Skip to main content
Top
Published in: EJNMMI Research 1/2017

Open Access 01-12-2017 | Original research

Comparison of machine learning methods for classifying mediastinal lymph node metastasis of non-small cell lung cancer from 18F-FDG PET/CT images

Authors: Hongkai Wang, Zongwei Zhou, Yingci Li, Zhonghua Chen, Peiou Lu, Wenzhi Wang, Wanyu Liu, Lijuan Yu

Published in: EJNMMI Research | Issue 1/2017

Login to get access

Abstract

Background

This study aimed to compare one state-of-the-art deep learning method and four classical machine learning methods for classifying mediastinal lymph node metastasis of non-small cell lung cancer (NSCLC) from 18F-FDG PET/CT images. Another objective was to compare the discriminative power of the recently popular PET/CT texture features with the widely used diagnostic features such as tumor size, CT value, SUV, image contrast, and intensity standard deviation. The four classical machine learning methods included random forests, support vector machines, adaptive boosting, and artificial neural network. The deep learning method was the convolutional neural networks (CNN). The five methods were evaluated using 1397 lymph nodes collected from PET/CT images of 168 patients, with corresponding pathology analysis results as gold standard. The comparison was conducted using 10 times 10-fold cross-validation based on the criterion of sensitivity, specificity, accuracy (ACC), and area under the ROC curve (AUC). For each classical method, different input features were compared to select the optimal feature set. Based on the optimal feature set, the classical methods were compared with CNN, as well as with human doctors from our institute.

Results

For the classical methods, the diagnostic features resulted in 81~85% ACC and 0.87~0.92 AUC, which were significantly higher than the results of texture features. CNN’s sensitivity, specificity, ACC, and AUC were 84, 88, 86, and 0.91, respectively. There was no significant difference between the results of CNN and the best classical method. The sensitivity, specificity, and ACC of human doctors were 73, 90, and 82, respectively. All the five machine learning methods had higher sensitivities but lower specificities than human doctors.

Conclusions

The present study shows that the performance of CNN is not significantly different from the best classical methods and human doctors for classifying mediastinal lymph node metastasis of NSCLC from PET/CT images. Because CNN does not need tumor segmentation or feature calculation, it is more convenient and more objective than the classical methods. However, CNN does not make use of the import diagnostic features, which have been proved more discriminative than the texture features for classifying small-sized lymph nodes. Therefore, incorporating the diagnostic features into CNN is a promising direction for future research.
Literature
1.
go back to reference McField D, Bauer T. A review of noninvasive staging of the mediastinum for non-small cell lung carcinoma. Surg Oncol Clin N Am. 2011;20:681–90.CrossRefPubMed McField D, Bauer T. A review of noninvasive staging of the mediastinum for non-small cell lung carcinoma. Surg Oncol Clin N Am. 2011;20:681–90.CrossRefPubMed
2.
go back to reference Silvestri GA, Gould MK, Margolis ML, Tanoue LT, McCrory D, Toloza E, et al. Noninvasive staging of non-small cell lung cancer: ACCP evidenced-based clinical practice guidelines (2nd edition). Chest. 2007;132:178S–201S.CrossRefPubMed Silvestri GA, Gould MK, Margolis ML, Tanoue LT, McCrory D, Toloza E, et al. Noninvasive staging of non-small cell lung cancer: ACCP evidenced-based clinical practice guidelines (2nd edition). Chest. 2007;132:178S–201S.CrossRefPubMed
3.
go back to reference Broderick SR, Meyers BF. PET staging of mediastinal lymph nodes in thoracic oncology. Thorac Surg Clin. 2012;22:161–6.CrossRefPubMed Broderick SR, Meyers BF. PET staging of mediastinal lymph nodes in thoracic oncology. Thorac Surg Clin. 2012;22:161–6.CrossRefPubMed
4.
go back to reference Kim SK, Allen-Auerbach M, Goldin J, Fueger BJ, Dahlbom M, Brown M, et al. Accuracy of PET/CT in characterization of solitary pulmonary lesions. J Nucl Med. 2007;48:214–20.PubMed Kim SK, Allen-Auerbach M, Goldin J, Fueger BJ, Dahlbom M, Brown M, et al. Accuracy of PET/CT in characterization of solitary pulmonary lesions. J Nucl Med. 2007;48:214–20.PubMed
5.
go back to reference Li X, Zhang H, Xing L, Ma H, Xie P, Zhang L, et al. Mediastinal lymph nodes staging by 18F-FDG PET/CT for early stage non-small cell lung cancer: a multicenter study. Radiother Oncol. 2012;102:246–50.CrossRefPubMed Li X, Zhang H, Xing L, Ma H, Xie P, Zhang L, et al. Mediastinal lymph nodes staging by 18F-FDG PET/CT for early stage non-small cell lung cancer: a multicenter study. Radiother Oncol. 2012;102:246–50.CrossRefPubMed
6.
go back to reference Schmidt-Hansen M, Baldwin DR, Hasler E, Zamora J, Abraira V, Roque IFM. PET-CT for assessing mediastinal lymph node involvement in patients with suspected resectable non-small cell lung cancer. Cochrane Database Syst Rev. 2014;11:CD009519. Schmidt-Hansen M, Baldwin DR, Hasler E, Zamora J, Abraira V, Roque IFM. PET-CT for assessing mediastinal lymph node involvement in patients with suspected resectable non-small cell lung cancer. Cochrane Database Syst Rev. 2014;11:CD009519.
7.
go back to reference De Leyn P, Vansteenkiste J, Cuypers P, Deneffe G, Van Raemdonck D, Coosemans W, et al. Role of cervical mediastinoscopy in staging of non-small cell lung cancer without enlarged mediastinal lymph nodes on CT scan. Eur J Cardiothorac Surg. 1997;12:706–12.CrossRefPubMed De Leyn P, Vansteenkiste J, Cuypers P, Deneffe G, Van Raemdonck D, Coosemans W, et al. Role of cervical mediastinoscopy in staging of non-small cell lung cancer without enlarged mediastinal lymph nodes on CT scan. Eur J Cardiothorac Surg. 1997;12:706–12.CrossRefPubMed
8.
go back to reference Zheng Y, Sun X, Wang J, Zhang L, Di X, Xu Y. FDG-PET/CT imaging for tumor staging and definition of tumor volumes in radiation treatment planning in non-small cell lung cancer. Oncol Lett. 2014;7:1015–20.PubMedPubMedCentral Zheng Y, Sun X, Wang J, Zhang L, Di X, Xu Y. FDG-PET/CT imaging for tumor staging and definition of tumor volumes in radiation treatment planning in non-small cell lung cancer. Oncol Lett. 2014;7:1015–20.PubMedPubMedCentral
9.
go back to reference Edet-Sanson A, Dubray B, Doyeux K, Back A, Hapdey S, Modzelewski R, et al. Serial assessment of FDG-PET FDG uptake and functional volume during radiotherapy (RT) in patients with non-small cell lung cancer (NSCLC). Radiother Oncol. 2012;102:251–7.CrossRefPubMed Edet-Sanson A, Dubray B, Doyeux K, Back A, Hapdey S, Modzelewski R, et al. Serial assessment of FDG-PET FDG uptake and functional volume during radiotherapy (RT) in patients with non-small cell lung cancer (NSCLC). Radiother Oncol. 2012;102:251–7.CrossRefPubMed
10.
go back to reference Wang J, Welch K, Wang L, Kong FM. Negative predictive value of positron emission tomography and computed tomography for stage T1-2N0 non-small-cell lung cancer: a meta-analysis. Clin Lung Cancer. 2012;13:81–9.CrossRefPubMed Wang J, Welch K, Wang L, Kong FM. Negative predictive value of positron emission tomography and computed tomography for stage T1-2N0 non-small-cell lung cancer: a meta-analysis. Clin Lung Cancer. 2012;13:81–9.CrossRefPubMed
11.
go back to reference Liao CY, Chen JH, Liang JA, Yeh JJ, Kao CH. Meta-analysis study of lymph node staging by 18F-FDG PET/CT scan in non-small cell lung cancer: comparison of TB and non-TB endemic regions. Eur J Radiol. 2012;81:3518–23.CrossRefPubMed Liao CY, Chen JH, Liang JA, Yeh JJ, Kao CH. Meta-analysis study of lymph node staging by 18F-FDG PET/CT scan in non-small cell lung cancer: comparison of TB and non-TB endemic regions. Eur J Radiol. 2012;81:3518–23.CrossRefPubMed
12.
go back to reference Ambrosini V, Fanti S, Chengazi VU, Rubello D. Diagnostic accuracy of FDG PET/CT in mediastinal lymph nodes from lung cancer. Eur J Radiol. 2014;83:1301–2.CrossRefPubMed Ambrosini V, Fanti S, Chengazi VU, Rubello D. Diagnostic accuracy of FDG PET/CT in mediastinal lymph nodes from lung cancer. Eur J Radiol. 2014;83:1301–2.CrossRefPubMed
13.
go back to reference Silvestri GA, Gonzalez AV, Jantz MA, Margolis ML, Gould MK, Tanoue LT, et al. Methods for staging non-small cell lung cancer: diagnosis and management of lung cancer, 3rd ed: American College of Chest Physicians evidence-based clinical practice guidelines. Chest. 2013;143:e211S–50S.CrossRefPubMed Silvestri GA, Gonzalez AV, Jantz MA, Margolis ML, Gould MK, Tanoue LT, et al. Methods for staging non-small cell lung cancer: diagnosis and management of lung cancer, 3rd ed: American College of Chest Physicians evidence-based clinical practice guidelines. Chest. 2013;143:e211S–50S.CrossRefPubMed
14.
go back to reference Gonçalves VM, Delamaro ME. A systematic review on the evaluation and characteristics of computer-aided diagnosis systems. Revista Brasileira De Engenharia Biomedica. 2014;30:355–83.CrossRef Gonçalves VM, Delamaro ME. A systematic review on the evaluation and characteristics of computer-aided diagnosis systems. Revista Brasileira De Engenharia Biomedica. 2014;30:355–83.CrossRef
15.
go back to reference Chicklore S, Goh V, Siddique M, Roy A, Marsden P, Cook GJR. Quantifying tumour heterogeneity in 18F-FDG PET/CT imaging by texture analysis. Eur J Nucl Med Mol Imaging. 2013;40:133–40.CrossRefPubMed Chicklore S, Goh V, Siddique M, Roy A, Marsden P, Cook GJR. Quantifying tumour heterogeneity in 18F-FDG PET/CT imaging by texture analysis. Eur J Nucl Med Mol Imaging. 2013;40:133–40.CrossRefPubMed
16.
go back to reference Yu H, Caldwell C, Mah K, Mozeg D. Coregistered FDG PET/CT-based textural characterization of head and neck cancer for radiation treatment planning. IEEE Trans Med Imag. 2009;28:374–83. Yu H, Caldwell C, Mah K, Mozeg D. Coregistered FDG PET/CT-based textural characterization of head and neck cancer for radiation treatment planning. IEEE Trans Med Imag. 2009;28:374–83.
17.
go back to reference Rui X, Kido S, Suga K, Hirano Y, Tachibana R, Muramatsu K, et al. Texture analysis on 18F-FDG PET/CT images to differentiate malignant and benign bone and soft-tissue lesions. Jpn Circ J. 2014;58:95–9. Rui X, Kido S, Suga K, Hirano Y, Tachibana R, Muramatsu K, et al. Texture analysis on 18F-FDG PET/CT images to differentiate malignant and benign bone and soft-tissue lesions. Jpn Circ J. 2014;58:95–9.
18.
go back to reference Gao X, Chu C, Li Y, Lu P, Wang W, Liu W, et al. The method and efficacy of support vector machine classifiers based on texture features and multi-resolution histogram from (18)F-FDG PET-CT images for the evaluation of mediastinal lymph nodes in patients with lung cancer. Eur J Radiol. 2015;84:312–7.CrossRefPubMed Gao X, Chu C, Li Y, Lu P, Wang W, Liu W, et al. The method and efficacy of support vector machine classifiers based on texture features and multi-resolution histogram from (18)F-FDG PET-CT images for the evaluation of mediastinal lymph nodes in patients with lung cancer. Eur J Radiol. 2015;84:312–7.CrossRefPubMed
19.
go back to reference Vaidya M, Creach KM, Frye J, Dehdashti F, Bradley JD, Naqa IE. Combined PET/CT image characteristics for radiotherapy tumor response in lung cancer. Radiother Oncol J European Soc Therapeutic Radiol Oncol. 2012;102:239–45.CrossRef Vaidya M, Creach KM, Frye J, Dehdashti F, Bradley JD, Naqa IE. Combined PET/CT image characteristics for radiotherapy tumor response in lung cancer. Radiother Oncol J European Soc Therapeutic Radiol Oncol. 2012;102:239–45.CrossRef
20.
go back to reference Lian C, Ruan S, Denœux T, Jardin F, Vera P. Selecting radiomic features from FDG-PET images for cancer treatment outcome prediction. Med Image Anal. 2016;32:257–68.CrossRefPubMed Lian C, Ruan S, Denœux T, Jardin F, Vera P. Selecting radiomic features from FDG-PET images for cancer treatment outcome prediction. Med Image Anal. 2016;32:257–68.CrossRefPubMed
21.
go back to reference Brooks FJ, Grigsby PW. Low-order non-spatial effects dominate second-order spatial effects in the texture quantifier analysis of 18F-FDG-PET images. Plos One. 2015;10:1–17. Brooks FJ, Grigsby PW. Low-order non-spatial effects dominate second-order spatial effects in the texture quantifier analysis of 18F-FDG-PET images. Plos One. 2015;10:1–17.
22.
go back to reference Hatt M, Tixier F, Pierce L, Kinahan PE, Le Rest CC, Visvikis D. Characterization of PET/CT images using texture analysis: the past, the present… any future? European Journal of Nuclear Medicine and Molecular Imaging, 2016. 44(1): p. 1-15. Hatt M, Tixier F, Pierce L, Kinahan PE, Le Rest CC, Visvikis D. Characterization of PET/CT images using texture analysis: the past, the present… any future? European Journal of Nuclear Medicine and Molecular Imaging, 2016. 44(1): p. 1-15.
24.
go back to reference Roth HR, Lu L, Liu J, Yao J, Seff A, Cherry KM, et al. Improving computer-aided detection using convolutional neural networks and random view aggregation. IEEE Trans Med Imag. 2016;35:1170–81.CrossRef Roth HR, Lu L, Liu J, Yao J, Seff A, Cherry KM, et al. Improving computer-aided detection using convolutional neural networks and random view aggregation. IEEE Trans Med Imag. 2016;35:1170–81.CrossRef
25.
go back to reference Roth HR, Lu L, Seff A, Cherry KM, Hoffman J, Wang S, et al. A new 2.5 D representation for lymph node detection using random sets ofdeep convolutional neural network observations[C]//International Conference on Medical Image Computing and Computer-Assisted Intervention, Boston, MA, USA. Springer International Publishing, 2014: 520-7. Roth HR, Lu L, Seff A, Cherry KM, Hoffman J, Wang S, et al. A new 2.5 D representation for lymph node detection using random sets ofdeep convolutional neural network observations[C]//International Conference on Medical Image Computing and Computer-Assisted Intervention, Boston, MA, USA. Springer International Publishing, 2014: 520-7.
26.
go back to reference Tajbakhsh N, Gotway MB, Liang J. Computer-aided pulmonary embolism detection using a novel vesselaligned multi-planar image representation and convolutional neural networks[C]//International Conference on Medical Image Computing and Computer-Assisted Intervention, Munich, Germany. Springer International Publishing, 2015: 62-69. Tajbakhsh N, Gotway MB, Liang J. Computer-aided pulmonary embolism detection using a novel vesselaligned multi-planar image representation and convolutional neural networks[C]//International Conference on Medical Image Computing and Computer-Assisted Intervention, Munich, Germany. Springer International Publishing, 2015: 62-69.
27.
go back to reference Tajbakhsh N, Gurudu SR, Liang J. Automated polyp detection in colonoscopy videos using shape and context information. IEEE Trans Med Imag. 2016;35:630–44.CrossRef Tajbakhsh N, Gurudu SR, Liang J. Automated polyp detection in colonoscopy videos using shape and context information. IEEE Trans Med Imag. 2016;35:630–44.CrossRef
28.
go back to reference Xu J, Xiang L, Liu Q, Gilmore H, Wu J, Tang J, et al. Stacked sparse autoencoder (SSAE) for nuclei detection on breast cancer histopathology images. IEEE Trans Med Imag. 2016;35:119–30.CrossRef Xu J, Xiang L, Liu Q, Gilmore H, Wu J, Tang J, et al. Stacked sparse autoencoder (SSAE) for nuclei detection on breast cancer histopathology images. IEEE Trans Med Imag. 2016;35:119–30.CrossRef
29.
go back to reference Xu Y, Zhu JY, Chang EI, Lai M, Tu Z. Weakly supervised histopathology cancer image segmentation and classification. Med Image Anal. 2014;18:591–604.CrossRefPubMed Xu Y, Zhu JY, Chang EI, Lai M, Tu Z. Weakly supervised histopathology cancer image segmentation and classification. Med Image Anal. 2014;18:591–604.CrossRefPubMed
30.
go back to reference Cheng J, Ni D, Chou Y, Qin J, Tiu C, Chang Y, et al. Computer-aided diagnosis with deep learning architecture: applications to breast lesions in US images and pulmonary nodules in CT scans. Scientific Reports. 2016;6:1–13.CrossRef Cheng J, Ni D, Chou Y, Qin J, Tiu C, Chang Y, et al. Computer-aided diagnosis with deep learning architecture: applications to breast lesions in US images and pulmonary nodules in CT scans. Scientific Reports. 2016;6:1–13.CrossRef
31.
go back to reference Vallieres E, Shepherd FA, Crowley J, Van Houtte P, Postmus PE, Carney D, et al. The IASLC Lung Cancer Staging Project: proposals regarding the relevance of TNM in the pathologic staging of small cell lung cancer in the forthcoming (seventh) edition of the TNM classification for lung cancer. J Thorac Oncol. 2009;4:1049–59.CrossRefPubMed Vallieres E, Shepherd FA, Crowley J, Van Houtte P, Postmus PE, Carney D, et al. The IASLC Lung Cancer Staging Project: proposals regarding the relevance of TNM in the pathologic staging of small cell lung cancer in the forthcoming (seventh) edition of the TNM classification for lung cancer. J Thorac Oncol. 2009;4:1049–59.CrossRefPubMed
32.
go back to reference Francis T. Machine Learning: An Algorithmic Perspective. 2nd ed. 6000 Broken Sound Parkway,Suite 300: Chapman and Hall/CRC, Taylor & Francis Group; 2014. p.39-280. Francis T. Machine Learning: An Algorithmic Perspective. 2nd ed. 6000 Broken Sound Parkway,Suite 300: Chapman and Hall/CRC, Taylor & Francis Group; 2014. p.39-280.
34.
go back to reference Krizhevsky A, Sutskever I, Hinton GE. ImageNet classification with deep convolutional neural networks. Adv Neural Inf Proces Syst. 2012;25:2012. Krizhevsky A, Sutskever I, Hinton GE. ImageNet classification with deep convolutional neural networks. Adv Neural Inf Proces Syst. 2012;25:2012.
35.
go back to reference Qian N. On the momentum term in gradient descent learning algorithms. Neural Netw. 1999;12:145–51.CrossRefPubMed Qian N. On the momentum term in gradient descent learning algorithms. Neural Netw. 1999;12:145–51.CrossRefPubMed
36.
go back to reference Parmar C, Grossmann P, Bussink J, Lambin P, Aerts HJ. Machine learning methods for quantitative radiomic biomarkers. Scientific Reports. 2015;5. doi: 10.1038/srep13087. Parmar C, Grossmann P, Bussink J, Lambin P, Aerts HJ. Machine learning methods for quantitative radiomic biomarkers. Scientific Reports. 2015;5. doi: 10.​1038/​srep13087.
37.
go back to reference Fernandezdelgado M, Cernadas E, Barro S, Amorim D. Do we need hundreds of classifiers to solve real world classification problems. J Mach Learn Res. 2014;15:3133–81. Fernandezdelgado M, Cernadas E, Barro S, Amorim D. Do we need hundreds of classifiers to solve real world classification problems. J Mach Learn Res. 2014;15:3133–81.
38.
go back to reference Simonyan K, Zisserman A. Very deep convolutional networks for large-scale image recognition [J]. arXiv preprint arXiv:1409.1556v6, 2015. Simonyan K, Zisserman A. Very deep convolutional networks for large-scale image recognition [J]. arXiv preprint arXiv:1409.1556v6, 2015.
39.
go back to reference Szegedy C, Liu W, Jia Y, Sermanet P, Reed S, Anguelov D, et al. Going deeper with convolutions[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Boston, MA, USA. 2015: 1-9. Szegedy C, Liu W, Jia Y, Sermanet P, Reed S, Anguelov D, et al. Going deeper with convolutions[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Boston, MA, USA. 2015: 1-9.
40.
go back to reference He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, Nevada, USA. 2016: 770-8. He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, Nevada, USA. 2016: 770-8.
41.
go back to reference Tajbakhsh N, Shin JY, Gurudu SR, Hurst RT, Kendall CB, Gotway MB, et al. Convolutional neural networks for medical image analysis: full training or fine tuning? IEEE Trans Med Imag. 2016;35:1299–312.CrossRef Tajbakhsh N, Shin JY, Gurudu SR, Hurst RT, Kendall CB, Gotway MB, et al. Convolutional neural networks for medical image analysis: full training or fine tuning? IEEE Trans Med Imag. 2016;35:1299–312.CrossRef
Metadata
Title
Comparison of machine learning methods for classifying mediastinal lymph node metastasis of non-small cell lung cancer from 18F-FDG PET/CT images
Authors
Hongkai Wang
Zongwei Zhou
Yingci Li
Zhonghua Chen
Peiou Lu
Wenzhi Wang
Wanyu Liu
Lijuan Yu
Publication date
01-12-2017
Publisher
Springer Berlin Heidelberg
Published in
EJNMMI Research / Issue 1/2017
Electronic ISSN: 2191-219X
DOI
https://doi.org/10.1186/s13550-017-0260-9

Other articles of this Issue 1/2017

EJNMMI Research 1/2017 Go to the issue