Skip to main content
Top
Published in: BMC Geriatrics 1/2022

Open Access 01-12-2022 | Dementia | Research

Promoting independence in Lewy body dementia through exercise: the PRIDE study

Authors: Michael J. Inskip, Yorgi Mavros, Perminder S. Sachdev, Jeffrey M. Hausdorff, Inbar Hillel, Maria A. Fiatarone Singh

Published in: BMC Geriatrics | Issue 1/2022

Login to get access

Abstract

Background

Lewy body dementia (LBD) is an aggressive type of dementia of rapid, fluctuating disease trajectory, higher incidence of adverse events, and poorer functional independence than observed in Alzheimer’s disease dementia. Non-pharmacological treatments such as progressive, high-intensity exercise are effective in other neurological cohorts but have been scarcely evaluated in LBD.

Methods

The Promoting Independence in Lewy Body Dementia through Exercise (PRIDE) trial was a non-randomised, non-blinded, crossover pilot trial involving older adults with LBD consisting of a baseline assessment, an 8-week wait-list, and an 8-week exercise intervention. The aims of this study were to evaluate the determinants of the primary outcome functional independence, as measured by the Movement Disorder Society Unified Parkinson’s Disease Rating Scale, and the feasibility and preliminary efficacy of an exercise intervention on this outcome. Additionally, important clinical characteristics were evaluated to explore associations and treatment targets. The exercise intervention was supervised, clinic-based, high-intensity progressive resistance training (PRT), challenging balance, and functional exercises, 3 days/week.

Results

Nine participants completed the baseline cross-sectional study, of which five had a diagnosis of Parkinson’s disease dementia (PDD), and four dementia with Lewy Bodies (DLB). Six completed the exercise intervention (three PDD, three DLB). The cohort was diverse, ranging from mild to severe dementia and living in various residential settings. Greater functional independence at baseline was significantly associated with better physical function, balance, cognition, quality of life, muscle mass ratio, walking endurance, faster walking speed and cadence, and lower dementia severity (p < 0.05). Participants declined by clinically meaningful amounts in functional independence, cognition, physical function, muscle mass, and weight over the wait-list period (p < 0.05). Following exercise, participants improved by clinically meaningful amounts in functional independence, cognition, physical function, and strength (p < 0.05). Progressive, high intensity exercise was well-tolerated (> 80% adherence), and only one minor exercise-related adverse event occurred.

Conclusions

PRIDE is the first exercise trial conducted specifically within individuals diagnosed with LBD, and provides important insight for the design of larger, randomized trials for further evaluation of progressive, high-intensity exercise as a valuable treatment in LBD.

Trial registration

The PRIDE trial protocol has previously been prospectively registered (08/04/2016, ANZCTR: ACTRN12616000466448).
Appendix
Available only for authorised users
Literature
1.
go back to reference McKeith IG, Boeve BF, Dickson DW, Halliday G, Taylor J-P, Weintraub D, et al. Diagnosis and management of dementia with Lewy bodies: Fourth consensus report of the DLB Consortium. Neurology. 2017;89(1):88–100.PubMedPubMedCentralCrossRef McKeith IG, Boeve BF, Dickson DW, Halliday G, Taylor J-P, Weintraub D, et al. Diagnosis and management of dementia with Lewy bodies: Fourth consensus report of the DLB Consortium. Neurology. 2017;89(1):88–100.PubMedPubMedCentralCrossRef
2.
go back to reference Jones SV, O’brien J. The prevalence and incidence of dementia with Lewy bodies: a systematic review of population and clinical studies. Psychol Med. 2014;44(4):673–83.CrossRef Jones SV, O’brien J. The prevalence and incidence of dementia with Lewy bodies: a systematic review of population and clinical studies. Psychol Med. 2014;44(4):673–83.CrossRef
3.
go back to reference Kane JP, Surendranathan A, Bentley A, Barker SA, Taylor J-P, Thomas AJ, et al. Clinical prevalence of Lewy body dementia. Alzheimer’s research & therapy. 2018;10(1):1–8.CrossRef Kane JP, Surendranathan A, Bentley A, Barker SA, Taylor J-P, Thomas AJ, et al. Clinical prevalence of Lewy body dementia. Alzheimer’s research & therapy. 2018;10(1):1–8.CrossRef
5.
go back to reference Mueller C, Ballard C, Corbett A, Aarsland D. The prognosis of dementia with Lewy bodies. The Lancet Neurology. 2017;16(5):390–8.PubMedCrossRef Mueller C, Ballard C, Corbett A, Aarsland D. The prognosis of dementia with Lewy bodies. The Lancet Neurology. 2017;16(5):390–8.PubMedCrossRef
6.
go back to reference Mc Ardle R, Del Din S, Donaghy P, Galna B, Thomas A, Rochester L. Factors that influence habitual activity in mild cognitive impairment and dementia. Gerontology. 2020;66(2):197–208.PubMedCrossRef Mc Ardle R, Del Din S, Donaghy P, Galna B, Thomas A, Rochester L. Factors that influence habitual activity in mild cognitive impairment and dementia. Gerontology. 2020;66(2):197–208.PubMedCrossRef
7.
go back to reference Allan LM, Ballard CG, Rowan EN, Kenny RA. Incidence and prediction of falls in dementia: a prospective study in older people. PloS one. 2009;4(5):e5521.PubMedPubMedCentralCrossRef Allan LM, Ballard CG, Rowan EN, Kenny RA. Incidence and prediction of falls in dementia: a prospective study in older people. PloS one. 2009;4(5):e5521.PubMedPubMedCentralCrossRef
8.
go back to reference FitzGerald JM, Perera G, Chang-Tave A, Price A, Rajkumar AP, Bhattarai M, et al. The incidence of recorded delirium episodes before and after dementia diagnosis: differences between dementia with Lewy bodies and Alzheimer’s disease. J Am Med Dir Assoc. 2019;20(5):604–9.PubMedCrossRef FitzGerald JM, Perera G, Chang-Tave A, Price A, Rajkumar AP, Bhattarai M, et al. The incidence of recorded delirium episodes before and after dementia diagnosis: differences between dementia with Lewy bodies and Alzheimer’s disease. J Am Med Dir Assoc. 2019;20(5):604–9.PubMedCrossRef
9.
go back to reference Roque M, Salva A, Vellas B. Malnutrition in community-dwelling adults with dementia (NutriAlz Trial). J Nutr Health Aging. 2013;17(4):295–9.PubMedCrossRef Roque M, Salva A, Vellas B. Malnutrition in community-dwelling adults with dementia (NutriAlz Trial). J Nutr Health Aging. 2013;17(4):295–9.PubMedCrossRef
10.
go back to reference Borda MG, Soennesyn H, Steves CJ, Vik-Mo AO, Pérez-Zepeda MU, Aarsland D. Frailty in Older Adults with Mild Dementia: Dementia with Lewy Bodies and Alzheimer’s Disease. Dementia and Geriatric Cognitive Disorders Extra. 2019;9(1):176–83.CrossRef Borda MG, Soennesyn H, Steves CJ, Vik-Mo AO, Pérez-Zepeda MU, Aarsland D. Frailty in Older Adults with Mild Dementia: Dementia with Lewy Bodies and Alzheimer’s Disease. Dementia and Geriatric Cognitive Disorders Extra. 2019;9(1):176–83.CrossRef
11.
go back to reference Mueller C, Soysal P, Rongve A, Isik AT, Thompson T, Maggi S, et al. Survival time and differences between dementia with Lewy bodies and Alzheimer’s disease following diagnosis: A meta-analysis of longitudinal studies. Ageing Res Rev. 2019;50:72–80.PubMedCrossRef Mueller C, Soysal P, Rongve A, Isik AT, Thompson T, Maggi S, et al. Survival time and differences between dementia with Lewy bodies and Alzheimer’s disease following diagnosis: A meta-analysis of longitudinal studies. Ageing Res Rev. 2019;50:72–80.PubMedCrossRef
12.
go back to reference Inskip M, Mavros Y, Sachdev PS, Fiatarone Singh MA. Exercise for individuals with Lewy body dementia: a systematic review. PLoS ONE. 2016;11(6): e0156520.PubMedPubMedCentralCrossRef Inskip M, Mavros Y, Sachdev PS, Fiatarone Singh MA. Exercise for individuals with Lewy body dementia: a systematic review. PLoS ONE. 2016;11(6): e0156520.PubMedPubMedCentralCrossRef
13.
go back to reference Connors MH, Quinto L, McKeith I, Brodaty H, Allan L, Bamford C, et al. Non-pharmacological interventions for Lewy body dementia: a systematic review. Psychol Med. 2018;48(11):1749–58.PubMedCrossRef Connors MH, Quinto L, McKeith I, Brodaty H, Allan L, Bamford C, et al. Non-pharmacological interventions for Lewy body dementia: a systematic review. Psychol Med. 2018;48(11):1749–58.PubMedCrossRef
14.
go back to reference Taylor J-P, McKeith IG, Burn DJ, Boeve BF, Weintraub D, Bamford C, et al. New evidence on the management of Lewy body dementia. The Lancet Neurology. 2020;19(2):157–69.PubMedCrossRef Taylor J-P, McKeith IG, Burn DJ, Boeve BF, Weintraub D, Bamford C, et al. New evidence on the management of Lewy body dementia. The Lancet Neurology. 2020;19(2):157–69.PubMedCrossRef
15.
go back to reference Dent E, Lien C, Lim WS, Wong WC, Wong CH, Ng TP, et al. The Asia-Pacific clinical practice guidelines for the management of frailty. J Am Med Dir Assoc. 2017;18(7):564–75.PubMedCrossRef Dent E, Lien C, Lim WS, Wong WC, Wong CH, Ng TP, et al. The Asia-Pacific clinical practice guidelines for the management of frailty. J Am Med Dir Assoc. 2017;18(7):564–75.PubMedCrossRef
16.
go back to reference Prodoehl J, Rafferty MR, David FJ, Poon C, Vaillancourt DE, Comella CL, et al. Two-year exercise program improves physical function in Parkinson’s disease: the PRET-PD randomized clinical trial. Neurorehabil Neural Repair. 2015;29(2):112–22.PubMedCrossRef Prodoehl J, Rafferty MR, David FJ, Poon C, Vaillancourt DE, Comella CL, et al. Two-year exercise program improves physical function in Parkinson’s disease: the PRET-PD randomized clinical trial. Neurorehabil Neural Repair. 2015;29(2):112–22.PubMedCrossRef
17.
go back to reference Heyn P, Abreu BC, Ottenbacher KJ. The effects of exercise training on elderly persons with cognitive impairment and dementia: a meta-analysis. Arch Phys Med Rehabil. 2004;85(10):1694–704.PubMedCrossRef Heyn P, Abreu BC, Ottenbacher KJ. The effects of exercise training on elderly persons with cognitive impairment and dementia: a meta-analysis. Arch Phys Med Rehabil. 2004;85(10):1694–704.PubMedCrossRef
18.
go back to reference Inskip M, Mavros Y, Sachdev PS, Singh MAF. Promoting independence in Lewy body dementia through exercise (PRIDE) study: Protocol for a pilot study. Contemporary clinical trials communications. 2019;16: 100466.PubMedPubMedCentralCrossRef Inskip M, Mavros Y, Sachdev PS, Singh MAF. Promoting independence in Lewy body dementia through exercise (PRIDE) study: Protocol for a pilot study. Contemporary clinical trials communications. 2019;16: 100466.PubMedPubMedCentralCrossRef
20.
go back to reference Eldridge SM, Chan CL, Campbell MJ, Bond CM, Hopewell S, Thabane L, et al. CONSORT 2010 statement: extension to randomised pilot and feasibility trials. Pilot Feasibil Stud. 2016;2(1):64.CrossRef Eldridge SM, Chan CL, Campbell MJ, Bond CM, Hopewell S, Thabane L, et al. CONSORT 2010 statement: extension to randomised pilot and feasibility trials. Pilot Feasibil Stud. 2016;2(1):64.CrossRef
21.
go back to reference Goetz CG, Tilley BC, Shaftman SR, Stebbins GT, Fahn S, Martinez-Martin P, et al. Movement Disorder Society-sponsored revision of the Unified Parkinson’s Disease Rating Scale (MDS-UPDRS): scale presentation and clinimetric testing results. Movement Dis. 2008;23(15):2129–70.PubMedCrossRef Goetz CG, Tilley BC, Shaftman SR, Stebbins GT, Fahn S, Martinez-Martin P, et al. Movement Disorder Society-sponsored revision of the Unified Parkinson’s Disease Rating Scale (MDS-UPDRS): scale presentation and clinimetric testing results. Movement Dis. 2008;23(15):2129–70.PubMedCrossRef
22.
go back to reference Galvin JE. Improving the clinical detection of Lewy body dementia with the Lewy body composite risk score. Alzheimer’s & Dementia: Diagnosis, Assessment & Disease Monitoring. 2015;1(3):316–24.CrossRef Galvin JE. Improving the clinical detection of Lewy body dementia with the Lewy body composite risk score. Alzheimer’s & Dementia: Diagnosis, Assessment & Disease Monitoring. 2015;1(3):316–24.CrossRef
23.
go back to reference Holden SK, Finseth T, Sillau SH, Berman BD. Progression of MDS-UPDRS scores over five years in de novo Parkinson disease from the Parkinson’s progression markers initiative cohort. Movement Dis Clin Pract. 2018;5(1):47–53.CrossRef Holden SK, Finseth T, Sillau SH, Berman BD. Progression of MDS-UPDRS scores over five years in de novo Parkinson disease from the Parkinson’s progression markers initiative cohort. Movement Dis Clin Pract. 2018;5(1):47–53.CrossRef
24.
go back to reference Inskip M, Mavros Y, Sachdev PS, Singh MAF. Interrupting the trajectory of frailty in dementia with Lewy bodies with anabolic exercise, dietary intervention and deprescribing of hazardous medications. BMJ Case Rep CP. 2020;13(4).CrossRef Inskip M, Mavros Y, Sachdev PS, Singh MAF. Interrupting the trajectory of frailty in dementia with Lewy bodies with anabolic exercise, dietary intervention and deprescribing of hazardous medications. BMJ Case Rep CP. 2020;13(4).CrossRef
25.
go back to reference Linacre JM, Heinemann AW, Wright BD, Granger CV, Hamilton BB. The structure and stability of the Functional Independence Measure. Arch Phys Med Rehabil. 1994;75(2):127–32.PubMedCrossRef Linacre JM, Heinemann AW, Wright BD, Granger CV, Hamilton BB. The structure and stability of the Functional Independence Measure. Arch Phys Med Rehabil. 1994;75(2):127–32.PubMedCrossRef
26.
go back to reference Folstein MF, Folstein SE, McHugh PR. “Mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. J Psychiatr Res. 1975;12(3):189–98.PubMedCrossRef Folstein MF, Folstein SE, McHugh PR. “Mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. J Psychiatr Res. 1975;12(3):189–98.PubMedCrossRef
27.
go back to reference Pagonabarraga J, Kulisevsky J, Llebaria G, García-Sánchez C, Pascual-Sedano B, Gironell A. Parkinson’s disease-cognitive rating scale: a new cognitive scale specific for Parkinson’s disease. Movement Dis. 2008;23(7):998–1005.PubMedCrossRef Pagonabarraga J, Kulisevsky J, Llebaria G, García-Sánchez C, Pascual-Sedano B, Gironell A. Parkinson’s disease-cognitive rating scale: a new cognitive scale specific for Parkinson’s disease. Movement Dis. 2008;23(7):998–1005.PubMedCrossRef
28.
go back to reference Brink TL, Yesavage JA, Lum O, Heersema PH, Adey M, Rose TL. Screening tests for geriatric depression. Clin Gerontol. 1982;1(1):37–43.CrossRef Brink TL, Yesavage JA, Lum O, Heersema PH, Adey M, Rose TL. Screening tests for geriatric depression. Clin Gerontol. 1982;1(1):37–43.CrossRef
29.
go back to reference Morris JC. Clinical dementia rating: a reliable and valid diagnostic and staging measure for dementia of the Alzheimer type. Int Psychogeriatr. 1997;9(S1):173–6.PubMedCrossRef Morris JC. Clinical dementia rating: a reliable and valid diagnostic and staging measure for dementia of the Alzheimer type. Int Psychogeriatr. 1997;9(S1):173–6.PubMedCrossRef
30.
go back to reference Boustani M, Campbell N, Munger S, Maidment I, Fox C. Impact of anticholinergics on the aging brain: a review and practical application. 2008. Boustani M, Campbell N, Munger S, Maidment I, Fox C. Impact of anticholinergics on the aging brain: a review and practical application. 2008.
31.
go back to reference Ellis T, Katz DI, White DK, DePiero TJ, Hohler AD, Saint-Hilaire M. Effectiveness of an inpatient multidisciplinary rehabilitation program for people with Parkinson disease. Phys Ther. 2008;88(7):812–9.PubMedCrossRef Ellis T, Katz DI, White DK, DePiero TJ, Hohler AD, Saint-Hilaire M. Effectiveness of an inpatient multidisciplinary rehabilitation program for people with Parkinson disease. Phys Ther. 2008;88(7):812–9.PubMedCrossRef
32.
go back to reference Cruz-Jentoft AJ, Baeyens JP, Bauer JM, Boirie Y, Cederholm T, Landi F, et al. Sarcopenia: European consensus on definition and diagnosisReport of the European Working Group on Sarcopenia in Older PeopleA. J. Cruz-Gentoft. Age Ageing. 2010;39(4):412–23.PubMedPubMedCentralCrossRef Cruz-Jentoft AJ, Baeyens JP, Bauer JM, Boirie Y, Cederholm T, Landi F, et al. Sarcopenia: European consensus on definition and diagnosisReport of the European Working Group on Sarcopenia in Older PeopleA. J. Cruz-Gentoft. Age Ageing. 2010;39(4):412–23.PubMedPubMedCentralCrossRef
33.
go back to reference Hausdorff JM. Gait dynamics in Parkinson’s disease: common and distinct behavior among stride length, gait variability, and fractal-like scaling. Chaos. 2009;19(2):026113.PubMedPubMedCentralCrossRef Hausdorff JM. Gait dynamics in Parkinson’s disease: common and distinct behavior among stride length, gait variability, and fractal-like scaling. Chaos. 2009;19(2):026113.PubMedPubMedCentralCrossRef
34.
go back to reference Guralnik JM, Simonsick EM, Ferrucci L, Glynn RJ, Berkman LF, Blazer DG, et al. A short physical performance battery assessing lower extremity function: association with self-reported disability and prediction of mortality and nursing home admission. J Gerontol. 1994;49(2):M85–94.PubMedCrossRef Guralnik JM, Simonsick EM, Ferrucci L, Glynn RJ, Berkman LF, Blazer DG, et al. A short physical performance battery assessing lower extremity function: association with self-reported disability and prediction of mortality and nursing home admission. J Gerontol. 1994;49(2):M85–94.PubMedCrossRef
35.
go back to reference Smith S, Lamping D, Banerjee S, Harwood R, Foley B, Smith P, et al. Measurement of health-related quality of life for people with dementia: development of a new instrument (DEMQOL) and an evaluation of current methodology. Health Technol Assessment (Winchester, England). 2005;9(10):1–93. Smith S, Lamping D, Banerjee S, Harwood R, Foley B, Smith P, et al. Measurement of health-related quality of life for people with dementia: development of a new instrument (DEMQOL) and an evaluation of current methodology. Health Technol Assessment (Winchester, England). 2005;9(10):1–93.
36.
go back to reference Kwon S, Perera S, Pahor M, Katula J, King A, Groessl E, et al. What is a meaningful change in physical performance? Findings from a clinical trial in older adults (the LIFE-P study). JNHA-J Nutr Health Aging. 2009;13(6):538–44.CrossRef Kwon S, Perera S, Pahor M, Katula J, King A, Groessl E, et al. What is a meaningful change in physical performance? Findings from a clinical trial in older adults (the LIFE-P study). JNHA-J Nutr Health Aging. 2009;13(6):538–44.CrossRef
37.
go back to reference Kaiser MJ, Bauer JM, Ramsch C, Uter W, Guigoz Y, Cederholm T, et al. Validation of the Mini Nutritional Assessment Short-Form (MNA®-SF): A practical tool for identification of nutritional status. JNHA-J Nutr Health Aging. 2009;13(9):782.CrossRef Kaiser MJ, Bauer JM, Ramsch C, Uter W, Guigoz Y, Cederholm T, et al. Validation of the Mini Nutritional Assessment Short-Form (MNA®-SF): A practical tool for identification of nutritional status. JNHA-J Nutr Health Aging. 2009;13(9):782.CrossRef
38.
go back to reference Fried LP, Tangen CM, Walston J, Newman AB, Hirsch C, Gottdiener J, et al. Frailty in older adults: evidence for a phenotype. J Gerontol A Biol Sci Med Sci. 2001;56(3):M146–57.PubMedCrossRef Fried LP, Tangen CM, Walston J, Newman AB, Hirsch C, Gottdiener J, et al. Frailty in older adults: evidence for a phenotype. J Gerontol A Biol Sci Med Sci. 2001;56(3):M146–57.PubMedCrossRef
39.
go back to reference Fernández de Bobadilla R, Pagonabarraga J, Martínez‐Horta S, Pascual‐Sedano B, Campolongo A, Kulisevsky J. Parkinson’s disease‐cognitive rating scale: Psychometrics for mild cognitive impairment. Movement Disord. 2013;28(10):1376–83.PubMedCrossRef Fernández de Bobadilla R, Pagonabarraga J, Martínez‐Horta S, Pascual‐Sedano B, Campolongo A, Kulisevsky J. Parkinson’s disease‐cognitive rating scale: Psychometrics for mild cognitive impairment. Movement Disord. 2013;28(10):1376–83.PubMedCrossRef
40.
go back to reference Del Din S, Godfrey A, Galna B, Lord S, Rochester L. Free-living gait characteristics in ageing and Parkinson’s disease: impact of environment and ambulatory bout length. J Neuroeng Rehabil. 2016;13(1):46.PubMedPubMedCentralCrossRef Del Din S, Godfrey A, Galna B, Lord S, Rochester L. Free-living gait characteristics in ageing and Parkinson’s disease: impact of environment and ambulatory bout length. J Neuroeng Rehabil. 2016;13(1):46.PubMedPubMedCentralCrossRef
41.
go back to reference Galperin I, Hillel I, Del Din S, Bekkers EM, Nieuwboer A, Abbruzzese G, et al. Associations between daily-living physical activity and laboratory-based assessments of motor severity in patients with falls and Parkinson’s disease. Parkinsonism Relat Disord. 2019;62:85–90.PubMedCrossRef Galperin I, Hillel I, Del Din S, Bekkers EM, Nieuwboer A, Abbruzzese G, et al. Associations between daily-living physical activity and laboratory-based assessments of motor severity in patients with falls and Parkinson’s disease. Parkinsonism Relat Disord. 2019;62:85–90.PubMedCrossRef
42.
go back to reference Fereshtehnejad S-M, Damangir S, Cermakova P, Aarsland D, Eriksdotter M, Religa D. Comorbidity profile in dementia with Lewy bodies versus Alzheimer’s disease: a linkage study between the Swedish Dementia Registry and the Swedish National Patient Registry. Alzheimer’s research & therapy. 2014;6(5):65.CrossRef Fereshtehnejad S-M, Damangir S, Cermakova P, Aarsland D, Eriksdotter M, Religa D. Comorbidity profile in dementia with Lewy bodies versus Alzheimer’s disease: a linkage study between the Swedish Dementia Registry and the Swedish National Patient Registry. Alzheimer’s research & therapy. 2014;6(5):65.CrossRef
43.
go back to reference Hou CE, Yaffe K, Pérez-Stable EJ, Miller BL. Frequency of dementia etiologies in four ethnic groups. Dement Geriatr Cogn Disord. 2006;22(1):42–7.PubMedCrossRef Hou CE, Yaffe K, Pérez-Stable EJ, Miller BL. Frequency of dementia etiologies in four ethnic groups. Dement Geriatr Cogn Disord. 2006;22(1):42–7.PubMedCrossRef
44.
go back to reference Perrault A, Wolfson C, Egan M, Rockwood K, Hogan DB. Prognostic factors for functional independence in older adults with mild dementia: results from the Canadian study of health and aging. Alzheimer Dis Assoc Disord. 2002;16(4):239–47.PubMedCrossRef Perrault A, Wolfson C, Egan M, Rockwood K, Hogan DB. Prognostic factors for functional independence in older adults with mild dementia: results from the Canadian study of health and aging. Alzheimer Dis Assoc Disord. 2002;16(4):239–47.PubMedCrossRef
45.
go back to reference Mavros Y, Gates N, Wilson GC, Jain N, Meiklejohn J, Brodaty H, et al. Mediation of cognitive function improvements by strength gains after resistance training in older adults with mild cognitive impairment: outcomes of the study of mental and resistance training. J Am Geriatr Soc. 2017;65(3):550–9.PubMedCrossRef Mavros Y, Gates N, Wilson GC, Jain N, Meiklejohn J, Brodaty H, et al. Mediation of cognitive function improvements by strength gains after resistance training in older adults with mild cognitive impairment: outcomes of the study of mental and resistance training. J Am Geriatr Soc. 2017;65(3):550–9.PubMedCrossRef
46.
go back to reference Ogawa Y, Kaneko Y, Sato T, Shimizu S, Kanetaka H, Hanyu H. Sarcopenia and muscle functions at various stages of Alzheimer disease. Front Neurol. 2018;9:710.PubMedPubMedCentralCrossRef Ogawa Y, Kaneko Y, Sato T, Shimizu S, Kanetaka H, Hanyu H. Sarcopenia and muscle functions at various stages of Alzheimer disease. Front Neurol. 2018;9:710.PubMedPubMedCentralCrossRef
47.
go back to reference Dodds TA, Martin DP, Stolov WC, Deyo RA. A validation of the functional independence measurement and its performance among rehabilitation inpatients. Arch Phys Med Rehabil. 1993;74(5):531–6.PubMedCrossRef Dodds TA, Martin DP, Stolov WC, Deyo RA. A validation of the functional independence measurement and its performance among rehabilitation inpatients. Arch Phys Med Rehabil. 1993;74(5):531–6.PubMedCrossRef
48.
go back to reference Cournan M. Use of the functional independence measure for outcomes measurement in acute inpatient rehabilitation. Rehabil Nurs. 2011;36(3):111–7.PubMedCrossRef Cournan M. Use of the functional independence measure for outcomes measurement in acute inpatient rehabilitation. Rehabil Nurs. 2011;36(3):111–7.PubMedCrossRef
49.
go back to reference Fiatarone MA, O’Neill EF, Ryan ND, Clements KM, Solares GR, Nelson ME, et al. Exercise training and nutritional supplementation for physical frailty in very elderly people. N Engl J Med. 1994;330(25):1769–75.PubMedCrossRef Fiatarone MA, O’Neill EF, Ryan ND, Clements KM, Solares GR, Nelson ME, et al. Exercise training and nutritional supplementation for physical frailty in very elderly people. N Engl J Med. 1994;330(25):1769–75.PubMedCrossRef
50.
go back to reference Dibble LE, Hale TF, Marcus RL, Droge J, Gerber JP, LaStayo PC. High-intensity resistance training amplifies muscle hypertrophy and functional gains in persons with Parkinson’s disease. Movement Dis. 2006;21(9):1444–52.PubMedCrossRef Dibble LE, Hale TF, Marcus RL, Droge J, Gerber JP, LaStayo PC. High-intensity resistance training amplifies muscle hypertrophy and functional gains in persons with Parkinson’s disease. Movement Dis. 2006;21(9):1444–52.PubMedCrossRef
51.
go back to reference Doherty TJ. The influence of aging and sex on skeletal muscle mass and strength. Curr Opin Clin Nutr Metab Care. 2001;4(6):503–8.PubMedCrossRef Doherty TJ. The influence of aging and sex on skeletal muscle mass and strength. Curr Opin Clin Nutr Metab Care. 2001;4(6):503–8.PubMedCrossRef
52.
go back to reference Van Hooren S, Valentijn A, Bosma H, Ponds R, Van Boxtel M, Jolles J. Cognitive functioning in healthy older adults aged 64–81: a cohort study into the effects of age, sex, and education. Aging Neuropsychol Cogn. 2007;14(1):40–54.CrossRef Van Hooren S, Valentijn A, Bosma H, Ponds R, Van Boxtel M, Jolles J. Cognitive functioning in healthy older adults aged 64–81: a cohort study into the effects of age, sex, and education. Aging Neuropsychol Cogn. 2007;14(1):40–54.CrossRef
Metadata
Title
Promoting independence in Lewy body dementia through exercise: the PRIDE study
Authors
Michael J. Inskip
Yorgi Mavros
Perminder S. Sachdev
Jeffrey M. Hausdorff
Inbar Hillel
Maria A. Fiatarone Singh
Publication date
01-12-2022
Publisher
BioMed Central
Published in
BMC Geriatrics / Issue 1/2022
Electronic ISSN: 1471-2318
DOI
https://doi.org/10.1186/s12877-022-03347-2

Other articles of this Issue 1/2022

BMC Geriatrics 1/2022 Go to the issue
Live Webinar | 27-06-2024 | 18:00 (CEST)

Keynote webinar | Spotlight on medication adherence

Live: Thursday 27th June 2024, 18:00-19:30 (CEST)

WHO estimates that half of all patients worldwide are non-adherent to their prescribed medication. The consequences of poor adherence can be catastrophic, on both the individual and population level.

Join our expert panel to discover why you need to understand the drivers of non-adherence in your patients, and how you can optimize medication adherence in your clinics to drastically improve patient outcomes.

Prof. Kevin Dolgin
Prof. Florian Limbourg
Prof. Anoop Chauhan
Developed by: Springer Medicine
Obesity Clinical Trial Summary

At a glance: The STEP trials

A round-up of the STEP phase 3 clinical trials evaluating semaglutide for weight loss in people with overweight or obesity.

Developed by: Springer Medicine