Skip to main content
Top
Published in: BMC Neurology 1/2021

Open Access 01-12-2021 | Dementia | Research article

Association of sudden sensorineural hearing loss with dementia: a nationwide cohort study

Authors: Shu-Yu Tai, Cheng-Ting Shen, Ling-Feng Wang, Chen-Yu Chien

Published in: BMC Neurology | Issue 1/2021

Login to get access

Abstract

Background

Impaired cochlear blood perfusion and microvascular damage can cause sudden sensorineural hearing loss (SSHL), which is a potential risk factor for dementia. This study explored the association between SSHL and dementia.

Methods

This retrospective cohort study used a random sample of 1000,000 individuals from Taiwan’s National Health Insurance Research Database. We identified 3725 patients newly diagnosed with SSHL between January 1, 2000, and December 31, 2009, and propensity score matching according to age, sex, index year, comorbidities, and medications was used to select the comparison group of 11,175 patients without SSHL. Participants were stratified by age (<65 and ≧65 years) and sex for the subgroup analyses. The outcome of interest was all cause dementia (ICD-9-CM codes 290.0, 290.4, 294.1, 331.0). Both groups were followed up until December 31, 2010, for diagnoses of dementia. Cox regression models were used to estimate the hazard ratio (HR) of dementia.

Results

During the average 5-year follow-up period, the incidence rate of dementia in the SSHL cohort was 6.5 per 1000 person-years compared with 5.09 per 10,000 person-years in the comparison group. After adjustment for potential confounders, patients with SSHL were 1.39 times more likely to develop dementia than those without SSHL (95% confidence interval = 1.13–1.71). When stratified by patients’ age and sex, the incidence of dementia was 1.34- and 1.64-fold higher in patients with SSHL aged ≥65 years (P = .013) and in women (P = .001), respectively, compared with the comparison group. Women with SSHL who were < 65 years old had the highest risk (2.14, 95% CI = 1.17–4.11, P = .022). In addition, a log-rank test revealed that patients with SSHL had significantly higher cumulative incidence of dementia than those without SSHL (P = .002).

Conclusions

Patients with SSHL, especially women aged < 65 years, were associated with higher risk of dementia than those without SSHL. Thus, clinicians managing patients with SSHL should be aware of the increased risk of dementia.
Literature
2.
go back to reference staff TCPn. Taiwan must address the challenges of an aging society. 2013. staff TCPn. Taiwan must address the challenges of an aging society. 2013.
3.
go back to reference Brookmeyer R, Johnson E, Ziegler-Graham K, Arrighi HM. Forecasting the global burden of Alzheimer’s disease. Alzheimers Dement. 2007;3(3):186–91.PubMedCrossRef Brookmeyer R, Johnson E, Ziegler-Graham K, Arrighi HM. Forecasting the global burden of Alzheimer’s disease. Alzheimers Dement. 2007;3(3):186–91.PubMedCrossRef
4.
go back to reference Drugs for Alzheimer's disease: best avoided. No therapeutic advantage. Prescrire Int. 2012;21(128):150. Drugs for Alzheimer's disease: best avoided. No therapeutic advantage. Prescrire Int. 2012;21(128):150.
6.
go back to reference Loughrey DG, Kelly ME, Kelley GA, Brennan S, Lawlor BA. Association of age-related hearing loss with cognitive function, cognitive impairment, and dementia: a systematic review and meta-analysis. JAMA Otolaryngol Head Neck Surg. 2018;144(2):115–26.PubMedCrossRef Loughrey DG, Kelly ME, Kelley GA, Brennan S, Lawlor BA. Association of age-related hearing loss with cognitive function, cognitive impairment, and dementia: a systematic review and meta-analysis. JAMA Otolaryngol Head Neck Surg. 2018;144(2):115–26.PubMedCrossRef
7.
go back to reference Thomson RS, Auduong P, Miller AT, Gurgel RK. Hearing loss as a risk factor for dementia: a systematic review. Laryngoscope Investig Otolaryngol. 2017;2(2):69–79.PubMedPubMedCentralCrossRef Thomson RS, Auduong P, Miller AT, Gurgel RK. Hearing loss as a risk factor for dementia: a systematic review. Laryngoscope Investig Otolaryngol. 2017;2(2):69–79.PubMedPubMedCentralCrossRef
8.
go back to reference Panza F, Solfrizzi V, Logroscino G. Age-related hearing impairment—a risk factor and frailty marker for dementia and AD. Nat Rev Neurol. 2015;11(3):166–75.PubMedCrossRef Panza F, Solfrizzi V, Logroscino G. Age-related hearing impairment—a risk factor and frailty marker for dementia and AD. Nat Rev Neurol. 2015;11(3):166–75.PubMedCrossRef
9.
go back to reference Amieva H, Ouvrard C, Meillon C, Rullier L, Dartigues J-F. Death, depression, disability, and dementia associated with self-reported hearing problems: a 25-year study. J Gerontol A. 2018;73(10):1383–9.CrossRef Amieva H, Ouvrard C, Meillon C, Rullier L, Dartigues J-F. Death, depression, disability, and dementia associated with self-reported hearing problems: a 25-year study. J Gerontol A. 2018;73(10):1383–9.CrossRef
10.
go back to reference Chandrasekhar SS, Tsai Do BS, Schwartz SR, et al. Clinical practice guideline: sudden hearing loss (update). Otolaryngol Head Neck Surg. 2019;161(1_suppl):S1–S45.PubMed Chandrasekhar SS, Tsai Do BS, Schwartz SR, et al. Clinical practice guideline: sudden hearing loss (update). Otolaryngol Head Neck Surg. 2019;161(1_suppl):S1–S45.PubMed
11.
go back to reference Rauch SD. Clinical practice. Idiopathic sudden sensorineural hearing loss. N Engl J Med. 2008;359(8):833–40.PubMedCrossRef Rauch SD. Clinical practice. Idiopathic sudden sensorineural hearing loss. N Engl J Med. 2008;359(8):833–40.PubMedCrossRef
12.
go back to reference Xie W, Dai Q, Liu J, Liu Y, Hellström S, Duan M. Analysis of clinical and laboratory findings of idiopathic sudden sensorineural hearing loss. Sci Rep. 2020;10(1):6057.PubMedPubMedCentralCrossRef Xie W, Dai Q, Liu J, Liu Y, Hellström S, Duan M. Analysis of clinical and laboratory findings of idiopathic sudden sensorineural hearing loss. Sci Rep. 2020;10(1):6057.PubMedPubMedCentralCrossRef
13.
go back to reference Singh A, Kumar Irugu DV. Sudden sensorineural hearing loss – a contemporary review of management issues. J Otol. 2020;15(2):67–73.PubMedCrossRef Singh A, Kumar Irugu DV. Sudden sensorineural hearing loss – a contemporary review of management issues. J Otol. 2020;15(2):67–73.PubMedCrossRef
14.
go back to reference Kim J-Y, Hong JY, Kim D-K. Association of sudden sensorineural hearing loss with risk of cardiocerebrovascular disease: a study using data from the Korea National Health Insurance Service. JAMA Otolaryngol Head Neck Surg. 2018;144(2):129–35.PubMedCrossRef Kim J-Y, Hong JY, Kim D-K. Association of sudden sensorineural hearing loss with risk of cardiocerebrovascular disease: a study using data from the Korea National Health Insurance Service. JAMA Otolaryngol Head Neck Surg. 2018;144(2):129–35.PubMedCrossRef
15.
go back to reference Kim SY, Lim JS, Sim S, Choi HG. Sudden sensorineural hearing loss predicts ischemic stroke: a longitudinal follow-up study. Otol Neurotol. 2018;39(8):964–9.PubMedCrossRef Kim SY, Lim JS, Sim S, Choi HG. Sudden sensorineural hearing loss predicts ischemic stroke: a longitudinal follow-up study. Otol Neurotol. 2018;39(8):964–9.PubMedCrossRef
16.
go back to reference Phillips JS, King JA, Chandran S, Prinsley PR, Dick D. Cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy (CADASIL) presenting with sudden sensorineural hearing loss. J Laryngol Otol. 2005;119(2):148–51.PubMedCrossRef Phillips JS, King JA, Chandran S, Prinsley PR, Dick D. Cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy (CADASIL) presenting with sudden sensorineural hearing loss. J Laryngol Otol. 2005;119(2):148–51.PubMedCrossRef
18.
go back to reference Deal JA, Betz J, Yaffe K, et al. Hearing impairment and incident dementia and cognitive decline in older adults: the health ABC study. J Gerontol A. 2016;72(5):703–9. Deal JA, Betz J, Yaffe K, et al. Hearing impairment and incident dementia and cognitive decline in older adults: the health ABC study. J Gerontol A. 2016;72(5):703–9.
20.
go back to reference Su P, Hsu C-C, Lin H-C, et al. Age-related hearing loss and dementia: a 10-year national population-based study. Eur Arch Otorhinolaryngol. 2017;274(5):2327–34.PubMedCrossRef Su P, Hsu C-C, Lin H-C, et al. Age-related hearing loss and dementia: a 10-year national population-based study. Eur Arch Otorhinolaryngol. 2017;274(5):2327–34.PubMedCrossRef
21.
go back to reference Ford AH, Hankey GJ, Yeap BB, Golledge J, Flicker L, Almeida OP. Hearing loss and the risk of dementia in later life. Maturitas. 2018;112:1–11.PubMedCrossRef Ford AH, Hankey GJ, Yeap BB, Golledge J, Flicker L, Almeida OP. Hearing loss and the risk of dementia in later life. Maturitas. 2018;112:1–11.PubMedCrossRef
22.
go back to reference Gurgel RK, Ward PD, Schwartz S, Norton MC, Foster NL, Tschanz JT. Relationship of hearing loss and dementia: a prospective, population-based study. Otol Neurotol. 2014;35(5):775–81.PubMedPubMedCentralCrossRef Gurgel RK, Ward PD, Schwartz S, Norton MC, Foster NL, Tschanz JT. Relationship of hearing loss and dementia: a prospective, population-based study. Otol Neurotol. 2014;35(5):775–81.PubMedPubMedCentralCrossRef
23.
go back to reference Livingston G, Huntley J, Sommerlad A, et al. Dementia prevention, intervention, and care: 2020 report of the Lancet Commission. Lancet. 2020;396(10248):413–46.PubMedPubMedCentralCrossRef Livingston G, Huntley J, Sommerlad A, et al. Dementia prevention, intervention, and care: 2020 report of the Lancet Commission. Lancet. 2020;396(10248):413–46.PubMedPubMedCentralCrossRef
24.
go back to reference Füllgrabe C. When hearing loss masquerades as cognitive decline. J Neurol Neurosurg Psychiatry. 2020;91(12):1248.PubMedCrossRef Füllgrabe C. When hearing loss masquerades as cognitive decline. J Neurol Neurosurg Psychiatry. 2020;91(12):1248.PubMedCrossRef
26.
go back to reference Wayne RV, Johnsrude IS. A review of causal mechanisms underlying the link between age-related hearing loss and cognitive decline. Ageing Res Rev. 2015;23(Pt B):154–66.PubMedCrossRef Wayne RV, Johnsrude IS. A review of causal mechanisms underlying the link between age-related hearing loss and cognitive decline. Ageing Res Rev. 2015;23(Pt B):154–66.PubMedCrossRef
27.
go back to reference Rabbitt P. Mild hearing loss can cause apparent memory failures which increase with age and reduce with IQ. Acta Otolaryngol. 1991;111(sup476):167–76.CrossRef Rabbitt P. Mild hearing loss can cause apparent memory failures which increase with age and reduce with IQ. Acta Otolaryngol. 1991;111(sup476):167–76.CrossRef
28.
go back to reference Füllgrabe C. On the possible overestimation of cognitive decline: the impact of age-related hearing loss on cognitive-test performance. Front Neurosci. 2020;14:454.PubMedPubMedCentralCrossRef Füllgrabe C. On the possible overestimation of cognitive decline: the impact of age-related hearing loss on cognitive-test performance. Front Neurosci. 2020;14:454.PubMedPubMedCentralCrossRef
29.
go back to reference Fratiglioni L, Paillard-Borg S, Winblad B. An active and socially integrated lifestyle in late life might protect against dementia. Lancet Neurol. 2004;3(6):343–53.PubMedCrossRef Fratiglioni L, Paillard-Borg S, Winblad B. An active and socially integrated lifestyle in late life might protect against dementia. Lancet Neurol. 2004;3(6):343–53.PubMedCrossRef
30.
go back to reference Chau JK, Lin JR, Atashband S, Irvine RA, Westerberg BD. Systematic review of the evidence for the etiology of adult sudden sensorineural hearing loss. Laryngoscope. 2010;120(5):1011–21.PubMed Chau JK, Lin JR, Atashband S, Irvine RA, Westerberg BD. Systematic review of the evidence for the etiology of adult sudden sensorineural hearing loss. Laryngoscope. 2010;120(5):1011–21.PubMed
31.
go back to reference Schuknecht HF, Donovan ED. The pathology of idiopathic sudden sensorineural hearing loss. Arch Otorhinolaryngol. 1986;243(1):1–15.PubMedCrossRef Schuknecht HF, Donovan ED. The pathology of idiopathic sudden sensorineural hearing loss. Arch Otorhinolaryngol. 1986;243(1):1–15.PubMedCrossRef
32.
go back to reference Capaccio P, Ottaviani F, Cuccarini V, et al. Genetic and acquired prothrombotic risk factors and sudden hearing loss. Laryngoscope. 2007;117(3):547–51.PubMedCrossRef Capaccio P, Ottaviani F, Cuccarini V, et al. Genetic and acquired prothrombotic risk factors and sudden hearing loss. Laryngoscope. 2007;117(3):547–51.PubMedCrossRef
33.
go back to reference Toubi E, Ben-David J, Kessel A, Halas K, Sabo E, Luntz M. Immune-mediated disorders associated with idiopathic sudden sensorineural hearing loss. Ann Otol Rhinol Laryngol. 2004;113(6):445–9.PubMedCrossRef Toubi E, Ben-David J, Kessel A, Halas K, Sabo E, Luntz M. Immune-mediated disorders associated with idiopathic sudden sensorineural hearing loss. Ann Otol Rhinol Laryngol. 2004;113(6):445–9.PubMedCrossRef
34.
go back to reference Baek MJ, Park HM, Johnson JM, et al. Increased frequencies of cochlin-specific T cells in patients with autoimmune sensorineural hearing loss. J Immunol (Baltimore, Md: 1950). 2006;177(6):4203–10.CrossRef Baek MJ, Park HM, Johnson JM, et al. Increased frequencies of cochlin-specific T cells in patients with autoimmune sensorineural hearing loss. J Immunol (Baltimore, Md: 1950). 2006;177(6):4203–10.CrossRef
35.
go back to reference Cao Z, Gao J, Huang S, et al. Genetic polymorphisms and susceptibility to sudden sensorineural hearing loss: a systematic review. Audiol Neurootol. 2019;24(1):8–19.PubMedCrossRef Cao Z, Gao J, Huang S, et al. Genetic polymorphisms and susceptibility to sudden sensorineural hearing loss: a systematic review. Audiol Neurootol. 2019;24(1):8–19.PubMedCrossRef
36.
go back to reference Lin HC, Chao PZ, Lee HC. Sudden sensorineural hearing loss increases the risk of stroke: a 5-year follow-up study. Stroke. 2008;39(10):2744–8.PubMedCrossRef Lin HC, Chao PZ, Lee HC. Sudden sensorineural hearing loss increases the risk of stroke: a 5-year follow-up study. Stroke. 2008;39(10):2744–8.PubMedCrossRef
37.
go back to reference Lin C, Lin SW, Lin YS, Weng SF, Lee TM. Sudden sensorineural hearing loss is correlated with an increased risk of acute myocardial infarction: a population-based cohort study. Laryngoscope. 2013;123(9):2254–8.PubMedCrossRef Lin C, Lin SW, Lin YS, Weng SF, Lee TM. Sudden sensorineural hearing loss is correlated with an increased risk of acute myocardial infarction: a population-based cohort study. Laryngoscope. 2013;123(9):2254–8.PubMedCrossRef
38.
go back to reference Suckfüll M, Wimmer C, Reichel O, Mees K, Schorn K. Hyperfibrinogenemia as a risk factor for sudden hearing loss. Otol Neurotol. 2002;23(3):309–11.PubMedCrossRef Suckfüll M, Wimmer C, Reichel O, Mees K, Schorn K. Hyperfibrinogenemia as a risk factor for sudden hearing loss. Otol Neurotol. 2002;23(3):309–11.PubMedCrossRef
39.
go back to reference Doo JG, Kim D, Kim Y, et al. Biomarkers suggesting favorable prognostic outcomes in sudden sensorineural hearing loss. Int J Mol Sci. 2020;21(19):7248.PubMedCentralCrossRef Doo JG, Kim D, Kim Y, et al. Biomarkers suggesting favorable prognostic outcomes in sudden sensorineural hearing loss. Int J Mol Sci. 2020;21(19):7248.PubMedCentralCrossRef
40.
go back to reference Panza F, Solfrizzi V, Colacicco AM, et al. Cerebrovascular disease in the elderly: lipoprotein metabolism and cognitive decline. Aging Clin Exp Res. 2006;18(2):144–8.PubMedCrossRef Panza F, Solfrizzi V, Colacicco AM, et al. Cerebrovascular disease in the elderly: lipoprotein metabolism and cognitive decline. Aging Clin Exp Res. 2006;18(2):144–8.PubMedCrossRef
41.
go back to reference Xu G, Zhang H, Zhang S, Fan X, Liu X. Plasma fibrinogen is associated with cognitive decline and risk for dementia in patients with mild cognitive impairment. Int J Clin Pract. 2008;62(7):1070–5.PubMedCrossRef Xu G, Zhang H, Zhang S, Fan X, Liu X. Plasma fibrinogen is associated with cognitive decline and risk for dementia in patients with mild cognitive impairment. Int J Clin Pract. 2008;62(7):1070–5.PubMedCrossRef
43.
go back to reference Li G, You D, Ma J, Li W, Li H, Sun S. The role of autoimmunity in the pathogenesis of sudden sensorineural hearing loss. Neural Plast. 2018;2018:7691473.PubMedPubMedCentralCrossRef Li G, You D, Ma J, Li W, Li H, Sun S. The role of autoimmunity in the pathogenesis of sudden sensorineural hearing loss. Neural Plast. 2018;2018:7691473.PubMedPubMedCentralCrossRef
44.
go back to reference Weaver JD, Huang MH, Albert M, Harris T, Rowe JW, Seeman TE. Interleukin-6 and risk of cognitive decline: MacArthur studies of successful aging. Neurology. 2002;59(3):371–8.PubMedCrossRef Weaver JD, Huang MH, Albert M, Harris T, Rowe JW, Seeman TE. Interleukin-6 and risk of cognitive decline: MacArthur studies of successful aging. Neurology. 2002;59(3):371–8.PubMedCrossRef
45.
go back to reference Schram MT, Euser SM, de Craen AJ, et al. Systemic markers of inflammation and cognitive decline in old age. J Am Geriatr Soc. 2007;55(5):708–16.PubMedCrossRef Schram MT, Euser SM, de Craen AJ, et al. Systemic markers of inflammation and cognitive decline in old age. J Am Geriatr Soc. 2007;55(5):708–16.PubMedCrossRef
46.
go back to reference Brydon L, Harrison NA, Walker C, Steptoe A, Critchley HD. Peripheral inflammation is associated with altered substantia nigra activity and psychomotor slowing in humans. Biol Psychiatry. 2008;63(11):1022–9.PubMedPubMedCentralCrossRef Brydon L, Harrison NA, Walker C, Steptoe A, Critchley HD. Peripheral inflammation is associated with altered substantia nigra activity and psychomotor slowing in humans. Biol Psychiatry. 2008;63(11):1022–9.PubMedPubMedCentralCrossRef
47.
go back to reference Marsland AL, Gianaros PJ, Kuan DC-H, Sheu LK, Krajina K, Manuck SB. Brain morphology links systemic inflammation to cognitive function in midlife adults. Brain Behav Immun. 2015;48:195–204.PubMedPubMedCentralCrossRef Marsland AL, Gianaros PJ, Kuan DC-H, Sheu LK, Krajina K, Manuck SB. Brain morphology links systemic inflammation to cognitive function in midlife adults. Brain Behav Immun. 2015;48:195–204.PubMedPubMedCentralCrossRef
48.
go back to reference Tegeler C, O'Sullivan JL, Bucholtz N, et al. The inflammatory markers CRP, IL-6, and IL-10 are associated with cognitive function—data from the Berlin Aging Study II. Neurobiol Aging. 2016;38:112–7.PubMedCrossRef Tegeler C, O'Sullivan JL, Bucholtz N, et al. The inflammatory markers CRP, IL-6, and IL-10 are associated with cognitive function—data from the Berlin Aging Study II. Neurobiol Aging. 2016;38:112–7.PubMedCrossRef
49.
go back to reference Yoon SH, Kim ME, Kim HY, Lee JS, Jang CH. Inflammatory cytokines and mononuclear cells in sudden sensorineural hearing loss. J Laryngol Otol. 2019;133(2):95–101.PubMedCrossRef Yoon SH, Kim ME, Kim HY, Lee JS, Jang CH. Inflammatory cytokines and mononuclear cells in sudden sensorineural hearing loss. J Laryngol Otol. 2019;133(2):95–101.PubMedCrossRef
50.
go back to reference Masuda M, Kanzaki S, Minami S, et al. Correlations of inflammatory biomarkers with the onset and prognosis of idiopathic sudden sensorineural hearing loss. Otol Neurotol. 2012;33(7):1142–50.PubMedCrossRef Masuda M, Kanzaki S, Minami S, et al. Correlations of inflammatory biomarkers with the onset and prognosis of idiopathic sudden sensorineural hearing loss. Otol Neurotol. 2012;33(7):1142–50.PubMedCrossRef
51.
go back to reference Beam CR, Kaneshiro C, Jang JY, Reynolds CA, Pedersen NL, Gatz M. Differences between women and men in incidence rates of dementia and Alzheimer’s disease. J Alzheimers Dis. 2018;64(4):1077–83.PubMedPubMedCentralCrossRef Beam CR, Kaneshiro C, Jang JY, Reynolds CA, Pedersen NL, Gatz M. Differences between women and men in incidence rates of dementia and Alzheimer’s disease. J Alzheimers Dis. 2018;64(4):1077–83.PubMedPubMedCentralCrossRef
53.
go back to reference Liu JH. Does estrogen provide “neuroprotection” for postmenopausal women? Menopause. 2019;26(12):1361–2.PubMedCrossRef Liu JH. Does estrogen provide “neuroprotection” for postmenopausal women? Menopause. 2019;26(12):1361–2.PubMedCrossRef
54.
go back to reference Matyi JM, Rattinger GB, Schwartz S, Buhusi M, Tschanz JT. Lifetime estrogen exposure and cognition in late life: the Cache County Study. Menopause. 2019;26(12):1366–74.PubMedPubMedCentralCrossRef Matyi JM, Rattinger GB, Schwartz S, Buhusi M, Tschanz JT. Lifetime estrogen exposure and cognition in late life: the Cache County Study. Menopause. 2019;26(12):1366–74.PubMedPubMedCentralCrossRef
55.
go back to reference Waring SC, Rocca WA, Petersen RC, O'Brien PC, Tangalos EG, Kokmen E. Postmenopausal estrogen replacement therapy and risk of AD: a population-based study. Neurology. 1999;52(5):965–70.PubMedCrossRef Waring SC, Rocca WA, Petersen RC, O'Brien PC, Tangalos EG, Kokmen E. Postmenopausal estrogen replacement therapy and risk of AD: a population-based study. Neurology. 1999;52(5):965–70.PubMedCrossRef
56.
go back to reference Ratnakumar A, Zimmerman SE, Jordan BA, Mar JC. Estrogen activates Alzheimer’s disease genes. Alzheimers Dement (N Y). 2019;5:906–17.CrossRef Ratnakumar A, Zimmerman SE, Jordan BA, Mar JC. Estrogen activates Alzheimer’s disease genes. Alzheimers Dement (N Y). 2019;5:906–17.CrossRef
57.
go back to reference Song YJ, Li SR, Li XW, et al. The effect of estrogen replacement therapy on Alzheimer’s disease and Parkinson’s disease in postmenopausal women: a meta-analysis. Front Neurosci. 2020;14:157.PubMedPubMedCentralCrossRef Song YJ, Li SR, Li XW, et al. The effect of estrogen replacement therapy on Alzheimer’s disease and Parkinson’s disease in postmenopausal women: a meta-analysis. Front Neurosci. 2020;14:157.PubMedPubMedCentralCrossRef
Metadata
Title
Association of sudden sensorineural hearing loss with dementia: a nationwide cohort study
Authors
Shu-Yu Tai
Cheng-Ting Shen
Ling-Feng Wang
Chen-Yu Chien
Publication date
01-12-2021
Publisher
BioMed Central
Keywords
Dementia
Dementia
Published in
BMC Neurology / Issue 1/2021
Electronic ISSN: 1471-2377
DOI
https://doi.org/10.1186/s12883-021-02106-x

Other articles of this Issue 1/2021

BMC Neurology 1/2021 Go to the issue