Skip to main content
Top
Published in: Brain Structure and Function 2/2015

01-03-2015 | Original Article

Motor cortex excitability and connectivity in chronic stroke: a multimodal model of functional reorganization

Authors: Lukas J. Volz, Anna-Sophia Sarfeld, Svenja Diekhoff, Anne K. Rehme, Eva-Maria Pool, Simon B. Eickhoff, Gereon R. Fink, Christian Grefkes

Published in: Brain Structure and Function | Issue 2/2015

Login to get access

Abstract

Cerebral ischemia triggers a cascade of cellular processes, which induce neuroprotection, inflammation, apoptosis and regeneration. At the neural network level, lesions concomitantly induce cerebral plasticity. Yet, many stroke survivors are left with a permanent motor deficit, and only little is known about the neurobiological factors that determine functional outcome after stroke. Transcranial magnetic stimulation (TMS) and magnetic resonance imaging (MRI) are non-invasive approaches that allow insights into the functional (re-) organization of the cortical motor system. We here combined neuronavigated TMS, MRI and analyses of connectivity to investigate to which degree recovery of hand function depends on corticospinal tract (CST) damage and biomarkers of cerebral plasticity like cortical excitability and motor network effective connectivity. As expected, individual motor performance of 12 stroke patients with persistent motor deficits was found to depend upon the degree of CST damage but also motor cortex excitability and interhemispheric connectivity. In addition, the data revealed a strong correlation between reduced ipsilesional motor cortex excitability and reduced interhemispheric inhibition in severely impaired patients. Interindividual differences in ipsilesional motor cortex excitability were stronger related to the motor deficit than abnormal interhemispheric connectivity or CST damage. Multivariate linear regression analysis combining the three factors accounted for more than 80 % of the variance in functional impairment. The inter-relation of cortical excitability and reduced interhemispheric inhibition provides direct multi-modal evidence for the disinhibition theory of the contralesional hemisphere following stroke. Finally, our data reveal a key mechanism (i.e., the excitability-related reduction in interhemispheric inhibition) accounting for the rehabilitative potential of novel therapeutic approaches which aim at modulating cortical excitability in stroke patients.
Appendix
Available only for authorised users
Literature
go back to reference Adeyemo BO, Simis M, Macea DD, Fregni F (2012) Systematic review of parameters of stimulation, clinical trial design characteristics, and motor outcomes in non-invasive brain stimulation in stroke. Front Psychiatry 3:88CrossRefPubMedCentralPubMed Adeyemo BO, Simis M, Macea DD, Fregni F (2012) Systematic review of parameters of stimulation, clinical trial design characteristics, and motor outcomes in non-invasive brain stimulation in stroke. Front Psychiatry 3:88CrossRefPubMedCentralPubMed
go back to reference Ameli M, Grefkes C, Kemper F, Riegg FP, Rehme AK, Karbe H, Fink GR, Nowak DA (2009) Differential effects of high-frequency repetitive transcranial magnetic stimulation over ipsilesional primary motor cortex in cortical and subcortical middle cerebral artery stroke. Ann Neurol 66(3):298–309CrossRefPubMed Ameli M, Grefkes C, Kemper F, Riegg FP, Rehme AK, Karbe H, Fink GR, Nowak DA (2009) Differential effects of high-frequency repetitive transcranial magnetic stimulation over ipsilesional primary motor cortex in cortical and subcortical middle cerebral artery stroke. Ann Neurol 66(3):298–309CrossRefPubMed
go back to reference Benjamini Y, Hochberg Y (1995) Controlling the false discovery rate: a practical and powerfull approach to multiple testing. J R Stat Soc Ser B (Methodological) 57(1):289–300 Benjamini Y, Hochberg Y (1995) Controlling the false discovery rate: a practical and powerfull approach to multiple testing. J R Stat Soc Ser B (Methodological) 57(1):289–300
go back to reference Boroojerdi B, Diefenbach K, Ferbert A (1996) Transcallosal inhibition in cortical and subcortical cerebral vascular lesions. J Neurol Sci 144(1–2):160–170CrossRefPubMed Boroojerdi B, Diefenbach K, Ferbert A (1996) Transcallosal inhibition in cortical and subcortical cerebral vascular lesions. J Neurol Sci 144(1–2):160–170CrossRefPubMed
go back to reference Boudrias MH, Goncalves CS, Penny WD, Park CH, Rossiter HE, Talelli P, Ward NS (2012) Age-related changes in causal interactions between cortical motor regions during hand grip. Neuroimage 59(4):3398–3405CrossRefPubMedCentralPubMed Boudrias MH, Goncalves CS, Penny WD, Park CH, Rossiter HE, Talelli P, Ward NS (2012) Age-related changes in causal interactions between cortical motor regions during hand grip. Neuroimage 59(4):3398–3405CrossRefPubMedCentralPubMed
go back to reference Brott T, Adams HP Jr, Olinger CP, Marler JR, Barsan WG, Biller J, Spilker J, Holleran R, Eberle R, Hertzberg V et al (1989) Measurements of acute cerebral infarction: a clinical examination scale. Stroke 20(7):864–870CrossRefPubMed Brott T, Adams HP Jr, Olinger CP, Marler JR, Barsan WG, Biller J, Spilker J, Holleran R, Eberle R, Hertzberg V et al (1989) Measurements of acute cerebral infarction: a clinical examination scale. Stroke 20(7):864–870CrossRefPubMed
go back to reference Burgel U, Schormann T, Schleicher A, Zilles K (1999) Mapping of histologically identified long fiber tracts in human cerebral hemispheres to the MRI volume of a reference brain: position and spatial variability of the optic radiation. Neuroimage 10(5):489–499CrossRefPubMed Burgel U, Schormann T, Schleicher A, Zilles K (1999) Mapping of histologically identified long fiber tracts in human cerebral hemispheres to the MRI volume of a reference brain: position and spatial variability of the optic radiation. Neuroimage 10(5):489–499CrossRefPubMed
go back to reference Byrnes ML, Thickbroom GW, Phillips BA, Wilson SA, Mastaglia FL (1999) Physiological studies of the corticomotor projection to the hand after subcortical stroke. Clin Neurophysiol 110(3):487–498CrossRefPubMed Byrnes ML, Thickbroom GW, Phillips BA, Wilson SA, Mastaglia FL (1999) Physiological studies of the corticomotor projection to the hand after subcortical stroke. Clin Neurophysiol 110(3):487–498CrossRefPubMed
go back to reference Byrnes ML, Thickbroom GW, Phillips BA, Mastaglia FL (2001) Long-term changes in motor cortical organisation after recovery from subcortical stroke. Brain Res 889(1–2):278–287CrossRefPubMed Byrnes ML, Thickbroom GW, Phillips BA, Mastaglia FL (2001) Long-term changes in motor cortical organisation after recovery from subcortical stroke. Brain Res 889(1–2):278–287CrossRefPubMed
go back to reference Calautti C, Leroy F, Guincestre JY, Marie RM, Baron JC (2001) Sequential activation brain mapping after subcortical stroke: changes in hemispheric balance and recovery. NeuroReport 12(18):3883–3886CrossRefPubMed Calautti C, Leroy F, Guincestre JY, Marie RM, Baron JC (2001) Sequential activation brain mapping after subcortical stroke: changes in hemispheric balance and recovery. NeuroReport 12(18):3883–3886CrossRefPubMed
go back to reference Cardenas-Morales L, Volz LJ, Michely J, Rehme AK, Pool EM, Nettekoven C, Eickhoff SB, Fink GR, Grefkes C (2013) Network connectivity and individual responses to brain stimulation in the human motor system. Cereb Cortex. doi:10.1093/cercor/bht023 PubMed Cardenas-Morales L, Volz LJ, Michely J, Rehme AK, Pool EM, Nettekoven C, Eickhoff SB, Fink GR, Grefkes C (2013) Network connectivity and individual responses to brain stimulation in the human motor system. Cereb Cortex. doi:10.​1093/​cercor/​bht023 PubMed
go back to reference Catano A, Houa M, Caroyer JM, Ducarne H, Noel P (1996) Magnetic transcranial stimulation in acute stroke: early excitation threshold and functional prognosis. EEG Clin Neurophysiol 101(3):233–239 Catano A, Houa M, Caroyer JM, Ducarne H, Noel P (1996) Magnetic transcranial stimulation in acute stroke: early excitation threshold and functional prognosis. EEG Clin Neurophysiol 101(3):233–239
go back to reference Cheeran B, Talelli P, Mori F, Koch G, Suppa A, Edwards M, Houlden H, Bhatia K, Greenwood R, Rothwell JC (2008) A common polymorphism in the brain-derived neurotrophic factor gene (BDNF) modulates human cortical plasticity and the response to rTMS. J Physiol 586(23):5717–5725CrossRefPubMedCentralPubMed Cheeran B, Talelli P, Mori F, Koch G, Suppa A, Edwards M, Houlden H, Bhatia K, Greenwood R, Rothwell JC (2008) A common polymorphism in the brain-derived neurotrophic factor gene (BDNF) modulates human cortical plasticity and the response to rTMS. J Physiol 586(23):5717–5725CrossRefPubMedCentralPubMed
go back to reference Cicinelli P, Traversa R, Bassi A, Scivoletto G, Rossini PM (1997) Interhemispheric differences of hand muscle representation in human motor cortex. Muscle Nerve 20(5):535–542CrossRefPubMed Cicinelli P, Traversa R, Bassi A, Scivoletto G, Rossini PM (1997) Interhemispheric differences of hand muscle representation in human motor cortex. Muscle Nerve 20(5):535–542CrossRefPubMed
go back to reference Cicinelli P, Pasqualetti P, Zaccagnini M, Traversa R, Oliveri M, Rossini PM (2003) Interhemispheric asymmetries of motor cortex excitability in the postacute stroke stage: a paired-pulse transcranial magnetic stimulation study. Stroke 34(11):2653–2658CrossRefPubMed Cicinelli P, Pasqualetti P, Zaccagnini M, Traversa R, Oliveri M, Rossini PM (2003) Interhemispheric asymmetries of motor cortex excitability in the postacute stroke stage: a paired-pulse transcranial magnetic stimulation study. Stroke 34(11):2653–2658CrossRefPubMed
go back to reference Classen J, Schnitzler A, Binkofski F, Werhahn KJ, Kim YS, Kessler KR, Benecke R (1997) The motor syndrome associated with exaggerated inhibition within the primary motor cortex of patients with hemiparetic. Brain 120(4):605–619CrossRefPubMed Classen J, Schnitzler A, Binkofski F, Werhahn KJ, Kim YS, Kessler KR, Benecke R (1997) The motor syndrome associated with exaggerated inhibition within the primary motor cortex of patients with hemiparetic. Brain 120(4):605–619CrossRefPubMed
go back to reference Day BL, Dressler D, de Maertens Noordhout A, Marsden CD, Nakashima K, Rothwell JC, Thompson PD (1989) Electric and magnetic stimulation of human motor cortex: surface EMG and single motor unit responses. J Physiol 412:449–473CrossRefPubMedCentralPubMed Day BL, Dressler D, de Maertens Noordhout A, Marsden CD, Nakashima K, Rothwell JC, Thompson PD (1989) Electric and magnetic stimulation of human motor cortex: surface EMG and single motor unit responses. J Physiol 412:449–473CrossRefPubMedCentralPubMed
go back to reference Devanne H, Lavoie BA, Capaday C (1997) Input-output properties and gain changes in the human corticospinal pathway. Exp Brain Res 114(2):329–338CrossRefPubMed Devanne H, Lavoie BA, Capaday C (1997) Input-output properties and gain changes in the human corticospinal pathway. Exp Brain Res 114(2):329–338CrossRefPubMed
go back to reference Di Lazzaro V, Restuccia D, Oliviero A, Profice P, Ferrara L, Insola A, Mazzone P, Tonali P, Rothwell JC (1998) Effects of voluntary contraction on descending volleys evoked by transcranial stimulation in conscious humans. J Physiol 508(2):625–633CrossRefPubMedCentralPubMed Di Lazzaro V, Restuccia D, Oliviero A, Profice P, Ferrara L, Insola A, Mazzone P, Tonali P, Rothwell JC (1998) Effects of voluntary contraction on descending volleys evoked by transcranial stimulation in conscious humans. J Physiol 508(2):625–633CrossRefPubMedCentralPubMed
go back to reference Dum RP, Strick PL (1991) The origin of corticospinal projections from the premotor areas in the frontal lobe. J Neurosci 11(3):667–689PubMed Dum RP, Strick PL (1991) The origin of corticospinal projections from the premotor areas in the frontal lobe. J Neurosci 11(3):667–689PubMed
go back to reference Eickhoff SB, Grefkes C (2011) Approaches for the integrated analysis of structure, function and connectivity of the human brain. Clin EEG Neurosci 42(2):107–121CrossRefPubMed Eickhoff SB, Grefkes C (2011) Approaches for the integrated analysis of structure, function and connectivity of the human brain. Clin EEG Neurosci 42(2):107–121CrossRefPubMed
go back to reference Eickhoff SB, Stephan KE, Mohlberg H, Grefkes C, Fink GR, Amunts K, Zilles K (2005) A new SPM toolbox for combining probabilistic cytoarchitectonic maps and functional imaging data. Neuroimage 25(4):1325–1335CrossRefPubMed Eickhoff SB, Stephan KE, Mohlberg H, Grefkes C, Fink GR, Amunts K, Zilles K (2005) A new SPM toolbox for combining probabilistic cytoarchitectonic maps and functional imaging data. Neuroimage 25(4):1325–1335CrossRefPubMed
go back to reference Escudero JV, Sancho J, Bautista D, Escudero M, Lopez-Trigo J (1998) Prognostic value of motor evoked potential obtained by transcranial magnetic brain stimulation in motor function recovery in patients with acute ischemic stroke. Stroke 29(9):1854–1859CrossRefPubMed Escudero JV, Sancho J, Bautista D, Escudero M, Lopez-Trigo J (1998) Prognostic value of motor evoked potential obtained by transcranial magnetic brain stimulation in motor function recovery in patients with acute ischemic stroke. Stroke 29(9):1854–1859CrossRefPubMed
go back to reference Ferbert A, Priori A, Rothwell JC, Day BL, Colebatch JG, Marsden CD (1992) Interhemispheric inhibition of the human motor cortex. J Physiol 453:525–546CrossRefPubMedCentralPubMed Ferbert A, Priori A, Rothwell JC, Day BL, Colebatch JG, Marsden CD (1992) Interhemispheric inhibition of the human motor cortex. J Physiol 453:525–546CrossRefPubMedCentralPubMed
go back to reference Gerloff C, Bushara K, Sailer A, Wassermann EM, Chen R, Matsuoka T, Waldvogel D, Wittenberg GF, Ishii K, Cohen LG, Hallett M (2006) Multimodal imaging of brain reorganization in motor areas of the contralesional hemisphere of well recovered patients after capsular stroke. Brain 129(3):791–808CrossRefPubMed Gerloff C, Bushara K, Sailer A, Wassermann EM, Chen R, Matsuoka T, Waldvogel D, Wittenberg GF, Ishii K, Cohen LG, Hallett M (2006) Multimodal imaging of brain reorganization in motor areas of the contralesional hemisphere of well recovered patients after capsular stroke. Brain 129(3):791–808CrossRefPubMed
go back to reference Grefkes C, Fink GR (2011) Reorganization of cerebral networks after stroke: new insights from neuroimaging with connectivity approaches. Brain 134(5):1264–1276CrossRefPubMedCentralPubMed Grefkes C, Fink GR (2011) Reorganization of cerebral networks after stroke: new insights from neuroimaging with connectivity approaches. Brain 134(5):1264–1276CrossRefPubMedCentralPubMed
go back to reference Grefkes C, Fink GR (2012) Disruption of motor network connectivity post-stroke and its noninvasive neuromodulation. Curr Opin Neurol 25(6):670–675CrossRefPubMed Grefkes C, Fink GR (2012) Disruption of motor network connectivity post-stroke and its noninvasive neuromodulation. Curr Opin Neurol 25(6):670–675CrossRefPubMed
go back to reference Grefkes C, Nowak DA, Eickhoff SB, Dafotakis M, Kust J, Karbe H, Fink GR (2008) Cortical connectivity after subcortical stroke assessed with functional magnetic resonance imaging. Ann Neurol 63(2):236–246CrossRefPubMed Grefkes C, Nowak DA, Eickhoff SB, Dafotakis M, Kust J, Karbe H, Fink GR (2008) Cortical connectivity after subcortical stroke assessed with functional magnetic resonance imaging. Ann Neurol 63(2):236–246CrossRefPubMed
go back to reference Hamada M, Murase N, Hasan A, Balaratnam M, Rothwell JC (2013) The role of interneuron networks in driving human motor cortical plasticity. Cereb Cortex 23(7):1593–1605CrossRefPubMed Hamada M, Murase N, Hasan A, Balaratnam M, Rothwell JC (2013) The role of interneuron networks in driving human motor cortical plasticity. Cereb Cortex 23(7):1593–1605CrossRefPubMed
go back to reference Hummel FC, Cohen LG (2006) Non-invasive brain stimulation: a new strategy to improve neurorehabilitation after stroke? Lancet Neurol 5(8):708–712CrossRefPubMed Hummel FC, Cohen LG (2006) Non-invasive brain stimulation: a new strategy to improve neurorehabilitation after stroke? Lancet Neurol 5(8):708–712CrossRefPubMed
go back to reference Kandel M, Beis JM, Le Chapelain L, Guesdon H, Paysant J (2012) Non-invasive cerebral stimulation for the upper limb rehabilitation after stroke: a review. Ann Phys Rehabil Med 55(9–10):657–680CrossRefPubMed Kandel M, Beis JM, Le Chapelain L, Guesdon H, Paysant J (2012) Non-invasive cerebral stimulation for the upper limb rehabilitation after stroke: a review. Ann Phys Rehabil Med 55(9–10):657–680CrossRefPubMed
go back to reference Kim YH, You SH, Ko MH, Park JW, Lee KH, Jang SH, Yoo WK, Hallett M (2006) Repetitive transcranial magnetic stimulation-induced corticomotor excitability and associated motor skill acquisition in chronic stroke. Stroke 37(6):1471–1476CrossRefPubMed Kim YH, You SH, Ko MH, Park JW, Lee KH, Jang SH, Yoo WK, Hallett M (2006) Repetitive transcranial magnetic stimulation-induced corticomotor excitability and associated motor skill acquisition in chronic stroke. Stroke 37(6):1471–1476CrossRefPubMed
go back to reference Liepert J (2005) Transcranial magnetic stimulation in neurorehabilitation. Acta Neurochir Suppl 93:71–74CrossRefPubMed Liepert J (2005) Transcranial magnetic stimulation in neurorehabilitation. Acta Neurochir Suppl 93:71–74CrossRefPubMed
go back to reference Liepert J, Restemeyer C, Kucinski T, Zittel S, Weiller C (2005) Motor strokes: the lesion location determines motor excitability changes. Stroke 36(12):2648–2653CrossRefPubMed Liepert J, Restemeyer C, Kucinski T, Zittel S, Weiller C (2005) Motor strokes: the lesion location determines motor excitability changes. Stroke 36(12):2648–2653CrossRefPubMed
go back to reference Lyle RC (1981) A performance test for assessment of upper limb function in physical rehabilitation treatment and research. Int J Rehabil Res 4:483–492CrossRefPubMed Lyle RC (1981) A performance test for assessment of upper limb function in physical rehabilitation treatment and research. Int J Rehabil Res 4:483–492CrossRefPubMed
go back to reference Macdonell RA, Donnan GA, Bladin PF (1989) A comparison of somatosensory evoked and motor evoked potentials in stroke. Ann Neurol 25(1):68–73CrossRefPubMed Macdonell RA, Donnan GA, Bladin PF (1989) A comparison of somatosensory evoked and motor evoked potentials in stroke. Ann Neurol 25(1):68–73CrossRefPubMed
go back to reference Murase N, Duque J, Mazzocchio R, Cohen LG (2004) Influence of interhemispheric interactions on motor function in chronic stroke. Ann Neurol 55(3):400–409CrossRefPubMed Murase N, Duque J, Mazzocchio R, Cohen LG (2004) Influence of interhemispheric interactions on motor function in chronic stroke. Ann Neurol 55(3):400–409CrossRefPubMed
go back to reference Nardone R, Tezzon F (2002) Inhibitory and excitatory circuits of cerebral cortex after ischaemic stroke: prognostic value of the transcranial magnetic stimulation. EMG Clin Neurophysiol 42(3):131–136 Nardone R, Tezzon F (2002) Inhibitory and excitatory circuits of cerebral cortex after ischaemic stroke: prognostic value of the transcranial magnetic stimulation. EMG Clin Neurophysiol 42(3):131–136
go back to reference Nelson AJ, Hoque T, Gunraj C, Ni Z, Chen R (2009) Bi-directional interhemispheric inhibition during unimanual sustained contractions. BMC Neurosci 10:31CrossRefPubMedCentralPubMed Nelson AJ, Hoque T, Gunraj C, Ni Z, Chen R (2009) Bi-directional interhemispheric inhibition during unimanual sustained contractions. BMC Neurosci 10:31CrossRefPubMedCentralPubMed
go back to reference Newton JM, Ward NS, Parker GJ, Deichmann R, Alexander DC, Friston KJ, Frackowiak RS (2006) Non-invasive mapping of corticofugal fibres from multiple motor areas—relevance to stroke recovery. Brain 129(7):1844–1858CrossRefPubMedCentralPubMed Newton JM, Ward NS, Parker GJ, Deichmann R, Alexander DC, Friston KJ, Frackowiak RS (2006) Non-invasive mapping of corticofugal fibres from multiple motor areas—relevance to stroke recovery. Brain 129(7):1844–1858CrossRefPubMedCentralPubMed
go back to reference Ngomo S, Leonard G, Moffet H, Mercier C (2012) Comparison of transcranial magnetic stimulation measures obtained at rest and under active conditions and their reliability. J Neurosci Methods 205(1):65–71CrossRefPubMed Ngomo S, Leonard G, Moffet H, Mercier C (2012) Comparison of transcranial magnetic stimulation measures obtained at rest and under active conditions and their reliability. J Neurosci Methods 205(1):65–71CrossRefPubMed
go back to reference Nowak DA, Grefkes C, Ameli M, Fink GR (2009) Interhemispheric competition after stroke: brain stimulation to enhance recovery of function of the affected hand. Neurorehabil Neural Repair 23(7):641–656CrossRefPubMed Nowak DA, Grefkes C, Ameli M, Fink GR (2009) Interhemispheric competition after stroke: brain stimulation to enhance recovery of function of the affected hand. Neurorehabil Neural Repair 23(7):641–656CrossRefPubMed
go back to reference Paulus W, Classen J, Cohen LG, Large CH, Di Lazzaro V, Nitsche M, Pascual-Leone A, Rosenow F, Rothwell JC, Ziemann U (2008) State of the art: pharmacologic effects on cortical excitability measures tested by transcranial magnetic stimulation. Brain Stimul 1(3):151–163CrossRefPubMed Paulus W, Classen J, Cohen LG, Large CH, Di Lazzaro V, Nitsche M, Pascual-Leone A, Rosenow F, Rothwell JC, Ziemann U (2008) State of the art: pharmacologic effects on cortical excitability measures tested by transcranial magnetic stimulation. Brain Stimul 1(3):151–163CrossRefPubMed
go back to reference Pekna M, Pekny M, Nilsson M (2012) Modulation of neural plasticity as a basis for stroke rehabilitation. Stroke 43(10):2819–2828CrossRefPubMed Pekna M, Pekny M, Nilsson M (2012) Modulation of neural plasticity as a basis for stroke rehabilitation. Stroke 43(10):2819–2828CrossRefPubMed
go back to reference Penny WD, Stephan KE, Mechelli A, Friston KJ (2004) Comparing dynamic causal models. Neuroimage 22(3):1157–1172CrossRefPubMed Penny WD, Stephan KE, Mechelli A, Friston KJ (2004) Comparing dynamic causal models. Neuroimage 22(3):1157–1172CrossRefPubMed
go back to reference Pool EM, Rehme AK, Fink GR, Eickhoff SB, Grefkes C (2013) Network dynamics engaged in the modulation of motor behavior in healthy subjects. Neuroimage 82:68–76CrossRefPubMed Pool EM, Rehme AK, Fink GR, Eickhoff SB, Grefkes C (2013) Network dynamics engaged in the modulation of motor behavior in healthy subjects. Neuroimage 82:68–76CrossRefPubMed
go back to reference Radlinska BA, Blunk Y, Leppert IR, Minuk J, Pike GB, Thiel A (2012) Changes in callosal motor fiber integrity after subcortical stroke of the pyramidal tract. J Cereb Blood Flow Metab 32(8):1515–1524CrossRefPubMedCentralPubMed Radlinska BA, Blunk Y, Leppert IR, Minuk J, Pike GB, Thiel A (2012) Changes in callosal motor fiber integrity after subcortical stroke of the pyramidal tract. J Cereb Blood Flow Metab 32(8):1515–1524CrossRefPubMedCentralPubMed
go back to reference Rehme AK, Eickhoff SB, Wang LE, Fink GR, Grefkes C (2011) Dynamic causal modeling of cortical activity from the acute to the chronic stage after stroke. Neuroimage 55(3):1147–1158CrossRefPubMed Rehme AK, Eickhoff SB, Wang LE, Fink GR, Grefkes C (2011) Dynamic causal modeling of cortical activity from the acute to the chronic stage after stroke. Neuroimage 55(3):1147–1158CrossRefPubMed
go back to reference Rehme AK, Eickhoff SB, Rottschy C, Fink GR, Grefkes C (2012) Activation likelihood estimation meta-analysis of motor-related neural activity after stroke. Neuroimage 59(3):2771–2782CrossRefPubMed Rehme AK, Eickhoff SB, Rottschy C, Fink GR, Grefkes C (2012) Activation likelihood estimation meta-analysis of motor-related neural activity after stroke. Neuroimage 59(3):2771–2782CrossRefPubMed
go back to reference Rothwell JC, Hallett M, Berardelli A, Eisen A, Rossini P, Paulus W (1999) Magnetic stimulation: motor evoked potentials. The International Federation of Clinical Neurophysiology. EEG Clin Neurophysiol Suppl 52:97–103 Rothwell JC, Hallett M, Berardelli A, Eisen A, Rossini P, Paulus W (1999) Magnetic stimulation: motor evoked potentials. The International Federation of Clinical Neurophysiology. EEG Clin Neurophysiol Suppl 52:97–103
go back to reference Sarfeld AS, Diekhoff S, Wang LE, Liuzzi G, Uludag K, Eickhoff SB, Fink GR, Grefkes C (2012) Convergence of human brain mapping tools: neuronavigated TMS parameters and fMRI activity in the hand motor area. Hum Brain Mapp 33(5):1107–1123CrossRefPubMed Sarfeld AS, Diekhoff S, Wang LE, Liuzzi G, Uludag K, Eickhoff SB, Fink GR, Grefkes C (2012) Convergence of human brain mapping tools: neuronavigated TMS parameters and fMRI activity in the hand motor area. Hum Brain Mapp 33(5):1107–1123CrossRefPubMed
go back to reference Schulz R, Park CH, Boudrias MH, Gerloff C, Hummel FC, Ward NS (2012) Assessing the integrity of corticospinal pathways from primary and secondary cortical motor areas after stroke. Stroke 43(8):2248–2251CrossRefPubMedCentralPubMed Schulz R, Park CH, Boudrias MH, Gerloff C, Hummel FC, Ward NS (2012) Assessing the integrity of corticospinal pathways from primary and secondary cortical motor areas after stroke. Stroke 43(8):2248–2251CrossRefPubMedCentralPubMed
go back to reference Shimizu T, Hosaki A, Hino T, Sato M, Komori T, Hirai S, Rossini PM (2002) Motor cortical disinhibition in the unaffected hemisphere after unilateral cortical stroke. Brain 125(8):1896–1907CrossRefPubMed Shimizu T, Hosaki A, Hino T, Sato M, Komori T, Hirai S, Rossini PM (2002) Motor cortical disinhibition in the unaffected hemisphere after unilateral cortical stroke. Brain 125(8):1896–1907CrossRefPubMed
go back to reference Stinear CM, Barber PA, Smale PR, Coxon JP, Fleming MK, Byblow WD (2007) Functional potential in chronic stroke patients depends on corticospinal tract integrity. Brain 130(1):170–180CrossRefPubMed Stinear CM, Barber PA, Smale PR, Coxon JP, Fleming MK, Byblow WD (2007) Functional potential in chronic stroke patients depends on corticospinal tract integrity. Brain 130(1):170–180CrossRefPubMed
go back to reference Stinear CM, Barber PA, Petoe M, Anwar S, Byblow WD (2012) The PREP algorithm predicts potential for upper limb recovery after stroke. Brain 135(8):2527–2535CrossRefPubMed Stinear CM, Barber PA, Petoe M, Anwar S, Byblow WD (2012) The PREP algorithm predicts potential for upper limb recovery after stroke. Brain 135(8):2527–2535CrossRefPubMed
go back to reference Talelli P, Greenwood RJ, Rothwell JC (2006) Arm function after stroke: neurophysiological correlates and recovery mechanisms assessed by transcranial magnetic stimulation. Clin Neurophysiol 117(8):1641–1659CrossRefPubMed Talelli P, Greenwood RJ, Rothwell JC (2006) Arm function after stroke: neurophysiological correlates and recovery mechanisms assessed by transcranial magnetic stimulation. Clin Neurophysiol 117(8):1641–1659CrossRefPubMed
go back to reference Thickbroom GW, Byrnes ML, Archer SA, Mastaglia FL (2002) Motor outcome after subcortical stroke: MEPs correlate with hand strength but not dexterity. Clin Neurophysiol 113(12):2025–2029CrossRefPubMed Thickbroom GW, Byrnes ML, Archer SA, Mastaglia FL (2002) Motor outcome after subcortical stroke: MEPs correlate with hand strength but not dexterity. Clin Neurophysiol 113(12):2025–2029CrossRefPubMed
go back to reference Traversa R, Cicinelli P, Pasqualetti P, Filippi M, Rossini PM (1998) Follow-up of interhemispheric differences of motor evoked potentials from the ‘affected’ and ‘unaffected’ hemispheres in human stroke. Brain Res 803(1–2):1–8CrossRefPubMed Traversa R, Cicinelli P, Pasqualetti P, Filippi M, Rossini PM (1998) Follow-up of interhemispheric differences of motor evoked potentials from the ‘affected’ and ‘unaffected’ hemispheres in human stroke. Brain Res 803(1–2):1–8CrossRefPubMed
go back to reference Turton A, Wroe S, Trepte N, Fraser C, Lemon RN (1996) Contralateral and ipsilateral EMG responses to transcranial magnetic stimulation during recovery of arm and hand function after stroke. EEG Clin Neurophysiol 101(4):316–328 Turton A, Wroe S, Trepte N, Fraser C, Lemon RN (1996) Contralateral and ipsilateral EMG responses to transcranial magnetic stimulation during recovery of arm and hand function after stroke. EEG Clin Neurophysiol 101(4):316–328
go back to reference van Swieten JC, Koudstaal PJ, Visser MC, Schouten HJ, van Gijn J (1988) Interobserver agreement for the assessment of handicap in stroke patients. Stroke 19(5):604–607CrossRefPubMed van Swieten JC, Koudstaal PJ, Visser MC, Schouten HJ, van Gijn J (1988) Interobserver agreement for the assessment of handicap in stroke patients. Stroke 19(5):604–607CrossRefPubMed
go back to reference Veerbeek JM, Kwakkel G, van Wegen EE, Ket JC, Heymans MW (2011) Early prediction of outcome of activities of daily living after stroke: a systematic review. Stroke 42(5):1482–1488CrossRefPubMed Veerbeek JM, Kwakkel G, van Wegen EE, Ket JC, Heymans MW (2011) Early prediction of outcome of activities of daily living after stroke: a systematic review. Stroke 42(5):1482–1488CrossRefPubMed
go back to reference von Giesen HJ, Roick H, Benecke R (1994) Inhibitory actions of motor cortex following unilateral brain lesions as studied by magnetic brain stimulation. Exp Brain Res 99(1):84–96CrossRef von Giesen HJ, Roick H, Benecke R (1994) Inhibitory actions of motor cortex following unilateral brain lesions as studied by magnetic brain stimulation. Exp Brain Res 99(1):84–96CrossRef
go back to reference Wang LE, Fink GR, Diekhoff S, Rehme AK, Eickhoff SB, Grefkes C (2011) Noradrenergic enhancement improves motor network connectivity in stroke patients. Ann Neurol 69(2):375–388CrossRefPubMed Wang LE, Fink GR, Diekhoff S, Rehme AK, Eickhoff SB, Grefkes C (2011) Noradrenergic enhancement improves motor network connectivity in stroke patients. Ann Neurol 69(2):375–388CrossRefPubMed
go back to reference Wang LE, Tittgemeyer M, Imperati D, Diekhoff S, Ameli M, Fink GR, Grefkes C (2012) Degeneration of corpus callosum and recovery of motor function after stroke: a multimodal magnetic resonance imaging study. Hum Brain Mapp 33(12):2941–2956CrossRefPubMed Wang LE, Tittgemeyer M, Imperati D, Diekhoff S, Ameli M, Fink GR, Grefkes C (2012) Degeneration of corpus callosum and recovery of motor function after stroke: a multimodal magnetic resonance imaging study. Hum Brain Mapp 33(12):2941–2956CrossRefPubMed
go back to reference Ward NS, Brown MM, Thompson AJ, Frackowiak RS (2003) Neural correlates of motor recovery after stroke: a longitudinal fMRI study. Brain 126(11):2476–2496CrossRefPubMedCentralPubMed Ward NS, Brown MM, Thompson AJ, Frackowiak RS (2003) Neural correlates of motor recovery after stroke: a longitudinal fMRI study. Brain 126(11):2476–2496CrossRefPubMedCentralPubMed
go back to reference Ward NS, Newton JM, Swayne OB, Lee L, Thompson AJ, Greenwood RJ, Rothwell JC, Frackowiak RS (2006) Motor system activation after subcortical stroke depends on corticospinal system integrity. Brain 129(3):809–819CrossRefPubMedCentralPubMed Ward NS, Newton JM, Swayne OB, Lee L, Thompson AJ, Greenwood RJ, Rothwell JC, Frackowiak RS (2006) Motor system activation after subcortical stroke depends on corticospinal system integrity. Brain 129(3):809–819CrossRefPubMedCentralPubMed
go back to reference Weiss C, Nettekoven C, Rehme AK, Neuschmelting V, Eisenbeis A, Goldbrunner R, Grefkes C (2012) Mapping the hand, foot and face representations in the primary motor cortex—retest reliability of neuronavigated TMS versus functional MRI. Neuroimage 66C:531–542 Weiss C, Nettekoven C, Rehme AK, Neuschmelting V, Eisenbeis A, Goldbrunner R, Grefkes C (2012) Mapping the hand, foot and face representations in the primary motor cortex—retest reliability of neuronavigated TMS versus functional MRI. Neuroimage 66C:531–542
go back to reference Yousry TA, Schmid UD, Alkadhi H, Schmidt D, Peraud A, Buettner A, Winkler P (1997) Localization of the motor hand area to a knob on the precentral gyrus. A new landmark. Brain 120(1):141–157CrossRefPubMed Yousry TA, Schmid UD, Alkadhi H, Schmidt D, Peraud A, Buettner A, Winkler P (1997) Localization of the motor hand area to a knob on the precentral gyrus. A new landmark. Brain 120(1):141–157CrossRefPubMed
go back to reference Yozbatiran N, Der-Yeghiaian L, Cramer SC (2008) A standardized approach to performing the action research arm test. Neurorehabil Neural Repair 22(1):78–90CrossRefPubMed Yozbatiran N, Der-Yeghiaian L, Cramer SC (2008) A standardized approach to performing the action research arm test. Neurorehabil Neural Repair 22(1):78–90CrossRefPubMed
go back to reference Ziemann U (2011) Transcranial magnetic stimulation at the interface with other techniques: a powerful tool for studying the human cortex. Neuroscientist 17(4):368–381CrossRefPubMed Ziemann U (2011) Transcranial magnetic stimulation at the interface with other techniques: a powerful tool for studying the human cortex. Neuroscientist 17(4):368–381CrossRefPubMed
go back to reference Ziemann U, Lonnecker S, Steinhoff BJ, Paulus W (1996) Effects of antiepileptic drugs on motor cortex excitability in humans: a transcranial magnetic stimulation study. Ann Neurol 40(3):367–378CrossRefPubMed Ziemann U, Lonnecker S, Steinhoff BJ, Paulus W (1996) Effects of antiepileptic drugs on motor cortex excitability in humans: a transcranial magnetic stimulation study. Ann Neurol 40(3):367–378CrossRefPubMed
Metadata
Title
Motor cortex excitability and connectivity in chronic stroke: a multimodal model of functional reorganization
Authors
Lukas J. Volz
Anna-Sophia Sarfeld
Svenja Diekhoff
Anne K. Rehme
Eva-Maria Pool
Simon B. Eickhoff
Gereon R. Fink
Christian Grefkes
Publication date
01-03-2015
Publisher
Springer Berlin Heidelberg
Published in
Brain Structure and Function / Issue 2/2015
Print ISSN: 1863-2653
Electronic ISSN: 1863-2661
DOI
https://doi.org/10.1007/s00429-013-0702-8

Other articles of this Issue 2/2015

Brain Structure and Function 2/2015 Go to the issue