Skip to main content
Top
Published in: BMC Complementary Medicine and Therapies 1/2024

Open Access 01-12-2024 | Dementia | Research

An anthocyanin-rich extract from Zea mays L. var. ceratina alleviates neuronal cell death caused by hydrogen peroxide-induced cytotoxicity in SH-SY5Y cells

Authors: Nootchanat Mairuae, Nut Palachai, Parinya Noisa

Published in: BMC Complementary Medicine and Therapies | Issue 1/2024

Login to get access

Abstract

The incidence of dementia is rising, with neuronal cell death from oxidative stress and apoptosis recognized as a significant contributor to its development. However, effective strategies to combat this condition are lacking, necessitating further investigation. This study aimed to assess the potential of an anthocyanin-rich extract from Zea mays L. var. ceratina (AZC) in alleviating neuronal cell death.
Neurotoxicity was induced in SH-SY5Y cells using hydrogen peroxide (H2O2) at a concentration of 200 µM. Cells were pretreated with varying doses (31.25 and 62.5 µg/mL) of AZC. Cell viability was assessed using the MTT assay, and molecular mechanisms including reactive oxygen species (ROS) levels, antioxidant enzyme activities (catalase (CAT), superoxide dismutase (SOD), and glutathione peroxidase (GSH-Px)), malondialdehyde (MDA) levels for oxidative stress, and the activation of extracellular signal-regulated kinases 1 and 2 (ERK1/2), cAMP response element-binding protein (CREB), and apoptotic factors (B-cell lymphoma 2 (Bcl-2), caspase 3) were explored.
Results showed that AZC significantly improved cell viability, reduced ROS production and MDA levels, and downregulated caspase 3 expression. It enhanced CAT, SOD, and GSH-Px activities, activated ERK1/2 and CREB, and upregulated Bcl-2 expression. These findings support the neuroprotective effects of AZC, suggesting it activates ERK1/2, leading to CREB activation and subsequent upregulation of Bcl-2 expression while suppressing caspase 3. AZC may mitigate neuronal cell death by reducing ROS levels through enhanced scavenging enzyme activities.
In conclusion, this study underscores the potential of AZC as a neuroprotective agent against neuronal cell death. However, further investigations including toxicity assessments, in vivo studies, and clinical trials are necessary to validate its benefits in neuroprotection.
Appendix
Available only for authorised users
Literature
1.
go back to reference Cao Q, Tan CC, Xu W, Hu H, Cao XP, Dong Q, Tan L, Yu JT. The prevalence of dementia: a systematic review and Meta-analysis. J Alzheimers Dis. 2020;73(3):1157–66.PubMedCrossRef Cao Q, Tan CC, Xu W, Hu H, Cao XP, Dong Q, Tan L, Yu JT. The prevalence of dementia: a systematic review and Meta-analysis. J Alzheimers Dis. 2020;73(3):1157–66.PubMedCrossRef
3.
go back to reference King A, Bodi I, Troakes C. The neuropathological diagnosis of Alzheimer’s Disease-The challenges of Pathological Mimics and Concomitant Pathology. Brain Sci. 2020;10(8):479.PubMedPubMedCentralCrossRef King A, Bodi I, Troakes C. The neuropathological diagnosis of Alzheimer’s Disease-The challenges of Pathological Mimics and Concomitant Pathology. Brain Sci. 2020;10(8):479.PubMedPubMedCentralCrossRef
4.
go back to reference Mecocci P, Cherubini A, Polidori MC, Cecchetti R, Chionne F, Senin U. Oxidative stress, and dementia: new perspectives in AD pathogenesis. Aging (Milano). 1997;9(4):51–2.PubMed Mecocci P, Cherubini A, Polidori MC, Cecchetti R, Chionne F, Senin U. Oxidative stress, and dementia: new perspectives in AD pathogenesis. Aging (Milano). 1997;9(4):51–2.PubMed
6.
go back to reference Nunomura A, Castellani RJ, Zhu X, Moreira PI, Perry G, Smith MA. Involvement of oxidative stress in Alzheimer disease. J Neuropathol Exp Neurol. 2006;65(7):631–41.PubMedCrossRef Nunomura A, Castellani RJ, Zhu X, Moreira PI, Perry G, Smith MA. Involvement of oxidative stress in Alzheimer disease. J Neuropathol Exp Neurol. 2006;65(7):631–41.PubMedCrossRef
8.
go back to reference McGeer PL, McGeer EG. Inflammation and the degenerative diseases of aging. Ann N Y Acad Sci. 2004;1035:104–16.PubMedCrossRef McGeer PL, McGeer EG. Inflammation and the degenerative diseases of aging. Ann N Y Acad Sci. 2004;1035:104–16.PubMedCrossRef
9.
go back to reference Swerdlow RH, Khan SM. A mitochondrial cascade hypothesis for sporadic Alzheimer’s disease. Med Hypotheses. 2004;63(1):8–20.PubMedCrossRef Swerdlow RH, Khan SM. A mitochondrial cascade hypothesis for sporadic Alzheimer’s disease. Med Hypotheses. 2004;63(1):8–20.PubMedCrossRef
10.
go back to reference Reddy PH, Beal MF. Amyloid beta, mitochondrial dysfunction and synaptic damage: implications for cognitive decline in aging and Alzheimer’s disease. Trends Mol Med. 2008;14(2):45–53.PubMedPubMedCentralCrossRef Reddy PH, Beal MF. Amyloid beta, mitochondrial dysfunction and synaptic damage: implications for cognitive decline in aging and Alzheimer’s disease. Trends Mol Med. 2008;14(2):45–53.PubMedPubMedCentralCrossRef
11.
go back to reference DeKosky ST, Scheff SW. Synapse loss in frontal cortex biopsies in Alzheimer’s disease: correlation with cognitive severity. Ann Neurol. 1990;27(5):457–64.PubMedCrossRef DeKosky ST, Scheff SW. Synapse loss in frontal cortex biopsies in Alzheimer’s disease: correlation with cognitive severity. Ann Neurol. 1990;27(5):457–64.PubMedCrossRef
12.
13.
go back to reference Livingston G, Huntley J, Sommerlad A, et al. Dementia prevention, intervention, and care: 2020 report of the Lancet Commission. Lancet. 2020;396(10248):413–46.PubMedPubMedCentralCrossRef Livingston G, Huntley J, Sommerlad A, et al. Dementia prevention, intervention, and care: 2020 report of the Lancet Commission. Lancet. 2020;396(10248):413–46.PubMedPubMedCentralCrossRef
14.
go back to reference Câmara JS, Locatelli M, Pereira JAM, et al. Behind the scenes of anthocyanins-from the health benefits to potential applications in Food, Pharmaceutical and Cosmetic fields. Nutrients. 2022;14(23):5133.PubMedPubMedCentralCrossRef Câmara JS, Locatelli M, Pereira JAM, et al. Behind the scenes of anthocyanins-from the health benefits to potential applications in Food, Pharmaceutical and Cosmetic fields. Nutrients. 2022;14(23):5133.PubMedPubMedCentralCrossRef
15.
go back to reference Mattioli R, Francioso A, Mosca L, Silva P. Anthocyanins: a Comprehensive Review of their Chemical properties and Health effects on Cardiovascular and neurodegenerative diseases. Molecules. 2020;25(17):3809.PubMedPubMedCentralCrossRef Mattioli R, Francioso A, Mosca L, Silva P. Anthocyanins: a Comprehensive Review of their Chemical properties and Health effects on Cardiovascular and neurodegenerative diseases. Molecules. 2020;25(17):3809.PubMedPubMedCentralCrossRef
16.
go back to reference Henriques JF, Serra D, Dinis TCP, Almeida LM. The Anti-neuroinflammatory Role of anthocyanins and their metabolites for the Prevention and Treatment of Brain disorders. Int J Mol Sci. 2020;21(22):8653.PubMedPubMedCentralCrossRef Henriques JF, Serra D, Dinis TCP, Almeida LM. The Anti-neuroinflammatory Role of anthocyanins and their metabolites for the Prevention and Treatment of Brain disorders. Int J Mol Sci. 2020;21(22):8653.PubMedPubMedCentralCrossRef
17.
go back to reference Li D, Wang P, Luo Y, Zhao M, Chen F. Health benefits of anthocyanins and molecular mechanisms: update from recent decade. Crit Rev Food Sci Nutr. 2017;57(8):1729–41.PubMedCrossRef Li D, Wang P, Luo Y, Zhao M, Chen F. Health benefits of anthocyanins and molecular mechanisms: update from recent decade. Crit Rev Food Sci Nutr. 2017;57(8):1729–41.PubMedCrossRef
18.
go back to reference Kalt W, Cassidy A, Howard LR, et al. Recent Research on the Health benefits of blueberries and their anthocyanins. Adv Nutr. 2020;11(2):224–36.PubMedCrossRef Kalt W, Cassidy A, Howard LR, et al. Recent Research on the Health benefits of blueberries and their anthocyanins. Adv Nutr. 2020;11(2):224–36.PubMedCrossRef
20.
go back to reference Banji OJF, Banji D, Makeen HA, Alqahtani SS, Alshahrani S. Neuroinflammation: the role of anthocyanins as neuroprotectants. Curr Neuropharmacol. 2022;20(11):2156–74.PubMedPubMedCentralCrossRef Banji OJF, Banji D, Makeen HA, Alqahtani SS, Alshahrani S. Neuroinflammation: the role of anthocyanins as neuroprotectants. Curr Neuropharmacol. 2022;20(11):2156–74.PubMedPubMedCentralCrossRef
21.
go back to reference Ockermann P, Headley L, Lizio R, Hansmann J. A review of the properties of anthocyanins and their influence on factors affecting Cardiometabolic and Cognitive Health. Nutrients. 2021;13(8):2831.PubMedPubMedCentralCrossRef Ockermann P, Headley L, Lizio R, Hansmann J. A review of the properties of anthocyanins and their influence on factors affecting Cardiometabolic and Cognitive Health. Nutrients. 2021;13(8):2831.PubMedPubMedCentralCrossRef
22.
go back to reference Palachai N, Wattanathorn J, Muchimapura S, Thukham-Mee W. Antimetabolic syndrome effect of Phytosome containing the combined extracts of Mulberry and Ginger in an animal model of metabolic syndrome. Oxid Med Cell Longev. 2019;2019:5972575.PubMedPubMedCentralCrossRef Palachai N, Wattanathorn J, Muchimapura S, Thukham-Mee W. Antimetabolic syndrome effect of Phytosome containing the combined extracts of Mulberry and Ginger in an animal model of metabolic syndrome. Oxid Med Cell Longev. 2019;2019:5972575.PubMedPubMedCentralCrossRef
23.
go back to reference Quettier-Deleu C, Gressier B, Vasseur J, Dine T, Brunet C, Luyckx M, Cazin M, Cazin JC, Bailleul F, Trotin F. Phenolic compounds and antioxidant activities of buckwheat (Fagopyrum esculentum Moench) hulls and flour. J Ethnopharmacol. 2000;72(1–2):35–42. Quettier-Deleu C, Gressier B, Vasseur J, Dine T, Brunet C, Luyckx M, Cazin M, Cazin JC, Bailleul F, Trotin F. Phenolic compounds and antioxidant activities of buckwheat (Fagopyrum esculentum Moench) hulls and flour. J Ethnopharmacol. 2000;72(1–2):35–42.
24.
go back to reference Luximon-Ramma A, Bahorun T, Soobrattee MA, Aruoma OI. Antioxidant 38. Activities of phenolic, proanthocyanidin, and flavonoid components in extracts of Cassia fistula. J Agric Food Chem. 2002;50(18):5042–7.PubMedCrossRef Luximon-Ramma A, Bahorun T, Soobrattee MA, Aruoma OI. Antioxidant 38. Activities of phenolic, proanthocyanidin, and flavonoid components in extracts of Cassia fistula. J Agric Food Chem. 2002;50(18):5042–7.PubMedCrossRef
25.
go back to reference Mazza G, Cacace JE, Kay CD. Methods of analysis for anthocyanins 39. In plants and biological fluids. J AOAC Int. 2004;87(1):129–45.PubMedCrossRef Mazza G, Cacace JE, Kay CD. Methods of analysis for anthocyanins 39. In plants and biological fluids. J AOAC Int. 2004;87(1):129–45.PubMedCrossRef
26.
go back to reference MA E, Hosseinimehr SJ, Hamidinia A, Jafari M. Antioxidant and free radical scavenging activity of Feijoa sellowiana fruits peel and leaves. Pharmacologyonline. 2008;1:7–14. MA E, Hosseinimehr SJ, Hamidinia A, Jafari M. Antioxidant and free radical scavenging activity of Feijoa sellowiana fruits peel and leaves. Pharmacologyonline. 2008;1:7–14.
27.
go back to reference Benzie IF, Strain JJ. The ferric reducing ability of plasma (FRAP) as a measure of antioxidant power: the FRAP assay. Anal Biochem. 1996;239(1):70–6.PubMedCrossRef Benzie IF, Strain JJ. The ferric reducing ability of plasma (FRAP) as a measure of antioxidant power: the FRAP assay. Anal Biochem. 1996;239(1):70–6.PubMedCrossRef
28.
go back to reference Re R, Pellegrini N, Proteggente A, Pannala A, Yang M, Rice-Evans C. Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radic Biol Med. 1999;26(9–10):1231–7.PubMedCrossRef Re R, Pellegrini N, Proteggente A, Pannala A, Yang M, Rice-Evans C. Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radic Biol Med. 1999;26(9–10):1231–7.PubMedCrossRef
29.
go back to reference Cho H, Yun CW, Park WK, Kong JY, Kim KS, Park Y, Lee S, Kim BK. Modulation of the activity of pro-inflammatory enzymes, COX-2 and iNOS, by chrysin derivatives. Pharmacol Res. 2004;49(1):37–43.PubMedCrossRef Cho H, Yun CW, Park WK, Kong JY, Kim KS, Park Y, Lee S, Kim BK. Modulation of the activity of pro-inflammatory enzymes, COX-2 and iNOS, by chrysin derivatives. Pharmacol Res. 2004;49(1):37–43.PubMedCrossRef
30.
go back to reference Mairuae N, Palachai N, Noisa P. The neuroprotective effects of the combined extract of mulberry fruit and mulberry leaf against hydrogen peroxide-induced cytotoxicity in SH-SY5Y cells. BMC Complement Med Ther. 2023;23(1):117.PubMedPubMedCentralCrossRef Mairuae N, Palachai N, Noisa P. The neuroprotective effects of the combined extract of mulberry fruit and mulberry leaf against hydrogen peroxide-induced cytotoxicity in SH-SY5Y cells. BMC Complement Med Ther. 2023;23(1):117.PubMedPubMedCentralCrossRef
31.
go back to reference Buranrat B, Mairuae N, Kanchanarach W. Cytotoxic and antimigratory effects of Cratoxy Formosum extract against HepG2 liver cancer cells. Biomed Rep. 2017;6(4):441–8.PubMedPubMedCentralCrossRef Buranrat B, Mairuae N, Kanchanarach W. Cytotoxic and antimigratory effects of Cratoxy Formosum extract against HepG2 liver cancer cells. Biomed Rep. 2017;6(4):441–8.PubMedPubMedCentralCrossRef
32.
go back to reference Góth L. A simple method for determination of serum catalase activity and revision of reference range. Clin Chim Acta. 1991;196(2–3):143–51.PubMedCrossRef Góth L. A simple method for determination of serum catalase activity and revision of reference range. Clin Chim Acta. 1991;196(2–3):143–51.PubMedCrossRef
33.
go back to reference Sun Y, Oberley LW, Li Y. A simple method for clinical assay of superoxide dismutase. Clin Chem. 1988;34(3):497–500.PubMedCrossRef Sun Y, Oberley LW, Li Y. A simple method for clinical assay of superoxide dismutase. Clin Chem. 1988;34(3):497–500.PubMedCrossRef
34.
go back to reference Rotruck JT, Pope AL, Ganther HE, Swanson AB, Hafeman DG, Hoekstra WG. Selenium: biochemical role as a component of glutathione peroxidase. Science. 1973;179(4073):588–90.PubMedCrossRef Rotruck JT, Pope AL, Ganther HE, Swanson AB, Hafeman DG, Hoekstra WG. Selenium: biochemical role as a component of glutathione peroxidase. Science. 1973;179(4073):588–90.PubMedCrossRef
35.
go back to reference Ohkawa H, Ohishi N, Yagi K. Assay for lipid peroxides in animal tissues by thiobarbituric acid reaction. Anal Biochem. 1979;95(2):351–8.PubMedCrossRef Ohkawa H, Ohishi N, Yagi K. Assay for lipid peroxides in animal tissues by thiobarbituric acid reaction. Anal Biochem. 1979;95(2):351–8.PubMedCrossRef
36.
go back to reference Palachai N, Wattanathorn J, Muchimapura S, Thukham-Mee W. Phytosome Loading the Combined Extract of Mulberry Fruit and Ginger Protects against Cerebral Ischemia in Metabolic Syndrome Rats. Oxid Med Cell Longev. 2020; 2020:5305437. Palachai N, Wattanathorn J, Muchimapura S, Thukham-Mee W. Phytosome Loading the Combined Extract of Mulberry Fruit and Ginger Protects against Cerebral Ischemia in Metabolic Syndrome Rats. Oxid Med Cell Longev. 2020; 2020:5305437.
37.
go back to reference Lao F, Giusti MM. Quantification of Purple Corn (Zea mays L.) Anthocyanins Using Spectrophotometric and HPLC Approaches: Method Comparison and Correlation. Food Anal. Methods. 2016: 91367–1380 (2016). Lao F, Giusti MM. Quantification of Purple Corn (Zea mays L.) Anthocyanins Using Spectrophotometric and HPLC Approaches: Method Comparison and Correlation. Food Anal. Methods. 2016: 91367–1380 (2016).
38.
go back to reference Lao F, Sigurdson GT, Giusti MM. Health benefits of Purple Corn (Zea mays L.) Phenolic compounds. Compr Rev Food Sci Food Saf. 2017;16(2):234–46.PubMedCrossRef Lao F, Sigurdson GT, Giusti MM. Health benefits of Purple Corn (Zea mays L.) Phenolic compounds. Compr Rev Food Sci Food Saf. 2017;16(2):234–46.PubMedCrossRef
40.
go back to reference Winter AN, Bickford PC. Anthocyanins and their metabolites as therapeutic agents for neurodegenerative disease. Antioxid (Basel). 2019;8(9):333.CrossRef Winter AN, Bickford PC. Anthocyanins and their metabolites as therapeutic agents for neurodegenerative disease. Antioxid (Basel). 2019;8(9):333.CrossRef
41.
go back to reference Casedas G, Gonzalez-Burgos E, Smith C, Lopez V, Gomez-Serranillos MP. Sour cherry (Prunus cerasus L.) juice protects against hydrogen peroxide-induced neurotoxicity by modulating the antioxidant response. J Funct Foods. 2018;46:243–9.CrossRef Casedas G, Gonzalez-Burgos E, Smith C, Lopez V, Gomez-Serranillos MP. Sour cherry (Prunus cerasus L.) juice protects against hydrogen peroxide-induced neurotoxicity by modulating the antioxidant response. J Funct Foods. 2018;46:243–9.CrossRef
42.
go back to reference Tarozzi A, Morroni F, Hrelia S, Angeloni C, Marchesi A, Cantelli-Forti G, Hrelia P. Neuroprotective effects of anthocyanins and their in vivo metabolites in SH-SY5Y cells. Neurosci Lett. 2007;424:36–40.PubMedCrossRef Tarozzi A, Morroni F, Hrelia S, Angeloni C, Marchesi A, Cantelli-Forti G, Hrelia P. Neuroprotective effects of anthocyanins and their in vivo metabolites in SH-SY5Y cells. Neurosci Lett. 2007;424:36–40.PubMedCrossRef
43.
go back to reference Speer H, D’Cunha NM, Alexopoulos NI, McKune AJ, Naumovski N. Anthocyanins and Human Health-A Focus on Oxidative Stress, inflammation and disease. Antioxid (Basel). 2020;9(5):366.CrossRef Speer H, D’Cunha NM, Alexopoulos NI, McKune AJ, Naumovski N. Anthocyanins and Human Health-A Focus on Oxidative Stress, inflammation and disease. Antioxid (Basel). 2020;9(5):366.CrossRef
44.
go back to reference Amri F, Ghouili I, Amri M, Carrier A, Masmoudi-Kouki O. Neuroglobin protects astroglial cells from hydrogen peroxide-induced oxidative stress and apoptotic cell death. J Neurochem. 2017;140(1):151–69.PubMedCrossRef Amri F, Ghouili I, Amri M, Carrier A, Masmoudi-Kouki O. Neuroglobin protects astroglial cells from hydrogen peroxide-induced oxidative stress and apoptotic cell death. J Neurochem. 2017;140(1):151–69.PubMedCrossRef
45.
go back to reference Kwon SH, Hong SI, Ma SX, Lee SY, Jang CG. 3’,4’,7-Trihydroxyflavone prevents apoptotic cell death in neuronal cells from hydrogen peroxide-induced oxidative stress. Food Chem Toxicol. 2015;80:41–51.PubMedCrossRef Kwon SH, Hong SI, Ma SX, Lee SY, Jang CG. 3’,4’,7-Trihydroxyflavone prevents apoptotic cell death in neuronal cells from hydrogen peroxide-induced oxidative stress. Food Chem Toxicol. 2015;80:41–51.PubMedCrossRef
46.
go back to reference Radi E, Formichi P, Battisti C, Federico A. Apoptosis, and oxidative stress in neurodegenerative diseases. J Alzheimers Dis. 2014;42(Suppl 3):S125–52.PubMedCrossRef Radi E, Formichi P, Battisti C, Federico A. Apoptosis, and oxidative stress in neurodegenerative diseases. J Alzheimers Dis. 2014;42(Suppl 3):S125–52.PubMedCrossRef
47.
go back to reference Tsai YR, Chang CF, Lai JH, et al. Pomalidomide ameliorates H2O2-Induced oxidative stress Injury and Cell Death in Rat primary cortical neuronal cultures by inducing anti-oxidative and Anti-apoptosis effects. Int J Mol Sci. 2018;19(10):3252.PubMedPubMedCentralCrossRef Tsai YR, Chang CF, Lai JH, et al. Pomalidomide ameliorates H2O2-Induced oxidative stress Injury and Cell Death in Rat primary cortical neuronal cultures by inducing anti-oxidative and Anti-apoptosis effects. Int J Mol Sci. 2018;19(10):3252.PubMedPubMedCentralCrossRef
48.
go back to reference Kang J, Wang Y, Guo X, et al. N-acetylserotonin protects PC12 cells from hydrogen peroxide induced damage through ROS mediated PI3K / AKT pathway. Cell Cycle. 2022;21(21):2268–82.PubMedPubMedCentralCrossRef Kang J, Wang Y, Guo X, et al. N-acetylserotonin protects PC12 cells from hydrogen peroxide induced damage through ROS mediated PI3K / AKT pathway. Cell Cycle. 2022;21(21):2268–82.PubMedPubMedCentralCrossRef
49.
go back to reference He X, Guo X, Ma Z, et al. Grape seed proanthocyanidins protect PC12 cells from hydrogen peroxide-induced damage via the PI3K/AKT signaling pathway. Neurosci Lett. 2021;750:135793.PubMedCrossRef He X, Guo X, Ma Z, et al. Grape seed proanthocyanidins protect PC12 cells from hydrogen peroxide-induced damage via the PI3K/AKT signaling pathway. Neurosci Lett. 2021;750:135793.PubMedCrossRef
50.
go back to reference Peng T, Li S, Liu L, et al. Artemisinin attenuated ischemic stroke induced cell apoptosis through activation of ERK1/2/CREB/BCL-2 signaling pathway in vitroand in vivo. Int J Biol Sci. 2022;18(11):4578–94.PubMedPubMedCentralCrossRef Peng T, Li S, Liu L, et al. Artemisinin attenuated ischemic stroke induced cell apoptosis through activation of ERK1/2/CREB/BCL-2 signaling pathway in vitroand in vivo. Int J Biol Sci. 2022;18(11):4578–94.PubMedPubMedCentralCrossRef
51.
go back to reference Shi R, Yuan K, Hu B, et al. Tissue Kallikrein alleviates cerebral ischemia-reperfusion Injury by activating the B2R-ERK1/2-CREB-Bcl-2 signaling pathway in Diabetic rats. Oxid Med Cell Longev. 2016;2016:1843201.PubMedPubMedCentralCrossRef Shi R, Yuan K, Hu B, et al. Tissue Kallikrein alleviates cerebral ischemia-reperfusion Injury by activating the B2R-ERK1/2-CREB-Bcl-2 signaling pathway in Diabetic rats. Oxid Med Cell Longev. 2016;2016:1843201.PubMedPubMedCentralCrossRef
52.
go back to reference Wang H, Zhou HC, Ren RL, Du SX, Guo ZK, Shen XH. Apolipoprotein E2 inhibits mitochondrial apoptosis in pancreatic cancer cells through ERK1/2/CREB/BCL-2 signaling. Hepatobiliary Pancreat Dis Int. 2023;22(2):179–89.PubMedCrossRef Wang H, Zhou HC, Ren RL, Du SX, Guo ZK, Shen XH. Apolipoprotein E2 inhibits mitochondrial apoptosis in pancreatic cancer cells through ERK1/2/CREB/BCL-2 signaling. Hepatobiliary Pancreat Dis Int. 2023;22(2):179–89.PubMedCrossRef
53.
go back to reference Jiang H, Ashraf GM, Liu M, et al. Tilianin ameliorates cognitive dysfunction and neuronal damage in rats with vascular dementia via p-CaMKII/ERK/CREB and ox-CaMKII-Dependent MAPK/NF-κB pathways. Oxid Med Cell Longev. 2021;2021:6673967.PubMedPubMedCentralCrossRef Jiang H, Ashraf GM, Liu M, et al. Tilianin ameliorates cognitive dysfunction and neuronal damage in rats with vascular dementia via p-CaMKII/ERK/CREB and ox-CaMKII-Dependent MAPK/NF-κB pathways. Oxid Med Cell Longev. 2021;2021:6673967.PubMedPubMedCentralCrossRef
54.
go back to reference Du Q, Zhu X, Si J. Angelica polysaccharide ameliorates memory impairment in Alzheimer’s disease rat through activating BDNF/TrkB/CREB pathway. Exp Biol Med (Maywood). 2020;245(1):1–10.PubMedCrossRef Du Q, Zhu X, Si J. Angelica polysaccharide ameliorates memory impairment in Alzheimer’s disease rat through activating BDNF/TrkB/CREB pathway. Exp Biol Med (Maywood). 2020;245(1):1–10.PubMedCrossRef
55.
go back to reference Oguchi T, Ono R, Tsuji M, et al. Cilostazol suppresses Aβ-induced neurotoxicity in SH-SY5Y cells through inhibition of oxidative stress and MAPK signaling pathway. Front Aging Neurosci. 2017;9:337.PubMedPubMedCentralCrossRef Oguchi T, Ono R, Tsuji M, et al. Cilostazol suppresses Aβ-induced neurotoxicity in SH-SY5Y cells through inhibition of oxidative stress and MAPK signaling pathway. Front Aging Neurosci. 2017;9:337.PubMedPubMedCentralCrossRef
Metadata
Title
An anthocyanin-rich extract from Zea mays L. var. ceratina alleviates neuronal cell death caused by hydrogen peroxide-induced cytotoxicity in SH-SY5Y cells
Authors
Nootchanat Mairuae
Nut Palachai
Parinya Noisa
Publication date
01-12-2024
Publisher
BioMed Central
Keywords
Dementia
Dementia
Published in
BMC Complementary Medicine and Therapies / Issue 1/2024
Electronic ISSN: 2662-7671
DOI
https://doi.org/10.1186/s12906-024-04458-6

Other articles of this Issue 1/2024

BMC Complementary Medicine and Therapies 1/2024 Go to the issue