Skip to main content
Top
Published in: BMC Medical Imaging 1/2013

Open Access 01-12-2013 | Research article

Defining the mid-diastolic imaging period for cardiac CT – lessons from tissue Doppler echocardiography

Authors: James M Otton, Justin Phan, Michael Feneley, Chung-yao Yu, Neville Sammel, Jane McCrohon

Published in: BMC Medical Imaging | Issue 1/2013

Login to get access

Abstract

Background

Aggressive dose reduction strategies for cardiac CT require the prospective selection of limited cardiac phases. At lower heart rates, the period of mid-diastole is typically selected for image acquisition. We aimed to identify the effect of heart rate on the optimal CT acquisition phase within the period of mid-diastole.

Methods

We utilized high temporal resolution tissue Doppler to precisely measure coronary motion within diastole. Tissue-Doppler waveforms of the myocardium corresponding to the location of the circumflex artery (100 patients) and mid-right coronary arteries (50 patients) and the duration and timing of coronary motion were measured. Using regression analysis an equation was derived for the timing of the period of minimal coronary motion within the RR interval. In a validation set of 50 clinical cardiac CT examinations, we assessed coronary motion artifact and the effect of using a mid-diastolic imaging target that was adjusted according to heart rate vs a fixed 75% phase target.

Results

Tissue Doppler analysis shows the period of minimal cardiac motion suitable for CT imaging decreases almost linearly as the RR interval decreases, becoming extinguished at an average heart rate of 91 bpm for the circumflex (LCX) and 78 bpm for the right coronary artery (RCA). The optimal imaging phase has a strong linear relationship with RR duration (R2 = 0.92 LCX, 0.89 RCA). The optimal phase predicted by regression analysis of the tissue-Doppler waveforms increases from 74% at a heart rate of 55 bpm to 77% at 75 bpm. In the clinical CT validation set, the optimal CT acquisition phase similarly occurred later with increasing heart rate. When the selected cardiac phase was adjusted according to heart rate the result was closer to the optimal phase than using a fixed 75% phase. While this effect was statistically significant (p < 0.01 RCA/LCx), the mean effect of heart-rate adjustment was minor relative to typical beat-to-beat variability and available precision of clinical phase selection.

Conclusion

High temporal resolution imaging of coronary motion can be used to predict the optimal acquisition phase in cardiac CT. The optimal phase for cardiac CT imaging within mid-diastole increases with increasing heart rate although the magnitude of change is small.
Appendix
Available only for authorised users
Literature
1.
go back to reference Achenbach S, Manolopoulos M, Schuhback A, Ropers D, Rixe J, Schneider C, Krombach GA, Uder M, Hamm C, Daniel WG, Lell M: Influence of heart rate and phase of the cardiac cycle on the occurrence of motion artifact in dual-source CT angiography of the coronary arteries. J Cardiovasc Comput Tomogr. 2012, 6: 91-98. 10.1016/j.jcct.2011.11.006.CrossRefPubMed Achenbach S, Manolopoulos M, Schuhback A, Ropers D, Rixe J, Schneider C, Krombach GA, Uder M, Hamm C, Daniel WG, Lell M: Influence of heart rate and phase of the cardiac cycle on the occurrence of motion artifact in dual-source CT angiography of the coronary arteries. J Cardiovasc Comput Tomogr. 2012, 6: 91-98. 10.1016/j.jcct.2011.11.006.CrossRefPubMed
2.
go back to reference Leschka S, Husmann L, Desbiolles LM, Gaemperli O, Schepis T, Koepfli P, Boehm T, Marincek B, Kaufmann PA, Alkadhi H: Optimal image reconstruction intervals for non-invasive coronary angiography with 64-slice CT. Eur Radiol. 2006, 16: 1964-1972. 10.1007/s00330-006-0262-x.CrossRefPubMed Leschka S, Husmann L, Desbiolles LM, Gaemperli O, Schepis T, Koepfli P, Boehm T, Marincek B, Kaufmann PA, Alkadhi H: Optimal image reconstruction intervals for non-invasive coronary angiography with 64-slice CT. Eur Radiol. 2006, 16: 1964-1972. 10.1007/s00330-006-0262-x.CrossRefPubMed
3.
go back to reference Seifarth H, Wienbeck S, Pusken M, Juergens KU, Maintz D, Vahlhaus C, Heindel W, Fischbach R: Optimal systolic and diastolic reconstruction windows for coronary CT angiography using dual-source CT. AJR Am J Roentgenol. 2007, 189: 1317-1323. 10.2214/AJR.07.2711.CrossRefPubMed Seifarth H, Wienbeck S, Pusken M, Juergens KU, Maintz D, Vahlhaus C, Heindel W, Fischbach R: Optimal systolic and diastolic reconstruction windows for coronary CT angiography using dual-source CT. AJR Am J Roentgenol. 2007, 189: 1317-1323. 10.2214/AJR.07.2711.CrossRefPubMed
4.
go back to reference Herzog C, Abolmaali N, Balzer JO, Baunach S, Ackermann H, Dogan S, Britten MB, Vogl TJ: Heart-rate-adapted image reconstruction in multidetector-row cardiac CT: influence of physiological and technical prerequisite on image quality. Eur Radiol. 2002, 12: 2670-2678.PubMed Herzog C, Abolmaali N, Balzer JO, Baunach S, Ackermann H, Dogan S, Britten MB, Vogl TJ: Heart-rate-adapted image reconstruction in multidetector-row cardiac CT: influence of physiological and technical prerequisite on image quality. Eur Radiol. 2002, 12: 2670-2678.PubMed
5.
go back to reference Zamorano J, Wallbridge DR, Ge J, Drozd J, Nesser J, Erbel R: Non-invasive assessment of cardiac physiology by tissue Doppler echocardiography. A comparison with invasive haemodynamics. Eur Heart J. 1997, 18: 330-339. 10.1093/oxfordjournals.eurheartj.a015236.CrossRefPubMed Zamorano J, Wallbridge DR, Ge J, Drozd J, Nesser J, Erbel R: Non-invasive assessment of cardiac physiology by tissue Doppler echocardiography. A comparison with invasive haemodynamics. Eur Heart J. 1997, 18: 330-339. 10.1093/oxfordjournals.eurheartj.a015236.CrossRefPubMed
6.
go back to reference Van de Veire NR, De Sutter J, Bax JJ, Roelandt JR: Technological advances in tissue Doppler imaging echocardiography. Heart. 2008, 94: 1065-1074. 10.1136/hrt.2007.120758.CrossRefPubMed Van de Veire NR, De Sutter J, Bax JJ, Roelandt JR: Technological advances in tissue Doppler imaging echocardiography. Heart. 2008, 94: 1065-1074. 10.1136/hrt.2007.120758.CrossRefPubMed
7.
go back to reference Wang Y, Vidan E, Bergman GW: Cardiac motion of coronary arteries: variability in the rest period and implications for coronary MR angiography. Radiology. 1999, 213: 751-758.CrossRefPubMed Wang Y, Vidan E, Bergman GW: Cardiac motion of coronary arteries: variability in the rest period and implications for coronary MR angiography. Radiology. 1999, 213: 751-758.CrossRefPubMed
8.
go back to reference Johnson KR, Patel SJ, Whigham A, Hakim A, Pettigrew RI, Oshinski JN: Three-dimensional, time-resolved motion of the coronary arteries. J Cardiovasc Magn Reson: official journal of the Society for Cardiovascular Magnetic Resonance. 2004, 6: 663-673. 10.1081/JCMR-120038086.CrossRef Johnson KR, Patel SJ, Whigham A, Hakim A, Pettigrew RI, Oshinski JN: Three-dimensional, time-resolved motion of the coronary arteries. J Cardiovasc Magn Reson: official journal of the Society for Cardiovascular Magnetic Resonance. 2004, 6: 663-673. 10.1081/JCMR-120038086.CrossRef
9.
go back to reference Tangcharoen T, Bell A, Hegde S, Hussain T, Beerbaum P, Schaeffter T, Razavi R, Botnar RM, Greil GF: Detection of coronary artery anomalies in infants and young children with congenital heart disease by using MR imaging. Radiology. 2011, 259: 240-247. 10.1148/radiol.10100828.CrossRefPubMed Tangcharoen T, Bell A, Hegde S, Hussain T, Beerbaum P, Schaeffter T, Razavi R, Botnar RM, Greil GF: Detection of coronary artery anomalies in infants and young children with congenital heart disease by using MR imaging. Radiology. 2011, 259: 240-247. 10.1148/radiol.10100828.CrossRefPubMed
10.
go back to reference Flohr TG, Raupach R, Bruder H: Cardiac CT: how much can temporal resolution, spatial resolution, and volume coverage be improved?. J Cardiovasc Comput Tomogr. 2009, 3: 143-152. 10.1016/j.jcct.2009.04.004.CrossRefPubMed Flohr TG, Raupach R, Bruder H: Cardiac CT: how much can temporal resolution, spatial resolution, and volume coverage be improved?. J Cardiovasc Comput Tomogr. 2009, 3: 143-152. 10.1016/j.jcct.2009.04.004.CrossRefPubMed
11.
go back to reference Husmann L, Valenta I, Gaemperli O, Adda O, Treyer V, Wyss CA, Veit-Haibach P, Tatsugami F, von Schulthess GK, Kaufmann PA: Feasibility of low-dose coronary CT angiography: first experience with prospective ECG-gating. Eur Heart J. 2008, 29: 191-197.CrossRefPubMed Husmann L, Valenta I, Gaemperli O, Adda O, Treyer V, Wyss CA, Veit-Haibach P, Tatsugami F, von Schulthess GK, Kaufmann PA: Feasibility of low-dose coronary CT angiography: first experience with prospective ECG-gating. Eur Heart J. 2008, 29: 191-197.CrossRefPubMed
12.
go back to reference Achenbach S, Marwan M, Ropers D, Schepis T, Pflederer T, Anders K, Kuettner A, Daniel WG, Uder M, Lell MM: Coronary computed tomography angiography with a consistent dose below 1 mSv using prospectively electrocardiogram-triggered high-pitch spiral acquisition. Eur Heart J. 2010, 31: 340-346. 10.1093/eurheartj/ehp470.CrossRefPubMed Achenbach S, Marwan M, Ropers D, Schepis T, Pflederer T, Anders K, Kuettner A, Daniel WG, Uder M, Lell MM: Coronary computed tomography angiography with a consistent dose below 1 mSv using prospectively electrocardiogram-triggered high-pitch spiral acquisition. Eur Heart J. 2010, 31: 340-346. 10.1093/eurheartj/ehp470.CrossRefPubMed
13.
go back to reference McCollough CH, Schmidt B, Yu L, Primak A, Ulzheimer S, Bruder H, Flohr TG: Measurement of temporal resolution in dual source CT. Medical physics. 2008, 35: 764-768. 10.1118/1.2826559.CrossRefPubMedPubMedCentral McCollough CH, Schmidt B, Yu L, Primak A, Ulzheimer S, Bruder H, Flohr TG: Measurement of temporal resolution in dual source CT. Medical physics. 2008, 35: 764-768. 10.1118/1.2826559.CrossRefPubMedPubMedCentral
14.
go back to reference Maruyama T, Takada M, Hasuike T, Yoshikawa A, Namimatsu E, Yoshizumi T: Radiation dose reduction and coronary assessability of prospective electrocardiogram-gated computed tomography coronary angiography: comparison with retrospective electrocardiogram-gated helical scan. J Am Coll Cardiol. 2008, 52: 1450-1455. 10.1016/j.jacc.2008.07.048.CrossRefPubMed Maruyama T, Takada M, Hasuike T, Yoshikawa A, Namimatsu E, Yoshizumi T: Radiation dose reduction and coronary assessability of prospective electrocardiogram-gated computed tomography coronary angiography: comparison with retrospective electrocardiogram-gated helical scan. J Am Coll Cardiol. 2008, 52: 1450-1455. 10.1016/j.jacc.2008.07.048.CrossRefPubMed
15.
go back to reference Labounty TM, Leipsic J, Min JK, Heilbron B, Mancini GB, Lin FY, Earls JP: Effect of padding duration on radiation dose and image interpretation in prospectively ECG-triggered coronary CT angiography. AJR Am J Roentgenol. 2010, 194: 933-937. 10.2214/AJR.09.3371.CrossRefPubMed Labounty TM, Leipsic J, Min JK, Heilbron B, Mancini GB, Lin FY, Earls JP: Effect of padding duration on radiation dose and image interpretation in prospectively ECG-triggered coronary CT angiography. AJR Am J Roentgenol. 2010, 194: 933-937. 10.2214/AJR.09.3371.CrossRefPubMed
16.
go back to reference Achenbach S, Ropers D, Holle J, Muschiol G, Daniel WG, Moshage W: In-plane coronary arterial motion velocity: measurement with electron-beam CT. Radiology. 2000, 216: 457-463.CrossRefPubMed Achenbach S, Ropers D, Holle J, Muschiol G, Daniel WG, Moshage W: In-plane coronary arterial motion velocity: measurement with electron-beam CT. Radiology. 2000, 216: 457-463.CrossRefPubMed
17.
go back to reference Mao S, Lu B, Oudiz RJ, Bakhsheshi H, Liu SC, Budoff MJ: Coronary artery motion in electron beam tomography. J Comput Assist Tomogr. 2000, 24: 253-258. 10.1097/00004728-200003000-00012.CrossRefPubMed Mao S, Lu B, Oudiz RJ, Bakhsheshi H, Liu SC, Budoff MJ: Coronary artery motion in electron beam tomography. J Comput Assist Tomogr. 2000, 24: 253-258. 10.1097/00004728-200003000-00012.CrossRefPubMed
18.
go back to reference Mok GS, Yang CC, Chen LK, Lu KM, Law WY, Wu TH: Optimal systolic and diastolic image reconstruction windows for coronary 256-slice CT angiography. Acad Radiol. 2010, 17: 1386-1393. 10.1016/j.acra.2010.06.011.CrossRefPubMed Mok GS, Yang CC, Chen LK, Lu KM, Law WY, Wu TH: Optimal systolic and diastolic image reconstruction windows for coronary 256-slice CT angiography. Acad Radiol. 2010, 17: 1386-1393. 10.1016/j.acra.2010.06.011.CrossRefPubMed
19.
go back to reference Sun G, Li M, Li L, Li GY, Zhang H, Peng ZH: Optimal systolic and diastolic reconstruction windows for coronary CT angiography using 320-detector rows dynamic volume CT. Clin Radiol. 2011, 66: 614-620. 10.1016/j.crad.2011.02.007.CrossRefPubMed Sun G, Li M, Li L, Li GY, Zhang H, Peng ZH: Optimal systolic and diastolic reconstruction windows for coronary CT angiography using 320-detector rows dynamic volume CT. Clin Radiol. 2011, 66: 614-620. 10.1016/j.crad.2011.02.007.CrossRefPubMed
20.
go back to reference Husmann L, Leschka S, Desbiolles L, Schepis T, Gaemperli O, Seifert B, Cattin P, Frauenfelder T, Flohr TG, Marincek B, Kaufmann PA, Alkadhi H: Coronary artery motion and cardiac phases: dependency on heart rate – implications for CT image reconstruction. Radiology. 2007, 245: 567-576. 10.1148/radiol.2451061791.CrossRefPubMed Husmann L, Leschka S, Desbiolles L, Schepis T, Gaemperli O, Seifert B, Cattin P, Frauenfelder T, Flohr TG, Marincek B, Kaufmann PA, Alkadhi H: Coronary artery motion and cardiac phases: dependency on heart rate – implications for CT image reconstruction. Radiology. 2007, 245: 567-576. 10.1148/radiol.2451061791.CrossRefPubMed
21.
go back to reference Greuter MJ, Dorgelo J, Tukker WG, Oudkerk M: Study on motion artifacts in coronary arteries with an anthropomorphic moving heart phantom on an ECG-gated multidetector computed tomography unit. Eur Radiol. 2005, 15: 995-1007. 10.1007/s00330-004-2602-z.CrossRefPubMed Greuter MJ, Dorgelo J, Tukker WG, Oudkerk M: Study on motion artifacts in coronary arteries with an anthropomorphic moving heart phantom on an ECG-gated multidetector computed tomography unit. Eur Radiol. 2005, 15: 995-1007. 10.1007/s00330-004-2602-z.CrossRefPubMed
22.
go back to reference Greuter MJ, Flohr T, van Ooijen PM, Oudkerk M: A model for temporal resolution of multidetector computed tomography of coronary arteries in relation to rotation time, heart rate and reconstruction algorithm. Eur Radiol. 2007, 17: 784-812. 10.1007/s00330-006-0228-z.CrossRefPubMed Greuter MJ, Flohr T, van Ooijen PM, Oudkerk M: A model for temporal resolution of multidetector computed tomography of coronary arteries in relation to rotation time, heart rate and reconstruction algorithm. Eur Radiol. 2007, 17: 784-812. 10.1007/s00330-006-0228-z.CrossRefPubMed
23.
go back to reference Fraser AG, Payne N, Madler CF, Janerot-Sjoberg B, Lind B, Grocott-Mason RM, Ionescu AA, Florescu N, Wilkenshoff U, Lancellotti P, Wutte M, Brodin LA: Feasibility and reproducibility of off-line tissue Doppler measurement of regional myocardial function during dobutamine stress echocardiography. Eur J Echocardiogr. 2003, 4: 43-53. 10.1053/euje.4.1.43.CrossRefPubMed Fraser AG, Payne N, Madler CF, Janerot-Sjoberg B, Lind B, Grocott-Mason RM, Ionescu AA, Florescu N, Wilkenshoff U, Lancellotti P, Wutte M, Brodin LA: Feasibility and reproducibility of off-line tissue Doppler measurement of regional myocardial function during dobutamine stress echocardiography. Eur J Echocardiogr. 2003, 4: 43-53. 10.1053/euje.4.1.43.CrossRefPubMed
Metadata
Title
Defining the mid-diastolic imaging period for cardiac CT – lessons from tissue Doppler echocardiography
Authors
James M Otton
Justin Phan
Michael Feneley
Chung-yao Yu
Neville Sammel
Jane McCrohon
Publication date
01-12-2013
Publisher
BioMed Central
Published in
BMC Medical Imaging / Issue 1/2013
Electronic ISSN: 1471-2342
DOI
https://doi.org/10.1186/1471-2342-13-5

Other articles of this Issue 1/2013

BMC Medical Imaging 1/2013 Go to the issue