectonics of the adult human cortex Julius. Springer Verlag, Berlin Von Economo CB, Koskinas GN (1925) The cytoarchitectonics of the adult human cortex Julius. Springer Verlag, Berlin
go back to reference Warrier C, Wong P, Penhune V, Zatorre R, Parrish T, Abrams D, Kraus N (2009) Relating structure to function: Heschl’s gyrus and acoustic processing. J Neurosci 29:61CrossRefPubMedCentralPubMed Warrier C, Wong P, Penhune V, Zatorre R, Parrish T, Abrams D, Kraus N (2009) Relating structure to function: Heschl’s gyrus and acoustic processing. J Neurosci 29:61CrossRefPubMedCentralPubMed
go back to reference Zatorre RJ (1988) Pitch perception of complex tones and human temporal-lobe function. J Acoust Soc Am 84:566–572CrossRefPubMed Zatorre RJ (1988) Pitch perception of complex tones and human temporal-lobe function. J Acoust Soc Am 84:566–572CrossRefPubMed
go back to reference Zatorre RJ, Bouffard M, Ahad P, Belin P (2002) Where is ‘where’ in the human auditory cortex? Nat Neurosci 5:905–909CrossRefPubMed Zatorre RJ, Bouffard M, Ahad P, Belin P (2002) Where is ‘where’ in the human auditory cortex? Nat Neurosci 5:905–909CrossRefPubMed
Metadata
Title
Descriptive anatomy of Heschl’s gyri in 430 healthy volunteers, including 198 left-handers
Authors
D. Marie
G. Jobard
F. Crivello
G. Perchey
L. Petit
E. Mellet
M. Joliot
L. Zago
B. Mazoyer
N. Tzourio-Mazoyer
Publication date
01-03-2015
Publisher
Springer Berlin Heidelberg
Published in
Brain Structure and Function / Issue 2/2015
Print ISSN: 1863-2653
Electronic ISSN: 1863-2661
DOI
https://doi.org/10.1007/s00429-013-0680-x

Other articles of this Issue 2/2015

Brain Structure and Function 2/2015 Go to the issue