Skip to main content
Top
Published in: Alzheimer's Research & Therapy 1/2019

Open Access 01-12-2019 | Dementia | Research

Pay attention to the basal ganglia: a volumetric study in early dementia with Lewy bodies

Authors: Anne Botzung, Nathalie Philippi, Vincent Noblet, Paulo Loureiro de Sousa, Frédéric Blanc

Published in: Alzheimer's Research & Therapy | Issue 1/2019

Login to get access

Abstract

Background

Cortical and subcortical cognitive impairments are usually found in dementia with Lewy bodies (DLB). Roughly, they comprise visuo-constructive/executive function and attention/processing speed impairments, whereas memory would remain relatively spared. In this study, we focused on the neuro-anatomical substrates of attention and processing speed, which is still poorly understood. For the purpose of the study, we examined the correlations between behavioral scores measuring the speed of processing and the degree of cerebral atrophy in patients with prodromal to moderate DLB.

Methods

Ninety-three prodromal to moderate DLB patients (mean MMSE = 25.5) were selected to participate in the study as well as 28 healthy elderly subjects (mean MMSE = 28.9), matched in terms of age and educational level. The Trail Making Test A (TMTA) and the Digit Symbol Substitution Test (DSST) were used to assess attention and processing speed. Behavioral performances were compared between patients and healthy control subjects. Three-dimensional MRI images were acquired for all participants, and correlational analyses were performed in the patient group using voxel-based morphometry (VBM).

Results

The behavioral results on both the TMTA (p = .026) and the DSST (p < .001) showed significantly impaired performances in patients in comparison with control subjects. In addition, correlational analyses using VBM revealed for the TMTA negative correlations in the caudate nucleus (left cluster peak significant at .05 FWE corrected), the putamen, the left thalamus, and the subthalamic nuclei (p < .05 FDR corrected). Some positive correlations associated with the DSST were found in the right inferior frontal gyrus, the left thalamus, and the left cerebellum (p < .001 uncorrected).

Conclusions

The behavioral results are in line with the literature on the DLB cognitive profile and confirm the existence of attention and processing speed impairment. Interestingly, VBM analysis revealed the involvement of the basal ganglia, in particular, the left caudate nucleus, which is part of the attention cerebral network, suggesting an important role of this structure for attentional processing speed. This also suggests the clinical implication of damage in this region relatively early in the course of the disease.
Literature
1.
go back to reference McKeith IG, Dickson DW, Lowe J, Emre M, O’Brien JT, Feldman H, Cummings J, Duda JE, Lippa C, Perry EK, et al. Diagnosis and management of dementia with Lewy bodies: third report of the DLB Consortium. Neurology. 2005;65(12):1863–72.PubMedCrossRef McKeith IG, Dickson DW, Lowe J, Emre M, O’Brien JT, Feldman H, Cummings J, Duda JE, Lippa C, Perry EK, et al. Diagnosis and management of dementia with Lewy bodies: third report of the DLB Consortium. Neurology. 2005;65(12):1863–72.PubMedCrossRef
2.
go back to reference Zaccai J, McCracken C, Brayne C. A systematic review of prevalence and incidence studies of dementia with Lewy bodies. Age Ageing. 2005;34(6):561–6.PubMedCrossRef Zaccai J, McCracken C, Brayne C. A systematic review of prevalence and incidence studies of dementia with Lewy bodies. Age Ageing. 2005;34(6):561–6.PubMedCrossRef
3.
go back to reference McKeith IG, Boeve BF, Dickson DW, Halliday G, Taylor JP, Weintraub D, Aarsland D, Galvin J, Attems J, Ballard CG, et al. Diagnosis and management of dementia with Lewy bodies: fourth consensus report of the DLB Consortium. Neurology. 2017;89(1):88–100.PubMedPubMedCentralCrossRef McKeith IG, Boeve BF, Dickson DW, Halliday G, Taylor JP, Weintraub D, Aarsland D, Galvin J, Attems J, Ballard CG, et al. Diagnosis and management of dementia with Lewy bodies: fourth consensus report of the DLB Consortium. Neurology. 2017;89(1):88–100.PubMedPubMedCentralCrossRef
4.
go back to reference Kemp J, Philippi N, Phillipps C, Demuynck C, Albasser T, Martin-Hunyadi C, Schmidt-Mutter C, Cretin B, Blanc F. Cognitive profile in prodromal disease (dementia) with Lewy bodies. Alzheimers Res Ther. 2017;16(9):9–19. Kemp J, Philippi N, Phillipps C, Demuynck C, Albasser T, Martin-Hunyadi C, Schmidt-Mutter C, Cretin B, Blanc F. Cognitive profile in prodromal disease (dementia) with Lewy bodies. Alzheimers Res Ther. 2017;16(9):9–19.
5.
go back to reference Petrova M, Pavlova R, Zhelev Y, Mehrabian S, Raycheva M, Traykov L. Investigation of neuropsychological characteristics of very mild and mild dementia with Lewy bodies. J Clin Exp Neuropsychol. 2015;38(3):354–60.PubMedCrossRef Petrova M, Pavlova R, Zhelev Y, Mehrabian S, Raycheva M, Traykov L. Investigation of neuropsychological characteristics of very mild and mild dementia with Lewy bodies. J Clin Exp Neuropsychol. 2015;38(3):354–60.PubMedCrossRef
6.
go back to reference Ferman TJ, Smith GE, Boeve B, Graff-Radford NR, Lucas JA, Knopman DS, Petersen RC, Ivnik RJ, Wszolek Z, Uitti R, et al. Neuropsychological differentiation of dementia with Lewy bodies from normal aging and Alzheimer’s disease. Clin Neuropsychol. 2006;20(4):623–36.PubMedCrossRef Ferman TJ, Smith GE, Boeve B, Graff-Radford NR, Lucas JA, Knopman DS, Petersen RC, Ivnik RJ, Wszolek Z, Uitti R, et al. Neuropsychological differentiation of dementia with Lewy bodies from normal aging and Alzheimer’s disease. Clin Neuropsychol. 2006;20(4):623–36.PubMedCrossRef
7.
go back to reference Ballard C, O’Brien J, Gray A, Cormack F, Ayre G, Rowan E, Thompson P, Bucks R, McKeith I, Walker M, et al. Attention and fluctuating attention in patients with dementia with Lewy bodies and Alzheimer disease. Arch Neurol. 2001;58(6):977–82.PubMedCrossRef Ballard C, O’Brien J, Gray A, Cormack F, Ayre G, Rowan E, Thompson P, Bucks R, McKeith I, Walker M, et al. Attention and fluctuating attention in patients with dementia with Lewy bodies and Alzheimer disease. Arch Neurol. 2001;58(6):977–82.PubMedCrossRef
8.
go back to reference Bradshaw JM, Saling M, Anderson V, Hopwood M, Brodtmann A. Higher cortical deficits influence attentional processing in dementia with Lewy bodies, relative to patients with dementia of the Alzheimer’s type and controls. J Neurol Neurosurg Psychiatry. 2006;77(10):1129–35.PubMedPubMedCentralCrossRef Bradshaw JM, Saling M, Anderson V, Hopwood M, Brodtmann A. Higher cortical deficits influence attentional processing in dementia with Lewy bodies, relative to patients with dementia of the Alzheimer’s type and controls. J Neurol Neurosurg Psychiatry. 2006;77(10):1129–35.PubMedPubMedCentralCrossRef
9.
go back to reference Calderon J, Perry RJ, Erzinclioglu SW, Berrios GE, Dening TR, Hodges JR. Perception, attention, and working memory are disproportionately impaired in dementia with Lewy bodies compared with Alzheimer’s disease. J Neurol Neurosurg Psychiatry. 2001;70(2):157–64.PubMedPubMedCentralCrossRef Calderon J, Perry RJ, Erzinclioglu SW, Berrios GE, Dening TR, Hodges JR. Perception, attention, and working memory are disproportionately impaired in dementia with Lewy bodies compared with Alzheimer’s disease. J Neurol Neurosurg Psychiatry. 2001;70(2):157–64.PubMedPubMedCentralCrossRef
10.
go back to reference Collerton D, Burn D, McKeith I, O’Brien J. Systematic review and meta-analysis show that dementia with Lewy bodies is a visual-perceptual and attentional-executive dementia. Dement Geriatr Cogn Disord. 2003;16:229–37.PubMedCrossRef Collerton D, Burn D, McKeith I, O’Brien J. Systematic review and meta-analysis show that dementia with Lewy bodies is a visual-perceptual and attentional-executive dementia. Dement Geriatr Cogn Disord. 2003;16:229–37.PubMedCrossRef
11.
go back to reference Metzler-Baddeley C. A review of cognitive impairments in dementia with Lewy bodies relative to Alzheimer’s disease and Parkinson’s disease with dementia. Cortex. 2007;43(5):583–600.PubMedCrossRef Metzler-Baddeley C. A review of cognitive impairments in dementia with Lewy bodies relative to Alzheimer’s disease and Parkinson’s disease with dementia. Cortex. 2007;43(5):583–600.PubMedCrossRef
12.
14.
go back to reference Corbetta M, Shulman GL. Control of goal-directed and stimulus-driven attention in the brain. Nat Rev Neurosci. 2002;3(3):201–15.PubMedCrossRef Corbetta M, Shulman GL. Control of goal-directed and stimulus-driven attention in the brain. Nat Rev Neurosci. 2002;3(3):201–15.PubMedCrossRef
15.
18.
go back to reference Nedelska Z, Schwarz CG, Boeve BF, Lowe VJ, Reid RI, Przybelski SA, Lesnick TG, Gunter JL, Senjem ML, Ferman TJ, et al. White matter integrity in dementia with Lewy bodies: a voxel-based analysis of diffusion tensor imaging. Neurobiol Aging. 2015;36(6):2010–7.PubMedPubMedCentralCrossRef Nedelska Z, Schwarz CG, Boeve BF, Lowe VJ, Reid RI, Przybelski SA, Lesnick TG, Gunter JL, Senjem ML, Ferman TJ, et al. White matter integrity in dementia with Lewy bodies: a voxel-based analysis of diffusion tensor imaging. Neurobiol Aging. 2015;36(6):2010–7.PubMedPubMedCentralCrossRef
19.
go back to reference Oppedal K, Ferreira D, Cavallin L, Lemstra AW, Ten Kate M, Padovani A, Rektorova I, Bonanni L, Wahlund LO, Engedal K, et al. A signature pattern of cortical atrophy in dementia with Lewy bodies: a study on 333 patients from the European DLB Consortium. Alzheimers Dement. 2019;15(3):400–9.PubMedCrossRef Oppedal K, Ferreira D, Cavallin L, Lemstra AW, Ten Kate M, Padovani A, Rektorova I, Bonanni L, Wahlund LO, Engedal K, et al. A signature pattern of cortical atrophy in dementia with Lewy bodies: a study on 333 patients from the European DLB Consortium. Alzheimers Dement. 2019;15(3):400–9.PubMedCrossRef
20.
go back to reference Yousaf T, Dervenoulas G, Valkimadi PE, Politis M. Neuroimaging in Lewy body dementia. J Neurol. 2019;266(1):1–26.PubMedCrossRef Yousaf T, Dervenoulas G, Valkimadi PE, Politis M. Neuroimaging in Lewy body dementia. J Neurol. 2019;266(1):1–26.PubMedCrossRef
21.
go back to reference Zhong J, Pan P, Dai Z, Shi H. Voxelwise meta-analysis of gray matter abnormalities in dementia with Lewy bodies. Eur J Radiol. 2014;83(10):1870–4.PubMedCrossRef Zhong J, Pan P, Dai Z, Shi H. Voxelwise meta-analysis of gray matter abnormalities in dementia with Lewy bodies. Eur J Radiol. 2014;83(10):1870–4.PubMedCrossRef
22.
go back to reference Blanc F, Colloby SJ, Cretin B, de Sousa PL, Demuynck C, O’Brien JT, Martin-Hunyadi C, McKeith I, Philippi N, Taylor JP. Grey matter atrophy in prodromal stage of dementia with Lewy bodies and Alzheimer’s disease. Alzheimers Res Ther. 2016;8:31.PubMedPubMedCentralCrossRef Blanc F, Colloby SJ, Cretin B, de Sousa PL, Demuynck C, O’Brien JT, Martin-Hunyadi C, McKeith I, Philippi N, Taylor JP. Grey matter atrophy in prodromal stage of dementia with Lewy bodies and Alzheimer’s disease. Alzheimers Res Ther. 2016;8:31.PubMedPubMedCentralCrossRef
23.
go back to reference Blanc F, Colloby SJ, Philippi N, de Petigny X, Jung B, Demuynck C, Phillipps C, Anthony P, Thomas A, Bing F, et al. Cortical thickness in dementia with Lewy bodies and Alzheimer’s disease: a comparison of prodromal and dementia stages. PLoS One. 2015;10(6):e0127396.PubMedPubMedCentralCrossRef Blanc F, Colloby SJ, Philippi N, de Petigny X, Jung B, Demuynck C, Phillipps C, Anthony P, Thomas A, Bing F, et al. Cortical thickness in dementia with Lewy bodies and Alzheimer’s disease: a comparison of prodromal and dementia stages. PLoS One. 2015;10(6):e0127396.PubMedPubMedCentralCrossRef
24.
go back to reference Lee JE, Park B, Song SK, Sohn YH, Park HJ, Lee PH. A comparison of gray and white matter density in patients with Parkinson’s disease dementia and dementia with Lewy bodies using voxel-based morphometry. Mov Disord. 2010;25(1):28–34.PubMedCrossRef Lee JE, Park B, Song SK, Sohn YH, Park HJ, Lee PH. A comparison of gray and white matter density in patients with Parkinson’s disease dementia and dementia with Lewy bodies using voxel-based morphometry. Mov Disord. 2010;25(1):28–34.PubMedCrossRef
25.
go back to reference Barber R, McKeith I, Ballard C, O’Brien J. Volumetric MRI study of the caudate nucleus in patients with dementia with Lewy bodies, Alzheimer’s disease, and vascular dementia. J Neurol Neurosurg Psychiatry. 2002;72(3):406–7.PubMedPubMedCentralCrossRef Barber R, McKeith I, Ballard C, O’Brien J. Volumetric MRI study of the caudate nucleus in patients with dementia with Lewy bodies, Alzheimer’s disease, and vascular dementia. J Neurol Neurosurg Psychiatry. 2002;72(3):406–7.PubMedPubMedCentralCrossRef
26.
go back to reference Watson R, Colloby SJ, Blamire AM, Wesnes KA, Wood J, O’Brien JT. Does attentional dysfunction and thalamic atrophy predict decline in dementia with Lewy bodies? Parkinsonism Relat Disord. 2017;45:69–74.PubMedCrossRef Watson R, Colloby SJ, Blamire AM, Wesnes KA, Wood J, O’Brien JT. Does attentional dysfunction and thalamic atrophy predict decline in dementia with Lewy bodies? Parkinsonism Relat Disord. 2017;45:69–74.PubMedCrossRef
27.
go back to reference Cousins DA, Burton EJ, Burn D, Gholkar A, McKeith IG, O’Brien JT. Atrophy of the putamen in dementia with Lewy bodies but not Alzheimer’s disease: an MRI study. Neurology. 2003;61(9):1191–5.PubMedCrossRef Cousins DA, Burton EJ, Burn D, Gholkar A, McKeith IG, O’Brien JT. Atrophy of the putamen in dementia with Lewy bodies but not Alzheimer’s disease: an MRI study. Neurology. 2003;61(9):1191–5.PubMedCrossRef
28.
go back to reference Firbank M, Kobeleva X, Cherry G, Killen A, Gallagher P, Burn DJ, Thomas AJ, O’Brien JT, Taylor JP. Neural correlates of attention-executive dysfunction in lewy body dementia and Alzheimer’s disease. Hum Brain Mapp. 2016;37(3):1254–70.PubMedCrossRef Firbank M, Kobeleva X, Cherry G, Killen A, Gallagher P, Burn DJ, Thomas AJ, O’Brien JT, Taylor JP. Neural correlates of attention-executive dysfunction in lewy body dementia and Alzheimer’s disease. Hum Brain Mapp. 2016;37(3):1254–70.PubMedCrossRef
29.
go back to reference Kobeleva X, Firbank M, Peraza L, Gallagher P, Thomas A, Burn DJ, O’Brien J, Taylor JP. Divergent functional connectivity during attentional processing in Lewy body dementia and Alzheimer’s disease. Cortex. 2017;92:8–18.PubMedPubMedCentralCrossRef Kobeleva X, Firbank M, Peraza L, Gallagher P, Thomas A, Burn DJ, O’Brien J, Taylor JP. Divergent functional connectivity during attentional processing in Lewy body dementia and Alzheimer’s disease. Cortex. 2017;92:8–18.PubMedPubMedCentralCrossRef
30.
go back to reference Cromarty RA, Schumacher J, Graziadio S, Gallagher P, Killen A, Firbank MJ, Blamire A, Kaiser M, Thomas AJ, O’Brien JT, et al. Structural brain correlates of attention dysfunction in Lewy body dementias and Alzheimer’s disease. Front Aging Neurosci. 2018;10:347.PubMedPubMedCentralCrossRef Cromarty RA, Schumacher J, Graziadio S, Gallagher P, Killen A, Firbank MJ, Blamire A, Kaiser M, Thomas AJ, O’Brien JT, et al. Structural brain correlates of attention dysfunction in Lewy body dementias and Alzheimer’s disease. Front Aging Neurosci. 2018;10:347.PubMedPubMedCentralCrossRef
31.
go back to reference Chikama M, McFarland NR, Amaral DG, Haber SN. Insular cortical projections to functional regions of the striatum correlate with cortical cytoarchitectonic organization in the primate. J Neurosci. 1997;17(24):9686–705.PubMedPubMedCentralCrossRef Chikama M, McFarland NR, Amaral DG, Haber SN. Insular cortical projections to functional regions of the striatum correlate with cortical cytoarchitectonic organization in the primate. J Neurosci. 1997;17(24):9686–705.PubMedPubMedCentralCrossRef
32.
go back to reference Fudge JL, Breitbart MA, Danish M, Pannoni V. Insular and gustatory inputs to the caudal ventral striatum in primates. J Comp Neurol. 2005;490(2):101–18.PubMedPubMedCentralCrossRef Fudge JL, Breitbart MA, Danish M, Pannoni V. Insular and gustatory inputs to the caudal ventral striatum in primates. J Comp Neurol. 2005;490(2):101–18.PubMedPubMedCentralCrossRef
33.
go back to reference Ferman TJ, Smith GE, Boeve BF, Ivnik RJ, Petersen RC, Knopman D, Graff-Radford N, Parisi J, Dickson DW. DLB fluctuations: specific features that reliably differentiate DLB from AD and normal aging. Neurology. 2004;62(2):181–7.PubMedCrossRef Ferman TJ, Smith GE, Boeve BF, Ivnik RJ, Petersen RC, Knopman D, Graff-Radford N, Parisi J, Dickson DW. DLB fluctuations: specific features that reliably differentiate DLB from AD and normal aging. Neurology. 2004;62(2):181–7.PubMedCrossRef
34.
go back to reference Walker MP, Ayre GA, Cummings JL, Wesnes K, McKeith IG, O’Brien JT, Ballard CG. The clinician assessment of fluctuation and the One Day Fluctuation Assessment Scale. Two methods to assess fluctuating confusion in dementia. Br J Psychiatry. 2000;177:252–6.PubMedCrossRef Walker MP, Ayre GA, Cummings JL, Wesnes K, McKeith IG, O’Brien JT, Ballard CG. The clinician assessment of fluctuation and the One Day Fluctuation Assessment Scale. Two methods to assess fluctuating confusion in dementia. Br J Psychiatry. 2000;177:252–6.PubMedCrossRef
35.
go back to reference Fenelon G, Soulas T, Zenasni F, Cleret de Langavant L. The changing face of Parkinson’s disease-associated psychosis: a cross-sectional study based on the new NINDS-NIMH criteria. Mov Disord. 2010;25(6):763–6.PubMedCrossRef Fenelon G, Soulas T, Zenasni F, Cleret de Langavant L. The changing face of Parkinson’s disease-associated psychosis: a cross-sectional study based on the new NINDS-NIMH criteria. Mov Disord. 2010;25(6):763–6.PubMedCrossRef
36.
go back to reference Gjerstad MD, Boeve B, Wentzel-Larsen T, Aarsland D, Larsen JP. Occurrence and clinical correlates of REM sleep behaviour disorder in patients with Parkinson’s disease over time. J Neurol Neurosurg Psychiatry. 2008;79(4):387–91.PubMedCrossRef Gjerstad MD, Boeve B, Wentzel-Larsen T, Aarsland D, Larsen JP. Occurrence and clinical correlates of REM sleep behaviour disorder in patients with Parkinson’s disease over time. J Neurol Neurosurg Psychiatry. 2008;79(4):387–91.PubMedCrossRef
37.
go back to reference Lawton MP, Brody EM. Assessment of older people: self-maintaining and instrumental activities of daily living. Gerontologist. 1969;9(3):179–86.PubMedCrossRef Lawton MP, Brody EM. Assessment of older people: self-maintaining and instrumental activities of daily living. Gerontologist. 1969;9(3):179–86.PubMedCrossRef
38.
go back to reference Israel L, Waintraub L. Autonomie ou capacité fonctionnelle? Revue critique de quelques échelles actuellement utilisées en gériatrie pour l’évaluation des activités de la vie quotidienne. Psychol Med (Paris). 1986;18(14):2225–31. Israel L, Waintraub L. Autonomie ou capacité fonctionnelle? Revue critique de quelques échelles actuellement utilisées en gériatrie pour l’évaluation des activités de la vie quotidienne. Psychol Med (Paris). 1986;18(14):2225–31.
39.
go back to reference Association AP. Diagnostic and statistical manual of mental disorders: DSM-5. 5th ed. Arlington: VA Publisher American Psychiatric Publishing; 2013.CrossRef Association AP. Diagnostic and statistical manual of mental disorders: DSM-5. 5th ed. Arlington: VA Publisher American Psychiatric Publishing; 2013.CrossRef
40.
go back to reference Folstein MF, Folstein SE, McHugh PR. “Mini-mental state”. A practical method for grading the cognitive state of patients for the clinician. J Psychiatr Res. 1975;12(3):189–98.PubMedCrossRef Folstein MF, Folstein SE, McHugh PR. “Mini-mental state”. A practical method for grading the cognitive state of patients for the clinician. J Psychiatr Res. 1975;12(3):189–98.PubMedCrossRef
41.
go back to reference Tombaugh TN. Trail Making Test A and B: normative data stratified by age and education. Arch Clin Neuropsychol. 2004;19(2):203–14.PubMedCrossRef Tombaugh TN. Trail Making Test A and B: normative data stratified by age and education. Arch Clin Neuropsychol. 2004;19(2):203–14.PubMedCrossRef
42.
go back to reference Wechsler D. Wechsler Adult Intelligence Scale-3rd Edition (WAIS-3). Personal Clinical Assessment: San Antonio; 1997. Wechsler D. Wechsler Adult Intelligence Scale-3rd Edition (WAIS-3). Personal Clinical Assessment: San Antonio; 1997.
43.
go back to reference Good CD, Johnsrude IS, Ashburner J, Henson RN, Friston KJ, Frackowiak RS. A voxel-based morphometric study of ageing in 465 normal adult human brains. Neuroimage. 2001;14(1 Pt 1):21–36.PubMedCrossRef Good CD, Johnsrude IS, Ashburner J, Henson RN, Friston KJ, Frackowiak RS. A voxel-based morphometric study of ageing in 465 normal adult human brains. Neuroimage. 2001;14(1 Pt 1):21–36.PubMedCrossRef
45.
go back to reference Ferman TJ, Smith GE, Kantarci K, Boeve BF, Pankratz VS, Dickson DW, Graff-Radford NR, Wszolek Z, Van Gerpen J, Uitti R, et al. Nonamnestic mild cognitive impairment progresses to dementia with Lewy bodies. Neurology. 2013;81(23):2032–8.PubMedPubMedCentralCrossRef Ferman TJ, Smith GE, Kantarci K, Boeve BF, Pankratz VS, Dickson DW, Graff-Radford NR, Wszolek Z, Van Gerpen J, Uitti R, et al. Nonamnestic mild cognitive impairment progresses to dementia with Lewy bodies. Neurology. 2013;81(23):2032–8.PubMedPubMedCentralCrossRef
46.
go back to reference Salthouse TA, Berish DE. Correlates of within-person (across-occasion) variability in reaction time. Neuropsychology. 2005;19(1):77–87.PubMedCrossRef Salthouse TA, Berish DE. Correlates of within-person (across-occasion) variability in reaction time. Neuropsychology. 2005;19(1):77–87.PubMedCrossRef
47.
48.
go back to reference Alexander GE, DeLong MR, Strick PL. Parallel organization of functionally segregated circuits linking basal ganglia and cortex. Annu Rev Neurosci. 1986;9:357–81.PubMedCrossRef Alexander GE, DeLong MR, Strick PL. Parallel organization of functionally segregated circuits linking basal ganglia and cortex. Annu Rev Neurosci. 1986;9:357–81.PubMedCrossRef
49.
go back to reference Tate DF, Wade BSC, Velez CS, Drennon AM, Bolzenius JD, Cooper DB, Kennedy JE, Reid MW, Bowles AO, Thompson PM, et al. Subcortical shape and neuropsychological function among U.S. service members with mild traumatic brain injury. Brain Imaging Behav. 2019;13(2):377–88.PubMedCrossRef Tate DF, Wade BSC, Velez CS, Drennon AM, Bolzenius JD, Cooper DB, Kennedy JE, Reid MW, Bowles AO, Thompson PM, et al. Subcortical shape and neuropsychological function among U.S. service members with mild traumatic brain injury. Brain Imaging Behav. 2019;13(2):377–88.PubMedCrossRef
50.
go back to reference Jurgens CK, van de Wiel L, van Es AC, Grimbergen YM, Witjes-Ane MN, van der Grond J, Middelkoop HA, Roos RA. Basal ganglia volume and clinical correlates in ‘preclinical’ Huntington’s disease. J Neurol. 2008;255(11):1785–91.PubMedCrossRef Jurgens CK, van de Wiel L, van Es AC, Grimbergen YM, Witjes-Ane MN, van der Grond J, Middelkoop HA, Roos RA. Basal ganglia volume and clinical correlates in ‘preclinical’ Huntington’s disease. J Neurol. 2008;255(11):1785–91.PubMedCrossRef
51.
go back to reference Derauf C, Lester BM, Neyzi N, Kekatpure M, Gracia L, Davis J, Kallianpur K, Efird JT, Kosofsky B. Subcortical and cortical structural central nervous system changes and attention processing deficits in preschool-aged children with prenatal methamphetamine and tobacco exposure. Dev Neurosci. 2012;34(4):327–41.PubMedCrossRef Derauf C, Lester BM, Neyzi N, Kekatpure M, Gracia L, Davis J, Kallianpur K, Efird JT, Kosofsky B. Subcortical and cortical structural central nervous system changes and attention processing deficits in preschool-aged children with prenatal methamphetamine and tobacco exposure. Dev Neurosci. 2012;34(4):327–41.PubMedCrossRef
52.
go back to reference Spies G, Ahmed-Leitao F, Fennema-Notestine C, Cherner M, Seedat S. Effects of HIV and childhood trauma on brain morphometry and neurocognitive function. J Neuro-Oncol. 2016;22(2):149–58. Spies G, Ahmed-Leitao F, Fennema-Notestine C, Cherner M, Seedat S. Effects of HIV and childhood trauma on brain morphometry and neurocognitive function. J Neuro-Oncol. 2016;22(2):149–58.
53.
go back to reference Harrington DL, Liu D, Smith MM, Mills JA, Long JD, Aylward EH, Paulsen JS. Neuroanatomical correlates of cognitive functioning in prodromal Huntington disease. Brain Behav. 2014;4(1):29–40.PubMedCrossRef Harrington DL, Liu D, Smith MM, Mills JA, Long JD, Aylward EH, Paulsen JS. Neuroanatomical correlates of cognitive functioning in prodromal Huntington disease. Brain Behav. 2014;4(1):29–40.PubMedCrossRef
54.
go back to reference Huang H, Nguyen PT, Schwab NA, Tanner JJ, Price CC, Ding M. Mapping dorsal and ventral caudate in older adults: method and validation. Front Aging Neurosci. 2017;9:91.PubMedPubMedCentral Huang H, Nguyen PT, Schwab NA, Tanner JJ, Price CC, Ding M. Mapping dorsal and ventral caudate in older adults: method and validation. Front Aging Neurosci. 2017;9:91.PubMedPubMedCentral
56.
go back to reference Esmaeeli S, Murphy K, Swords GM, Ibrahim BA, Brown JW, Llano DA. Visual hallucinations, thalamocortical physiology and Lewy body disease: a review. Neurosci Biobehav Rev. 2019;103:337–51.PubMedCrossRef Esmaeeli S, Murphy K, Swords GM, Ibrahim BA, Brown JW, Llano DA. Visual hallucinations, thalamocortical physiology and Lewy body disease: a review. Neurosci Biobehav Rev. 2019;103:337–51.PubMedCrossRef
57.
go back to reference Starosta RT, Vidor MV, Roriz-Cruz M. The frontal-subcortical syndrome. J Alzheimers Dis Parkinsonism. 2016;6(4):1–4. Starosta RT, Vidor MV, Roriz-Cruz M. The frontal-subcortical syndrome. J Alzheimers Dis Parkinsonism. 2016;6(4):1–4.
58.
go back to reference Goel V, Stollstorff M, Nakic M, Knutson K, Grafman J. A role for right ventrolateral prefrontal cortex in reasoning about indeterminate relations. Neuropsychologia. 2009;47(13):2790–7.PubMedPubMedCentralCrossRef Goel V, Stollstorff M, Nakic M, Knutson K, Grafman J. A role for right ventrolateral prefrontal cortex in reasoning about indeterminate relations. Neuropsychologia. 2009;47(13):2790–7.PubMedPubMedCentralCrossRef
60.
go back to reference Andreasen NC, Paradisio S, O’Leary DS. “Cognitive dysmetria” as an integrative theory of schizophrenia: a dysfunction in cortical-subcortical-cerebellar circuitry? Schizophr Bull. 1998;24(2):203–18.PubMedCrossRef Andreasen NC, Paradisio S, O’Leary DS. “Cognitive dysmetria” as an integrative theory of schizophrenia: a dysfunction in cortical-subcortical-cerebellar circuitry? Schizophr Bull. 1998;24(2):203–18.PubMedCrossRef
61.
go back to reference Nopoulos PC, Ceilley JW, Gailis EA, Andreasen NC. An MRI study of cerebellar vermis morphology in patients with schizophrenia: evidence in support of the cognitive dysmetria concept. Biol Psychiatry. 1999;46(5):703–11.PubMedCrossRef Nopoulos PC, Ceilley JW, Gailis EA, Andreasen NC. An MRI study of cerebellar vermis morphology in patients with schizophrenia: evidence in support of the cognitive dysmetria concept. Biol Psychiatry. 1999;46(5):703–11.PubMedCrossRef
62.
go back to reference Charlton RA, Barrick TR, McIntyre DJ, Shen Y, O’Sullivan M, Howe FA, Clark CA, Morris RG, Markus HS. White matter damage on diffusion tensor imaging correlates with age-related cognitive decline. Neurology. 2006;66(2):217–22.PubMedCrossRef Charlton RA, Barrick TR, McIntyre DJ, Shen Y, O’Sullivan M, Howe FA, Clark CA, Morris RG, Markus HS. White matter damage on diffusion tensor imaging correlates with age-related cognitive decline. Neurology. 2006;66(2):217–22.PubMedCrossRef
63.
go back to reference O’Brien JT, Wiseman R, Burton EJ, Barber B, Wesnes K, Saxby B, Ford GA. Cognitive associations of subcortical white matter lesions in older people. Ann N Y Acad Sci. 2002;977:436–44.PubMedCrossRef O’Brien JT, Wiseman R, Burton EJ, Barber B, Wesnes K, Saxby B, Ford GA. Cognitive associations of subcortical white matter lesions in older people. Ann N Y Acad Sci. 2002;977:436–44.PubMedCrossRef
64.
go back to reference Salthouse TA. The processing-speed theory of adult age differences in cognition. Psychol Rev. 1996;103(3):403–28.PubMedCrossRef Salthouse TA. The processing-speed theory of adult age differences in cognition. Psychol Rev. 1996;103(3):403–28.PubMedCrossRef
Metadata
Title
Pay attention to the basal ganglia: a volumetric study in early dementia with Lewy bodies
Authors
Anne Botzung
Nathalie Philippi
Vincent Noblet
Paulo Loureiro de Sousa
Frédéric Blanc
Publication date
01-12-2019
Publisher
BioMed Central
Keywords
Dementia
Dementia
Published in
Alzheimer's Research & Therapy / Issue 1/2019
Electronic ISSN: 1758-9193
DOI
https://doi.org/10.1186/s13195-019-0568-y

Other articles of this Issue 1/2019

Alzheimer's Research & Therapy 1/2019 Go to the issue