Skip to main content
Top
Published in: The International Journal of Cardiovascular Imaging 12/2019

01-12-2019 | Original Paper

Denoising and artefact removal for transthoracic echocardiographic imaging in congenital heart disease: utility of diagnosis specific deep learning algorithms

Authors: Gerhard-Paul Diller, Astrid E. Lammers, Sonya Babu-Narayan, Wei Li, Robert M. Radke, Helmut Baumgartner, Michael A. Gatzoulis, Stefan Orwat

Published in: The International Journal of Cardiovascular Imaging | Issue 12/2019

Login to get access

Abstract

Deep learning (DL) algorithms are increasingly used in cardiac imaging. We aimed to investigate the utility of DL algorithms in de-noising transthoracic echocardiographic images and removing acoustic shadowing artefacts specifically in patients with congenital heart disease (CHD). In addition, the performance of DL algorithms trained on CHD samples was compared to models trained entirely on structurally normal hearts. Deep neural network based autoencoders were built for denoising and removal of acoustic shadowing artefacts based on routine echocardiographic apical 4-chamber views and performance was assessed by visual assessment and quantifying cross entropy. 267 subjects (94 TGA and atrial switch and 39 with ccTGA, 10 Ebstein anomaly, 9 with uncorrected AVSD and 115 normal controls; 56.9% male, age 38.9 ± 15.6 years) with routine transthoracic examinations were included. The autoencoders significantly enhanced image quality across diagnostic subgroups (p < 0.005 for all). Models trained on congenital heart samples performed significantly better when exposed to examples from congenital heart disease patients. Our study demonstrates the potential of autoencoders for denoising and artefact removal in patients with congenital heart disease and structurally normal hearts. While models trained entirely on samples from structurally normal hearts perform reasonably in CHD, our data illustrates the value of dedicated image augmentation systems trained specifically on CHD samples.
Appendix
Available only for authorised users
Literature
1.
go back to reference Baumgartner H, Bonhoeffer P, De Groot NM, de Haan F, Deanfield JE, Galie N, Gatzoulis MA, Gohlke-Baerwolf C, Kaemmerer H, Kilner P, Meijboom F, Mulder BJ, Oechslin E, Oliver JM, Serraf A, Szatmari A, Thaulow E, Vouhe PR, Walma E, Task Force on the Management of Grown-up Congenital Heart Disease of the European Society of C, Association for European Paediatric C, Guidelines ESCCfP (2010) ESC guidelines for the management of grown-up congenital heart disease (new version 2010). Eur Heart J 31(23):2915–2957CrossRef Baumgartner H, Bonhoeffer P, De Groot NM, de Haan F, Deanfield JE, Galie N, Gatzoulis MA, Gohlke-Baerwolf C, Kaemmerer H, Kilner P, Meijboom F, Mulder BJ, Oechslin E, Oliver JM, Serraf A, Szatmari A, Thaulow E, Vouhe PR, Walma E, Task Force on the Management of Grown-up Congenital Heart Disease of the European Society of C, Association for European Paediatric C, Guidelines ESCCfP (2010) ESC guidelines for the management of grown-up congenital heart disease (new version 2010). Eur Heart J 31(23):2915–2957CrossRef
2.
go back to reference Li W, West C, McGhie J, van den Bosch AE, Babu-Narayan SV, Meijboom F, Mongeon FP, Khairy P, Kimball TR, Beauchesne LM, Ammash NM, Veldtman GR, Oechslin E, Gatzoulis MA, Webb G (2018) Consensus recommendations for echocardiography in adults with congenital heart defects from the International Society of Adult Congenital Heart Disease (ISACHD). Int J Cardiol 272:77–83CrossRef Li W, West C, McGhie J, van den Bosch AE, Babu-Narayan SV, Meijboom F, Mongeon FP, Khairy P, Kimball TR, Beauchesne LM, Ammash NM, Veldtman GR, Oechslin E, Gatzoulis MA, Webb G (2018) Consensus recommendations for echocardiography in adults with congenital heart defects from the International Society of Adult Congenital Heart Disease (ISACHD). Int J Cardiol 272:77–83CrossRef
3.
go back to reference Stout KK, Daniels CJ, Aboulhosn JA, Bozkurt B, Broberg CS, Colman JM, Crumb SR, Dearani JA, Fuller S, Gurvitz M, Khairy P, Landzberg MJ, Saidi A, Valente AM, Van Hare GF (2018) 2018 AHA/ACC guideline for the management of adults with congenital heart disease. Circulation 139:e698–e800 Stout KK, Daniels CJ, Aboulhosn JA, Bozkurt B, Broberg CS, Colman JM, Crumb SR, Dearani JA, Fuller S, Gurvitz M, Khairy P, Landzberg MJ, Saidi A, Valente AM, Van Hare GF (2018) 2018 AHA/ACC guideline for the management of adults with congenital heart disease. Circulation 139:e698–e800
4.
go back to reference Johnson KW, Torres Soto J, Glicksberg BS, Shameer K, Miotto R, Ali M, Ashley E, Dudley JT (2018) Artificial intelligence in cardiology. J Am Coll Cardiol 71(23):2668–2679CrossRef Johnson KW, Torres Soto J, Glicksberg BS, Shameer K, Miotto R, Ali M, Ashley E, Dudley JT (2018) Artificial intelligence in cardiology. J Am Coll Cardiol 71(23):2668–2679CrossRef
5.
go back to reference LeCun Y, Bengio Y, Hinton G (2015) Deep learning. Nature 521(7553):436–444CrossRef LeCun Y, Bengio Y, Hinton G (2015) Deep learning. Nature 521(7553):436–444CrossRef
6.
go back to reference Madani A, Arnaout R, Mofrad M, Arnaout R. Fast and accurate view classification of echocardiograms using deep learning. npj Digit Med 2018;1(1):6.CrossRef Madani A, Arnaout R, Mofrad M, Arnaout R. Fast and accurate view classification of echocardiograms using deep learning. npj Digit Med 2018;1(1):6.CrossRef
7.
go back to reference Madani A, Ong JR, Tibrewal A, Mofrad MR. Deep echocardiography: data-efficient supervised and semi-supervised deep learning towards automated diagnosis of cardiac disease. npj Digit Med 2018;1(1):59.CrossRef Madani A, Ong JR, Tibrewal A, Mofrad MR. Deep echocardiography: data-efficient supervised and semi-supervised deep learning towards automated diagnosis of cardiac disease. npj Digit Med 2018;1(1):59.CrossRef
8.
go back to reference Rajan SP, Kavitha V (2017) Diagnosis of cardiovascular diseases using retinal images through vessel segmentation graph. Curr Med Imaging Rev 13(4):454–459CrossRef Rajan SP, Kavitha V (2017) Diagnosis of cardiovascular diseases using retinal images through vessel segmentation graph. Curr Med Imaging Rev 13(4):454–459CrossRef
9.
go back to reference Ronneberger O, Fischer P, Brox T (2015) U-net: convolutional networks for biomedical image segmentation. In: International conference on medical image computing and computer-assisted intervention. Springer, New York, pp 234–241 Ronneberger O, Fischer P, Brox T (2015) U-net: convolutional networks for biomedical image segmentation. In: International conference on medical image computing and computer-assisted intervention. Springer, New York, pp 234–241
10.
go back to reference Salem A-BM, Revett K, El-Dahshan E-SA (2009) Machine learning in electrocardiogram diagnosis. In: International multiconference on computer science and information technology, 2009. IMCSIT'09. IEEE, pp 429–433 Salem A-BM, Revett K, El-Dahshan E-SA (2009) Machine learning in electrocardiogram diagnosis. In: International multiconference on computer science and information technology, 2009. IMCSIT'09. IEEE, pp 429–433
12.
go back to reference Bai W, Sinclair M, Tarroni G, Oktay O, Rajchl M, Vaillant G, Lee AM, Aung N, Lukaschuk E, Sanghvi MM, Zemrak F, Fung K, Paiva JM, Carapella V, Kim YJ, Suzuki H, Kainz B, Matthews PM, Petersen SE, Piechnik SK, Neubauer S, Glocker B, Rueckert D (2018) Automated cardiovascular magnetic resonance image analysis with fully convolutional networks. J Cardiovasc Magn Reson 20(1):65CrossRef Bai W, Sinclair M, Tarroni G, Oktay O, Rajchl M, Vaillant G, Lee AM, Aung N, Lukaschuk E, Sanghvi MM, Zemrak F, Fung K, Paiva JM, Carapella V, Kim YJ, Suzuki H, Kainz B, Matthews PM, Petersen SE, Piechnik SK, Neubauer S, Glocker B, Rueckert D (2018) Automated cardiovascular magnetic resonance image analysis with fully convolutional networks. J Cardiovasc Magn Reson 20(1):65CrossRef
13.
go back to reference Lang RM, Bierig M, Devereux RB, Flachskampf FA, Foster E, Pellikka PA, Picard MH, Roman MJ, Seward J, Shanewise JS, Solomon SD, Spencer KT, Sutton MS, Stewart WJ, Chamber Quantification Writing G, American Society of Echocardiography's G, Standards C, European Association of E (2005) Recommendations for chamber quantification: a report from the American Society of Echocardiography's Guidelines and Standards Committee and the Chamber Quantification Writing Group, developed in conjunction with the European Association of Echocardiography, a branch of the European Society of Cardiology. J Am Soc Echocardiogr 18(12):1440–1463CrossRef Lang RM, Bierig M, Devereux RB, Flachskampf FA, Foster E, Pellikka PA, Picard MH, Roman MJ, Seward J, Shanewise JS, Solomon SD, Spencer KT, Sutton MS, Stewart WJ, Chamber Quantification Writing G, American Society of Echocardiography's G, Standards C, European Association of E (2005) Recommendations for chamber quantification: a report from the American Society of Echocardiography's Guidelines and Standards Committee and the Chamber Quantification Writing Group, developed in conjunction with the European Association of Echocardiography, a branch of the European Society of Cardiology. J Am Soc Echocardiogr 18(12):1440–1463CrossRef
14.
go back to reference Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodol Comput Appl Probab 1(2):127–190CrossRef Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodol Comput Appl Probab 1(2):127–190CrossRef
15.
16.
17.
go back to reference Turner SP, Monaghan MJ (2006) Tissue harmonic imaging for standard left ventricular measurements: fundamentally flawed? Eur J Echocardiogr 7(1):9–15CrossRef Turner SP, Monaghan MJ (2006) Tissue harmonic imaging for standard left ventricular measurements: fundamentally flawed? Eur J Echocardiogr 7(1):9–15CrossRef
18.
go back to reference Abdi AH, Luong C, Tsang T, Allan G, Nouranian S, Jue J, Hawley D, Fleming S, Gin K, Swift J, Rohling R, Abolmaesumi P (2017) Automatic quality assessment of echocardiograms using convolutional neural networks: feasibility on the apical four-chamber view. IEEE Trans Med Imaging 36(6):1221–1230CrossRef Abdi AH, Luong C, Tsang T, Allan G, Nouranian S, Jue J, Hawley D, Fleming S, Gin K, Swift J, Rohling R, Abolmaesumi P (2017) Automatic quality assessment of echocardiograms using convolutional neural networks: feasibility on the apical four-chamber view. IEEE Trans Med Imaging 36(6):1221–1230CrossRef
19.
go back to reference Hauptmann A, Arridge S, Lucka F, Muthurangu V, Steeden JA (2018) Real-time cardiovascular MR with spatio-temporal artifact suppression using deep learning—proof of concept in congenital heart disease. Magn Reson Med 81:1143–1156CrossRef Hauptmann A, Arridge S, Lucka F, Muthurangu V, Steeden JA (2018) Real-time cardiovascular MR with spatio-temporal artifact suppression using deep learning—proof of concept in congenital heart disease. Magn Reson Med 81:1143–1156CrossRef
Metadata
Title
Denoising and artefact removal for transthoracic echocardiographic imaging in congenital heart disease: utility of diagnosis specific deep learning algorithms
Authors
Gerhard-Paul Diller
Astrid E. Lammers
Sonya Babu-Narayan
Wei Li
Robert M. Radke
Helmut Baumgartner
Michael A. Gatzoulis
Stefan Orwat
Publication date
01-12-2019
Publisher
Springer Netherlands
Published in
The International Journal of Cardiovascular Imaging / Issue 12/2019
Print ISSN: 1569-5794
Electronic ISSN: 1875-8312
DOI
https://doi.org/10.1007/s10554-019-01671-0

Other articles of this Issue 12/2019

The International Journal of Cardiovascular Imaging 12/2019 Go to the issue