Skip to main content
Top
Published in: Nuclear Medicine and Molecular Imaging 2/2018

01-04-2018 | Review

Deep Learning in Nuclear Medicine and Molecular Imaging: Current Perspectives and Future Directions

Author: Hongyoon Choi

Published in: Nuclear Medicine and Molecular Imaging | Issue 2/2018

Login to get access

Abstract

Recent advances in deep learning have impacted various scientific and industrial fields. Due to the rapid application of deep learning in biomedical data, molecular imaging has also started to adopt this technique. In this regard, it is expected that deep learning will potentially affect the roles of molecular imaging experts as well as clinical decision making. This review firstly offers a basic overview of deep learning particularly for image data analysis to give knowledge to nuclear medicine physicians and researchers. Because of the unique characteristics and distinctive aims of various types of molecular imaging, deep learning applications can be different from other fields. In this context, the review deals with current perspectives of deep learning in molecular imaging particularly in terms of development of biomarkers. Finally, future challenges of deep learning application for molecular imaging and future roles of experts in molecular imaging will be discussed.
Literature
1.
go back to reference Weber GM, Mandl KD, Kohane IS. Finding the missing link for big biomedical data. JAMA. 2014;311:2479–80.PubMed Weber GM, Mandl KD, Kohane IS. Finding the missing link for big biomedical data. JAMA. 2014;311:2479–80.PubMed
2.
go back to reference Kuo M-H, Sahama T, Kushniruk AW, Borycki EM, Grunwell DK. Health big data analytics: current perspectives, challenges and potential solutions. Int J Big Data Intell. 2014;1:114–26.CrossRef Kuo M-H, Sahama T, Kushniruk AW, Borycki EM, Grunwell DK. Health big data analytics: current perspectives, challenges and potential solutions. Int J Big Data Intell. 2014;1:114–26.CrossRef
3.
go back to reference Bengio Y. Learning deep architectures for AI. Foundations and trends® in. Mach Learn. 2009;2:1–127.CrossRef Bengio Y. Learning deep architectures for AI. Foundations and trends® in. Mach Learn. 2009;2:1–127.CrossRef
5.
go back to reference Russakovsky O, Deng J, Su H, Krause J, Satheesh S, Ma S, et al. Imagenet large scale visual recognition challenge. Int J Comput Vis. 2015;115:211–52.CrossRef Russakovsky O, Deng J, Su H, Krause J, Satheesh S, Ma S, et al. Imagenet large scale visual recognition challenge. Int J Comput Vis. 2015;115:211–52.CrossRef
6.
go back to reference Krizhevsky A, Sutskever I, Hinton GE. Imagenet classification with deep convolutional neural networks. Adv Neural Inf Proces Syst. 2012;25:1090–8. Krizhevsky A, Sutskever I, Hinton GE. Imagenet classification with deep convolutional neural networks. Adv Neural Inf Proces Syst. 2012;25:1090–8.
7.
go back to reference Alipanahi B, Delong A, Weirauch MT, Frey BJ. Predicting the sequence specificities of DNA-and RNA-binding proteins by deep learning. Nat Biotechnol. 2015;33:831–8.CrossRefPubMed Alipanahi B, Delong A, Weirauch MT, Frey BJ. Predicting the sequence specificities of DNA-and RNA-binding proteins by deep learning. Nat Biotechnol. 2015;33:831–8.CrossRefPubMed
9.
go back to reference Litjens G, Kooi T, Bejnordi BE, Setio AAA, Ciompi F, Ghafoorian M et al. A survey on deep learning in medical image analysis. arXiv:170205747. 2017. Litjens G, Kooi T, Bejnordi BE, Setio AAA, Ciompi F, Ghafoorian M et al. A survey on deep learning in medical image analysis. arXiv:170205747. 2017.
10.
go back to reference Xu Y, Mo T, Feng Q, Zhong P, Lai M, Eric I et al., editors. Deep learning of feature representation with multiple instance learning for medical image analysis. Acoustics, Speech and Signal Processing (ICASSP), 2014 I.E. International Conference; 2014. Xu Y, Mo T, Feng Q, Zhong P, Lai M, Eric I et al., editors. Deep learning of feature representation with multiple instance learning for medical image analysis. Acoustics, Speech and Signal Processing (ICASSP), 2014 I.E. International Conference; 2014.
11.
go back to reference Tajbakhsh N, Shin JY, Gurudu SR, Hurst RT, Kendall CB, Gotway MB, et al. Convolutional neural networks for medical image analysis: full training or fine tuning? IEEE Trans Med Imaging. 2016;35:1299–312.CrossRefPubMed Tajbakhsh N, Shin JY, Gurudu SR, Hurst RT, Kendall CB, Gotway MB, et al. Convolutional neural networks for medical image analysis: full training or fine tuning? IEEE Trans Med Imaging. 2016;35:1299–312.CrossRefPubMed
12.
go back to reference Gulshan V, Peng L, Coram M, Stumpe MC, Wu D, Narayanaswamy A, et al. Development and validation of a deep learning algorithm for detection of diabetic retinopathy in retinal fundus photographs. JAMA. 2016;316:2402–10.CrossRefPubMed Gulshan V, Peng L, Coram M, Stumpe MC, Wu D, Narayanaswamy A, et al. Development and validation of a deep learning algorithm for detection of diabetic retinopathy in retinal fundus photographs. JAMA. 2016;316:2402–10.CrossRefPubMed
13.
go back to reference Esteva A, Kuprel B, Novoa RA, Ko J, Swetter SM, Blau HM, et al. Dermatologist-level classification of skin cancer with deep neural networks. Nature. 2017;542:115–8.CrossRefPubMed Esteva A, Kuprel B, Novoa RA, Ko J, Swetter SM, Blau HM, et al. Dermatologist-level classification of skin cancer with deep neural networks. Nature. 2017;542:115–8.CrossRefPubMed
14.
go back to reference Mamoshina P, Vieira A, Putin E, Zhavoronkov A. Applications of deep learning in biomedicine. Mol Pharm. 2016;13:1445–54.CrossRefPubMed Mamoshina P, Vieira A, Putin E, Zhavoronkov A. Applications of deep learning in biomedicine. Mol Pharm. 2016;13:1445–54.CrossRefPubMed
15.
go back to reference Rumelhart DE, Hinton GE, Williams RJ. Learning representations by back-propagating errors. Cogn Model. 1988;5:1. Rumelhart DE, Hinton GE, Williams RJ. Learning representations by back-propagating errors. Cogn Model. 1988;5:1.
16.
go back to reference Bengio Y, Lamblin P, Popovici D, Larochelle H. Greedy layer-wise training of deep networks. Adv Neural Inf Proces Syst. 2006;19:153–160. Bengio Y, Lamblin P, Popovici D, Larochelle H. Greedy layer-wise training of deep networks. Adv Neural Inf Proces Syst. 2006;19:153–160.
17.
go back to reference Hinton GE, Salakhutdinov RR. Reducing the dimensionality of data with neural networks. Science. 2006;313:504–7.CrossRefPubMed Hinton GE, Salakhutdinov RR. Reducing the dimensionality of data with neural networks. Science. 2006;313:504–7.CrossRefPubMed
18.
go back to reference Srivastava N, Hinton GE, Krizhevsky A, Sutskever I, Salakhutdinov R. Dropout: a simple way to prevent neural networks from overfitting. J Mach Learn Res. 2014;15:1929–58. Srivastava N, Hinton GE, Krizhevsky A, Sutskever I, Salakhutdinov R. Dropout: a simple way to prevent neural networks from overfitting. J Mach Learn Res. 2014;15:1929–58.
19.
go back to reference Ioffe S, Szegedy C, editors. Batch normalization: accelerating deep network training by reducing internal covariate shift. Proceedings of the 32nd International Conference on Machine Learning; 2015. Ioffe S, Szegedy C, editors. Batch normalization: accelerating deep network training by reducing internal covariate shift. Proceedings of the 32nd International Conference on Machine Learning; 2015.
20.
go back to reference Nair V, Hinton GE, editors. Rectified linear units improve restricted boltzmann machines. Proceedings of the 27th International Conference on Machine Learning (ICML-10); 2010. Nair V, Hinton GE, editors. Rectified linear units improve restricted boltzmann machines. Proceedings of the 27th International Conference on Machine Learning (ICML-10); 2010.
21.
go back to reference Oquab M, Bottou L, Laptev I, Sivic J, editors. Learning and transferring mid-level image representations using convolutional neural networks. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; 2014. Oquab M, Bottou L, Laptev I, Sivic J, editors. Learning and transferring mid-level image representations using convolutional neural networks. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; 2014.
22.
go back to reference LeCun Y, Bottou L, Bengio Y, Haffner P. Gradient-based learning applied to document recognition. Proc IEEE. 1998;86:2278–324.CrossRef LeCun Y, Bottou L, Bengio Y, Haffner P. Gradient-based learning applied to document recognition. Proc IEEE. 1998;86:2278–324.CrossRef
23.
go back to reference Szegedy C, Liu W, Jia Y, Sermanet P, Reed S, Anguelov D et al., editors. Going deeper with convolutions. Proceedings of the IEEE conference on computer vision and pattern recognition; 2015. Szegedy C, Liu W, Jia Y, Sermanet P, Reed S, Anguelov D et al., editors. Going deeper with convolutions. Proceedings of the IEEE conference on computer vision and pattern recognition; 2015.
24.
go back to reference He K, Zhang X, Ren S, Sun J, editors. Deep residual learning for image recognition. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; 2016. He K, Zhang X, Ren S, Sun J, editors. Deep residual learning for image recognition. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; 2016.
25.
go back to reference Vinyals O, Toshev A, Bengio S, Erhan D, editors. Show and tell: a neural image caption generator. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; 2015. Vinyals O, Toshev A, Bengio S, Erhan D, editors. Show and tell: a neural image caption generator. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; 2015.
26.
go back to reference Girshick R, editor. Fast r-cnn. Proceedings of the IEEE International Conference on Computer Vision; 2015. Girshick R, editor. Fast r-cnn. Proceedings of the IEEE International Conference on Computer Vision; 2015.
27.
go back to reference Ren S, He K, Girshick R, Sun J. Faster R-CNN: Towards real-time object detection with region proposal networks. Adv Neural Inf Proces Syst. 2015;28:91–9. Ren S, He K, Girshick R, Sun J. Faster R-CNN: Towards real-time object detection with region proposal networks. Adv Neural Inf Proces Syst. 2015;28:91–9.
28.
go back to reference Chen L-C, Papandreou G, Kokkinos I, Murphy K, Yuille AL. Deeplab: semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected crfs. arXiv:160600915. 2016. Chen L-C, Papandreou G, Kokkinos I, Murphy K, Yuille AL. Deeplab: semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected crfs. arXiv:160600915. 2016.
29.
go back to reference Badrinarayanan V, Kendall A, Cipolla R. Segnet: a deep convolutional encoder-decoder architecture for image segmentation. arXiv:151100561. 2015. Badrinarayanan V, Kendall A, Cipolla R. Segnet: a deep convolutional encoder-decoder architecture for image segmentation. arXiv:151100561. 2015.
30.
go back to reference Elmore JG, Longton GM, Carney PA, Geller BM, Onega T, Tosteson AN, et al. Diagnostic concordance among pathologists interpreting breast biopsy specimens. JAMA. 2015;313:1122–32.CrossRefPubMedPubMedCentral Elmore JG, Longton GM, Carney PA, Geller BM, Onega T, Tosteson AN, et al. Diagnostic concordance among pathologists interpreting breast biopsy specimens. JAMA. 2015;313:1122–32.CrossRefPubMedPubMedCentral
31.
go back to reference Keyes JW Jr. SUV: standard uptake or silly useless value? J Nucl Med. 1995;36:1836–9.PubMed Keyes JW Jr. SUV: standard uptake or silly useless value? J Nucl Med. 1995;36:1836–9.PubMed
32.
go back to reference Wang H, Zhou Z, Li Y, Chen Z, Lu P, Wang W, et al. Comparison of machine learning methods for classifying mediastinal lymph node metastasis of non-small cell lung cancer from 18 F-FDG PET/CT images. EJNMMI Res. 2017;7:11.CrossRefPubMedPubMedCentral Wang H, Zhou Z, Li Y, Chen Z, Lu P, Wang W, et al. Comparison of machine learning methods for classifying mediastinal lymph node metastasis of non-small cell lung cancer from 18 F-FDG PET/CT images. EJNMMI Res. 2017;7:11.CrossRefPubMedPubMedCentral
33.
go back to reference Havaei M, Davy A, Warde-Farley D, Biard A, Courville A, Bengio Y, et al. Brain tumor segmentation with deep neural networks. Med Image Anal. 2017;35:18–31.CrossRefPubMed Havaei M, Davy A, Warde-Farley D, Biard A, Courville A, Bengio Y, et al. Brain tumor segmentation with deep neural networks. Med Image Anal. 2017;35:18–31.CrossRefPubMed
34.
go back to reference Zhang W, Li R, Deng H, Wang L, Lin W, Ji S, et al. Deep convolutional neural networks for multi-modality isointense infant brain image segmentation. NeuroImage. 2015;108:214–24.CrossRefPubMedPubMedCentral Zhang W, Li R, Deng H, Wang L, Lin W, Ji S, et al. Deep convolutional neural networks for multi-modality isointense infant brain image segmentation. NeuroImage. 2015;108:214–24.CrossRefPubMedPubMedCentral
35.
go back to reference Roth HR, Lu L, Farag A, Shin H-C, Liu J, Turkbey EB et al., editors. Deeporgan: multi-level deep convolutional networks for automated pancreas segmentation. International Conference on Medical Image Computing and Computer-Assisted Intervention.Berlin: Springer; 2015. Roth HR, Lu L, Farag A, Shin H-C, Liu J, Turkbey EB et al., editors. Deeporgan: multi-level deep convolutional networks for automated pancreas segmentation. International Conference on Medical Image Computing and Computer-Assisted Intervention.Berlin: Springer; 2015.
36.
go back to reference Choi H, Jin KH. Fast and robust segmentation of the striatum using deep convolutional neural networks. J Neurosci Methods. 2016;274:146–53.CrossRefPubMed Choi H, Jin KH. Fast and robust segmentation of the striatum using deep convolutional neural networks. J Neurosci Methods. 2016;274:146–53.CrossRefPubMed
37.
go back to reference Shen W, Zhou M, Yang F, Yang C, Tian J, editors. Multi-scale convolutional neural networks for lung nodule classification. International Conference on Information Processing in Medical Imaging. Berlin: Springer; 2015. Shen W, Zhou M, Yang F, Yang C, Tian J, editors. Multi-scale convolutional neural networks for lung nodule classification. International Conference on Information Processing in Medical Imaging. Berlin: Springer; 2015.
38.
go back to reference Setio AAA, Ciompi F, Litjens G, Gerke P, Jacobs C, van Riel SJ, et al. Pulmonary nodule detection in CT images: false positive reduction using multi-view convolutional networks. IEEE Trans Med Imaging. 2016;35:1160–9.CrossRefPubMed Setio AAA, Ciompi F, Litjens G, Gerke P, Jacobs C, van Riel SJ, et al. Pulmonary nodule detection in CT images: false positive reduction using multi-view convolutional networks. IEEE Trans Med Imaging. 2016;35:1160–9.CrossRefPubMed
39.
go back to reference Kleesiek J, Urban G, Hubert A, Schwarz D, Maier-Hein K, Bendszus M, et al. Deep MRI brain extraction: a 3D convolutional neural network for skull stripping. NeuroImage. 2016;129:460–9.CrossRefPubMed Kleesiek J, Urban G, Hubert A, Schwarz D, Maier-Hein K, Bendszus M, et al. Deep MRI brain extraction: a 3D convolutional neural network for skull stripping. NeuroImage. 2016;129:460–9.CrossRefPubMed
40.
go back to reference de Brebisson A, Montana G, editors. Deep neural networks for anatomical brain segmentation. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops; 2015. de Brebisson A, Montana G, editors. Deep neural networks for anatomical brain segmentation. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops; 2015.
41.
go back to reference Chen H, Dou Q, Yu L, Heng P-A. Voxresnet: deep voxelwise residual networks for volumetric brain segmentation. arXiv:160805895. 2016. Chen H, Dou Q, Yu L, Heng P-A. Voxresnet: deep voxelwise residual networks for volumetric brain segmentation. arXiv:160805895. 2016.
42.
go back to reference Avendi M, Kheradvar A, Jafarkhani H. A combined deep-learning and deformable-model approach to fully automatic segmentation of the left ventricle in cardiac MRI. Med Image Anal. 2016;30:108–19.CrossRefPubMed Avendi M, Kheradvar A, Jafarkhani H. A combined deep-learning and deformable-model approach to fully automatic segmentation of the left ventricle in cardiac MRI. Med Image Anal. 2016;30:108–19.CrossRefPubMed
43.
go back to reference Charbonnier J-P, Van Rikxoort EM, Setio AA, Schaefer-Prokop CM, van Ginneken B, Ciompi F. Improving airway segmentation in computed tomography using leak detection with convolutional networks. Med Image Anal. 2017;36:52–60.CrossRefPubMed Charbonnier J-P, Van Rikxoort EM, Setio AA, Schaefer-Prokop CM, van Ginneken B, Ciompi F. Improving airway segmentation in computed tomography using leak detection with convolutional networks. Med Image Anal. 2017;36:52–60.CrossRefPubMed
44.
go back to reference Pereira S, Pinto A, Alves V, Silva CA. Brain tumor segmentation using convolutional neural networks in MRI images. IEEE Trans Med Imaging. 2016;35:1240–51.CrossRefPubMed Pereira S, Pinto A, Alves V, Silva CA. Brain tumor segmentation using convolutional neural networks in MRI images. IEEE Trans Med Imaging. 2016;35:1240–51.CrossRefPubMed
46.
go back to reference Trebeschi S, van Griethuysen JJ, Lambregts DM, Lahaye MJ, Parmer C, Bakers FC, et al. Deep learning for fully-automated localization and segmentation of rectal cancer on multiparametric MR. Sci Rep. 2017;7 Trebeschi S, van Griethuysen JJ, Lambregts DM, Lahaye MJ, Parmer C, Bakers FC, et al. Deep learning for fully-automated localization and segmentation of rectal cancer on multiparametric MR. Sci Rep. 2017;7
47.
go back to reference Han D, Yu J, Yu Y, Zhang G, Zhong X, Lu J, et al. Comparison of 18 F-fluorothymidine and 18 F-fluorodeoxyglucose PET/CT in delineating gross tumor volume by optimal threshold in patients with squamous cell carcinoma of thoracic esophagus. Int J Radiat Oncol Biol Phys. 2010;76:1235–41.CrossRefPubMed Han D, Yu J, Yu Y, Zhang G, Zhong X, Lu J, et al. Comparison of 18 F-fluorothymidine and 18 F-fluorodeoxyglucose PET/CT in delineating gross tumor volume by optimal threshold in patients with squamous cell carcinoma of thoracic esophagus. Int J Radiat Oncol Biol Phys. 2010;76:1235–41.CrossRefPubMed
48.
go back to reference Tylski P, Stute S, Grotus N, Doyeux K, Hapdey S, Gardin I, et al. Comparative assessment of methods for estimating tumor volume and standardized uptake value in 18F-FDG PET. J Nucl Med. 2010;51:268–76.CrossRefPubMed Tylski P, Stute S, Grotus N, Doyeux K, Hapdey S, Gardin I, et al. Comparative assessment of methods for estimating tumor volume and standardized uptake value in 18F-FDG PET. J Nucl Med. 2010;51:268–76.CrossRefPubMed
49.
go back to reference Dong C, Loy CC, He K, Tang X. Image super-resolution using deep convolutional networks. IEEE Trans Pattern Anal Mach Intell. 2016;38:295–307.CrossRefPubMed Dong C, Loy CC, He K, Tang X. Image super-resolution using deep convolutional networks. IEEE Trans Pattern Anal Mach Intell. 2016;38:295–307.CrossRefPubMed
50.
go back to reference Kim J, Kwon Lee J, Mu Lee K, editors. Accurate image super-resolution using very deep convolutional networks. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; 2016. Kim J, Kwon Lee J, Mu Lee K, editors. Accurate image super-resolution using very deep convolutional networks. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; 2016.
52.
go back to reference Jiao J, Ourselin S. Fast PET reconstruction using Multi-scale Fully Convolutional Neural Networks. arXiv:170407244. 2017. Jiao J, Ourselin S. Fast PET reconstruction using Multi-scale Fully Convolutional Neural Networks. arXiv:170407244. 2017.
53.
go back to reference Jin KH, McCann MT, Froustey E, Unser M. Deep convolutional neural network for inverse problems in imaging. IEEE Trans Image Process. 2017;26:4509–22.CrossRef Jin KH, McCann MT, Froustey E, Unser M. Deep convolutional neural network for inverse problems in imaging. IEEE Trans Image Process. 2017;26:4509–22.CrossRef
54.
go back to reference Isola P, Zhu J-Y, Zhou T, Efros AA. Image-to-image translation with conditional adversarial networks. arXiv:161107004. 2016. Isola P, Zhu J-Y, Zhou T, Efros AA. Image-to-image translation with conditional adversarial networks. arXiv:161107004. 2016.
55.
go back to reference Nie D, Trullo R, Petitjean C, Ruan S, Shen D. Medical Image Synthesis with Context-Aware Generative Adversarial Networks. arXiv:161205362. 2016. Nie D, Trullo R, Petitjean C, Ruan S, Shen D. Medical Image Synthesis with Context-Aware Generative Adversarial Networks. arXiv:161205362. 2016.
56.
go back to reference Han X. MR-based synthetic CT generation using a deep convolutional neural network method. Med Phys. 2017;44:1408–19.CrossRefPubMed Han X. MR-based synthetic CT generation using a deep convolutional neural network method. Med Phys. 2017;44:1408–19.CrossRefPubMed
57.
go back to reference Bezrukov I, Mantlik F, Schmidt H, Schölkopf B, Pichler BJ, editors. MR-based PET attenuation correction for PET/MR imaging. Seminars in nuclear medicine. Amsterdam: Elsevier; 2013. Bezrukov I, Mantlik F, Schmidt H, Schölkopf B, Pichler BJ, editors. MR-based PET attenuation correction for PET/MR imaging. Seminars in nuclear medicine. Amsterdam: Elsevier; 2013.
58.
go back to reference Suk H-I, Lee S-W, Shen D. Initiative AsDN. Latent feature representation with stacked auto-encoder for AD/MCI diagnosis. Brain Struct Funct. 2015;220:841–59.CrossRefPubMed Suk H-I, Lee S-W, Shen D. Initiative AsDN. Latent feature representation with stacked auto-encoder for AD/MCI diagnosis. Brain Struct Funct. 2015;220:841–59.CrossRefPubMed
59.
go back to reference Choi H, Jin KH. Predicting cognitive decline with deep learning of brain metabolism and amyloid imaging. arXiv:170406033. 2017. Choi H, Jin KH. Predicting cognitive decline with deep learning of brain metabolism and amyloid imaging. arXiv:170406033. 2017.
61.
go back to reference Oakden-Rayner L, Carneiro G, Bessen T, Nascimento JC, Bradley AP, Palmer LJ. Precision radiology: predicting longevity using feature engineering and deep learning methods in a radiomics framework. Sci Rep. 2017;7:1648.CrossRefPubMedPubMedCentral Oakden-Rayner L, Carneiro G, Bessen T, Nascimento JC, Bradley AP, Palmer LJ. Precision radiology: predicting longevity using feature engineering and deep learning methods in a radiomics framework. Sci Rep. 2017;7:1648.CrossRefPubMedPubMedCentral
62.
go back to reference Li Z, Wang Y, Yu J, Guo Y, Cao W. Deep learning based Radiomics (DLR) and its usage in noninvasive IDH1 prediction for low grade glioma. Sci Rep. 2017;7 Li Z, Wang Y, Yu J, Guo Y, Cao W. Deep learning based Radiomics (DLR) and its usage in noninvasive IDH1 prediction for low grade glioma. Sci Rep. 2017;7
63.
go back to reference Aerts HJ, Velazquez ER, Leijenaar RT, Parmar C, Grossmann P, Cavalho S, et al. Decoding tumour phenotype by noninvasive imaging using a quantitative radiomics approach. Nat Commun. 2014;5 Aerts HJ, Velazquez ER, Leijenaar RT, Parmar C, Grossmann P, Cavalho S, et al. Decoding tumour phenotype by noninvasive imaging using a quantitative radiomics approach. Nat Commun. 2014;5
64.
go back to reference Lambin P, Rios-Velazquez E, Leijenaar R, Carvalho S, van Stiphout RG, Granton P, et al. Radiomics: extracting more information from medical images using advanced feature analysis. Eur J Cancer. 2012;48:441–6.CrossRefPubMedPubMedCentral Lambin P, Rios-Velazquez E, Leijenaar R, Carvalho S, van Stiphout RG, Granton P, et al. Radiomics: extracting more information from medical images using advanced feature analysis. Eur J Cancer. 2012;48:441–6.CrossRefPubMedPubMedCentral
65.
go back to reference Choi H. Functional connectivity patterns of autism spectrum disorder identified by deep feature learning. arXiv:170707932. 2017. Choi H. Functional connectivity patterns of autism spectrum disorder identified by deep feature learning. arXiv:170707932. 2017.
69.
go back to reference Gal Y, Ghahramani Z, editors. Dropout as a Bayesian approximation: representing model uncertainty in deep learning. International Conference on Machine Learning; 2016. Gal Y, Ghahramani Z, editors. Dropout as a Bayesian approximation: representing model uncertainty in deep learning. International Conference on Machine Learning; 2016.
70.
go back to reference Van De Vijver MJ, He YD, Van't Veer LJ, Dai H, Hart AA, Voskuil DW, et al. A gene-expression signature as a predictor of survival in breast cancer. N Engl J Med. 2002;347:1999–2009.CrossRefPubMed Van De Vijver MJ, He YD, Van't Veer LJ, Dai H, Hart AA, Voskuil DW, et al. A gene-expression signature as a predictor of survival in breast cancer. N Engl J Med. 2002;347:1999–2009.CrossRefPubMed
71.
go back to reference Carneiro G, Nascimento J, Bradley AP, editors. Unregistered multiview mammogram analysis with pre-trained deep learning models. International Conference on Medical Image Computing and Computer-Assisted Intervention. Berllin: Springer; 2015. Carneiro G, Nascimento J, Bradley AP, editors. Unregistered multiview mammogram analysis with pre-trained deep learning models. International Conference on Medical Image Computing and Computer-Assisted Intervention. Berllin: Springer; 2015.
73.
go back to reference Wang X, Peng Y, Lu L, Lu Z, Bagheri M, Summers RM. ChestX-ray8: Hospital-scale Chest X-ray Database and Benchmarks on Weakly-Supervised Classification and Localization of Common Thorax Diseases. arXiv:170502315. 2017. Wang X, Peng Y, Lu L, Lu Z, Bagheri M, Summers RM. ChestX-ray8: Hospital-scale Chest X-ray Database and Benchmarks on Weakly-Supervised Classification and Localization of Common Thorax Diseases. arXiv:170502315. 2017.
Metadata
Title
Deep Learning in Nuclear Medicine and Molecular Imaging: Current Perspectives and Future Directions
Author
Hongyoon Choi
Publication date
01-04-2018
Publisher
Springer Berlin Heidelberg
Published in
Nuclear Medicine and Molecular Imaging / Issue 2/2018
Print ISSN: 1869-3474
Electronic ISSN: 1869-3482
DOI
https://doi.org/10.1007/s13139-017-0504-7

Other articles of this Issue 2/2018

Nuclear Medicine and Molecular Imaging 2/2018 Go to the issue