Skip to main content
Top

28-04-2024 | Original Paper

Deep learning approach for cardiovascular disease risk stratification and survival analysis on a Canadian cohort

Authors: Mrinalini Bhagawati, Sudip Paul, Laura Mantella, Amer M. Johri, John R. Laird, Inder M. Singh, Rajesh Singh, Deepak Garg, Mostafa M. Fouda, Narendra N. Khanna, Riccardo Cau, Ajith Abraham, Mostafa Al-Maini, Esma R. Isenovic, Aditya M. Sharma, Jose Fernandes E. Fernandes, Seemant Chaturvedi, Mannudeep K. Karla, Andrew Nicolaides, Luca Saba, Jasjit S. Suri

Published in: The International Journal of Cardiovascular Imaging

Login to get access

Abstract

The quantification of carotid plaque has been routinely used to predict cardiovascular risk in cardiovascular disease (CVD) and coronary artery disease (CAD). To determine how well carotid plaque features predict the likelihood of CAD and cardiovascular (CV) events using deep learning (DL) and compare against the machine learning (ML) paradigm. The participants in this study consisted of 459 individuals who had undergone coronary angiography, contrast-enhanced ultrasonography, and focused carotid B-mode ultrasound. Each patient was tracked for thirty days. The measurements on these patients consisted of maximum plaque height (MPH), total plaque area (TPA), carotid intima-media thickness (cIMT), and intraplaque neovascularization (IPN). CAD risk and CV event stratification were performed by applying eight types of DL-based models. Univariate and multivariate analysis was also conducted to predict the most significant risk predictors. The DL’s model effectiveness was evaluated by the area-under-the-curve measurement while the CV event prediction was evaluated using the Cox proportional hazard model (CPHM) and compared against the DL-based concordance index (c-index). IPN showed a substantial ability to predict CV events (p < 0.0001). The best DL system improved by 21% (0.929 vs. 0.762) over the best ML system. DL-based CV event prediction showed a ~ 17% increase in DL-based c-index compared to the CPHM (0.86 vs. 0.73). CAD and CV incidents were linked to IPN and carotid imaging characteristics. For survival analysis and CAD prediction, the DL-based system performs superior to ML-based models.
Appendix
Available only for authorised users
Literature
1.
go back to reference Kaptoge S, Pennells L, De Bacquer D, Cooney MT, Kavousi M, Stevens G, Riley LM, Savin S, Khan T, Altay S (2019) World Health Organization cardiovascular disease risk charts: revised models to estimate risk in 21 global regions. Lancet Glob Health 7(10):e1332–e1345CrossRef Kaptoge S, Pennells L, De Bacquer D, Cooney MT, Kavousi M, Stevens G, Riley LM, Savin S, Khan T, Altay S (2019) World Health Organization cardiovascular disease risk charts: revised models to estimate risk in 21 global regions. Lancet Glob Health 7(10):e1332–e1345CrossRef
2.
go back to reference Suri JS, Agarwal S, Gupta SK, Puvvula A, Biswas M, Saba L, Bit A, Tandel GS, Agarwal M, Patrick A (2021) A narrative review on characterization of acute respiratory distress syndrome in COVID-19-infected lungs using artificial intelligence. Comput Biol Med 130:104210PubMedPubMedCentralCrossRef Suri JS, Agarwal S, Gupta SK, Puvvula A, Biswas M, Saba L, Bit A, Tandel GS, Agarwal M, Patrick A (2021) A narrative review on characterization of acute respiratory distress syndrome in COVID-19-infected lungs using artificial intelligence. Comput Biol Med 130:104210PubMedPubMedCentralCrossRef
3.
go back to reference Jamthikar AD, Puvvula A, Gupta D, Johri AM, Nambi V, Khanna NN, Saba L, Mavrogeni S, Laird JR, Pareek G (2020) Cardiovascular disease and stroke risk assessment in patients with chronic kidney disease using integration of estimated glomerular filtration rate, ultrasonic image phenotypes, and artificial intelligence: a narrative review. Int Angiol: J Int Union Angiol 40(2):150–164 Jamthikar AD, Puvvula A, Gupta D, Johri AM, Nambi V, Khanna NN, Saba L, Mavrogeni S, Laird JR, Pareek G (2020) Cardiovascular disease and stroke risk assessment in patients with chronic kidney disease using integration of estimated glomerular filtration rate, ultrasonic image phenotypes, and artificial intelligence: a narrative review. Int Angiol: J Int Union Angiol 40(2):150–164
4.
go back to reference Suri JS, Kathuria C, Molinari F (2010) Atherosclerosis disease management. Springer, Berlin Suri JS, Kathuria C, Molinari F (2010) Atherosclerosis disease management. Springer, Berlin
5.
go back to reference Saba L, Jamthikar A, Gupta D, Khanna NN, Viskovic K, Suri HS, Gupta A, Mavrogeni S, Turk M, Laird JR (2019) Global perspective on carotid intima-media thickness and plaque: should the current measurement guidelines be revisited? Int Angiol 38(6):451–465PubMed Saba L, Jamthikar A, Gupta D, Khanna NN, Viskovic K, Suri HS, Gupta A, Mavrogeni S, Turk M, Laird JR (2019) Global perspective on carotid intima-media thickness and plaque: should the current measurement guidelines be revisited? Int Angiol 38(6):451–465PubMed
6.
go back to reference Johri AM, Lajkosz KA, Grubic N, Islam S, Li TY, Simpson CS, Ewart P, Suri JS, Hétu M-F (2021) Maximum plaque height in carotid ultrasound predicts cardiovascular disease outcomes: a population-based validation study of the American society of echocardiography’s grade II–III plaque characterization and protocol. Int J Cardiovasc Imaging 37(5):1601–1610PubMedCrossRef Johri AM, Lajkosz KA, Grubic N, Islam S, Li TY, Simpson CS, Ewart P, Suri JS, Hétu M-F (2021) Maximum plaque height in carotid ultrasound predicts cardiovascular disease outcomes: a population-based validation study of the American society of echocardiography’s grade II–III plaque characterization and protocol. Int J Cardiovasc Imaging 37(5):1601–1610PubMedCrossRef
7.
go back to reference Puvvula A, Jamthikar AD, Gupta D, Khanna NN, Porcu M, Saba L, Viskovic K, Ajuluchukwu JN, Gupta A, Mavrogeni S (2020) Morphological carotid plaque area is associated with glomerular filtration rate: a study of south Asian Indian patients with diabetes and chronic kidney disease. Angiology 71(6):520–535PubMedCrossRef Puvvula A, Jamthikar AD, Gupta D, Khanna NN, Porcu M, Saba L, Viskovic K, Ajuluchukwu JN, Gupta A, Mavrogeni S (2020) Morphological carotid plaque area is associated with glomerular filtration rate: a study of south Asian Indian patients with diabetes and chronic kidney disease. Angiology 71(6):520–535PubMedCrossRef
8.
go back to reference Amato M, Montorsi P, Ravani A, Oldani E, Galli S, Ravagnani PM, Tremoli E, Baldassarre D (2007) Carotid intima-media thickness by B-mode ultrasound as surrogate of coronary atherosclerosis: correlation with quantitative coronary angiography and coronary intravascular ultrasound findings. Eur Heart J 28(17):2094–2101PubMedCrossRef Amato M, Montorsi P, Ravani A, Oldani E, Galli S, Ravagnani PM, Tremoli E, Baldassarre D (2007) Carotid intima-media thickness by B-mode ultrasound as surrogate of coronary atherosclerosis: correlation with quantitative coronary angiography and coronary intravascular ultrasound findings. Eur Heart J 28(17):2094–2101PubMedCrossRef
9.
go back to reference Bots ML (2006) Carotid intima-media thickness as a surrogate marker for cardiovascular disease in intervention studies. Curr Med Res Opinion 22(11):2181–2190CrossRef Bots ML (2006) Carotid intima-media thickness as a surrogate marker for cardiovascular disease in intervention studies. Curr Med Res Opinion 22(11):2181–2190CrossRef
10.
go back to reference Spence JD (2002) Ultrasound measurement of carotid plaque as a surrogate outcome for coronary artery disease. Am J Cardiol 89(4):10–15CrossRef Spence JD (2002) Ultrasound measurement of carotid plaque as a surrogate outcome for coronary artery disease. Am J Cardiol 89(4):10–15CrossRef
11.
go back to reference Mantella LE, Colledanchise KN, Hetu M-F, Feinstein SB, Abunassar J, Johri AM (2019) Carotid intraplaque neovascularization predicts coronary artery disease and cardiovascular events. Eur Heart J-Cardiovasc Imaging 20(11):1239–1247PubMedPubMedCentralCrossRef Mantella LE, Colledanchise KN, Hetu M-F, Feinstein SB, Abunassar J, Johri AM (2019) Carotid intraplaque neovascularization predicts coronary artery disease and cardiovascular events. Eur Heart J-Cardiovasc Imaging 20(11):1239–1247PubMedPubMedCentralCrossRef
12.
go back to reference Goldstein BA, Navar AM, Carter RE (2017) Moving beyond regression techniques in cardiovascular risk prediction: applying machine learning to address analytic challenges. Eur Heart J 38(23):1805–1814PubMed Goldstein BA, Navar AM, Carter RE (2017) Moving beyond regression techniques in cardiovascular risk prediction: applying machine learning to address analytic challenges. Eur Heart J 38(23):1805–1814PubMed
13.
go back to reference Jamthikar AD, Gupta D, Saba L, Khanna NN, Viskovic K, Mavrogeni S, Laird JR, Sattar N, Johri AM, Pareek G (2020) Artificial intelligence framework for predictive cardiovascular and stroke risk assessment models: a narrative review of integrated approaches using carotid ultrasound. Comput Biol Med 126:104043PubMedCrossRef Jamthikar AD, Gupta D, Saba L, Khanna NN, Viskovic K, Mavrogeni S, Laird JR, Sattar N, Johri AM, Pareek G (2020) Artificial intelligence framework for predictive cardiovascular and stroke risk assessment models: a narrative review of integrated approaches using carotid ultrasound. Comput Biol Med 126:104043PubMedCrossRef
14.
go back to reference Alaa AM, Bolton T, Di Angelantonio E, Rudd JH, Van der Schaar M (2019) Cardiovascular disease risk prediction using automated machine learning: a prospective study of 423,604 UK Biobank participants. PLoS ONE 14(5):e0213653PubMedPubMedCentralCrossRef Alaa AM, Bolton T, Di Angelantonio E, Rudd JH, Van der Schaar M (2019) Cardiovascular disease risk prediction using automated machine learning: a prospective study of 423,604 UK Biobank participants. PLoS ONE 14(5):e0213653PubMedPubMedCentralCrossRef
15.
go back to reference Weng SF, Reps J, Kai J, Garibaldi JM, Qureshi N (2017) Can machine-learning improve cardiovascular risk prediction using routine clinical data? PLoS ONE 12(4):e0174944PubMedPubMedCentralCrossRef Weng SF, Reps J, Kai J, Garibaldi JM, Qureshi N (2017) Can machine-learning improve cardiovascular risk prediction using routine clinical data? PLoS ONE 12(4):e0174944PubMedPubMedCentralCrossRef
16.
go back to reference Biswas M, Kuppili V, Saba L, Edla DR, Suri HS, Cuadrado-Godia E, Laird JR, Marinhoe RT, Sanches JM, Nicolaides A (2019) State-of-the-art review on deep learning in medical imaging. Front Biosci-Landmark 24(3):380–406 Biswas M, Kuppili V, Saba L, Edla DR, Suri HS, Cuadrado-Godia E, Laird JR, Marinhoe RT, Sanches JM, Nicolaides A (2019) State-of-the-art review on deep learning in medical imaging. Front Biosci-Landmark 24(3):380–406
17.
go back to reference Sanga P, Singh J, Dubey AK, Khanna NN, Laird JR, Faa G, Singh IM, Tsoulfas G, Kalra MK, Teji JS (2023) DermAI 1.0: a robust, generalized, and novel attention-enabled ensemble-based transfer learning paradigm for multiclass classification of skin lesion images. Diagnostics 13(19):3159PubMedPubMedCentralCrossRef Sanga P, Singh J, Dubey AK, Khanna NN, Laird JR, Faa G, Singh IM, Tsoulfas G, Kalra MK, Teji JS (2023) DermAI 1.0: a robust, generalized, and novel attention-enabled ensemble-based transfer learning paradigm for multiclass classification of skin lesion images. Diagnostics 13(19):3159PubMedPubMedCentralCrossRef
18.
go back to reference Shrivastava VK, Londhe ND, Sonawane RS, Suri JS (2015) Reliable and accurate psoriasis disease classification in dermatology images using comprehensive feature space in machine learning paradigm. Expert Syst Appl 42(15–16):6184–6195CrossRef Shrivastava VK, Londhe ND, Sonawane RS, Suri JS (2015) Reliable and accurate psoriasis disease classification in dermatology images using comprehensive feature space in machine learning paradigm. Expert Syst Appl 42(15–16):6184–6195CrossRef
19.
go back to reference Fritzsche K, Can A, Shen H, Tsai C, Turner J, Tanenbuam H, Stewart C, Roysam B, Suri J, Laxminarayan S (2003) Automated model based segmentation, tracing and analysis of retinal vasculature from digital fundus images. State-of-the-Art Angiogr Appl Plaque Imaging Using MR CT Ultrasound X-Rays 29:225–298 Fritzsche K, Can A, Shen H, Tsai C, Turner J, Tanenbuam H, Stewart C, Roysam B, Suri J, Laxminarayan S (2003) Automated model based segmentation, tracing and analysis of retinal vasculature from digital fundus images. State-of-the-Art Angiogr Appl Plaque Imaging Using MR CT Ultrasound X-Rays 29:225–298
20.
go back to reference Saba L, Sanfilippo R, Sannia S, Anzidei M, Montisci R, Mallarini G, Suri JS (2012) Association between carotid artery plaque volume, composition, and ulceration: a retrospective assessment with MDCT. Am J Roentgenol 199(1):151–156CrossRef Saba L, Sanfilippo R, Sannia S, Anzidei M, Montisci R, Mallarini G, Suri JS (2012) Association between carotid artery plaque volume, composition, and ulceration: a retrospective assessment with MDCT. Am J Roentgenol 199(1):151–156CrossRef
21.
go back to reference Saba L, Biswas M, Kuppili V, Godia EC, Suri HS, Edla DR, Omerzu T, Laird JR, Khanna NN, Mavrogeni S (2019) The present and future of deep learning in radiology. Eur J Radiol 114:14–24PubMedCrossRef Saba L, Biswas M, Kuppili V, Godia EC, Suri HS, Edla DR, Omerzu T, Laird JR, Khanna NN, Mavrogeni S (2019) The present and future of deep learning in radiology. Eur J Radiol 114:14–24PubMedCrossRef
22.
go back to reference Jamthikar A, Gupta D, Khanna NN, Saba L, Araki T, Viskovic K, Suri HS, Gupta A, Mavrogeni S, Turk M (2019) A low-cost machine learning-based cardiovascular/stroke risk assessment system: integration of conventional factors with image phenotypes. Cardiovasc Diagn Ther 9(5):420PubMedPubMedCentralCrossRef Jamthikar A, Gupta D, Khanna NN, Saba L, Araki T, Viskovic K, Suri HS, Gupta A, Mavrogeni S, Turk M (2019) A low-cost machine learning-based cardiovascular/stroke risk assessment system: integration of conventional factors with image phenotypes. Cardiovasc Diagn Ther 9(5):420PubMedPubMedCentralCrossRef
23.
go back to reference Kakadiaris IA, Vrigkas M, Yen AA, Kuznetsova T, Budoff M, Naghavi M (2018) Machine learning outperforms ACC/AHA CVD risk calculator in MESA. J Am Heart Assoc 7(22):e009476PubMedPubMedCentralCrossRef Kakadiaris IA, Vrigkas M, Yen AA, Kuznetsova T, Budoff M, Naghavi M (2018) Machine learning outperforms ACC/AHA CVD risk calculator in MESA. J Am Heart Assoc 7(22):e009476PubMedPubMedCentralCrossRef
24.
go back to reference Jamthikar A, Gupta D, Saba L, Khanna NN, Araki T, Viskovic K, Mavrogeni S, Laird JR, Pareek G, Miner M (2020) Cardiovascular/stroke risk predictive calculators: a comparison between statistical and machine learning models. Cardiovasc Diagn Ther 10(4):919PubMedPubMedCentralCrossRef Jamthikar A, Gupta D, Saba L, Khanna NN, Araki T, Viskovic K, Mavrogeni S, Laird JR, Pareek G, Miner M (2020) Cardiovascular/stroke risk predictive calculators: a comparison between statistical and machine learning models. Cardiovasc Diagn Ther 10(4):919PubMedPubMedCentralCrossRef
25.
go back to reference Jamthikar A, Gupta D, Khanna NN, Saba L, Laird JR, Suri JS (2020) Cardiovascular/stroke risk prevention: a new machine learning framework integrating carotid ultrasound image-based phenotypes and its harmonics with conventional risk factors. Indian Heart J 72(4):258–264PubMedPubMedCentralCrossRef Jamthikar A, Gupta D, Khanna NN, Saba L, Laird JR, Suri JS (2020) Cardiovascular/stroke risk prevention: a new machine learning framework integrating carotid ultrasound image-based phenotypes and its harmonics with conventional risk factors. Indian Heart J 72(4):258–264PubMedPubMedCentralCrossRef
26.
go back to reference Bhagawati M, Paul S, Agarwal S, Protogeron A, Sfikakis PP, Kitas GD, Khanna NN, Ruzsa Z, Sharma AM, Tomazu O (2023) Cardiovascular disease/stroke risk stratification in deep learning framework: a review. Cardiovasc Diagn Ther 13(3):557PubMedPubMedCentralCrossRef Bhagawati M, Paul S, Agarwal S, Protogeron A, Sfikakis PP, Kitas GD, Khanna NN, Ruzsa Z, Sharma AM, Tomazu O (2023) Cardiovascular disease/stroke risk stratification in deep learning framework: a review. Cardiovasc Diagn Ther 13(3):557PubMedPubMedCentralCrossRef
27.
go back to reference Saxena S, Jena B, Mohapatra B, Gupta N, Kalra M, Scartozzi M, Saba L, Suri JS (2023) Fused deep learning paradigm for the prediction of o6-methylguanine-DNA methyltransferase genotype in glioblastoma patients: a neuro-oncological investigation. Comput Biol Med 153:106492PubMedCrossRef Saxena S, Jena B, Mohapatra B, Gupta N, Kalra M, Scartozzi M, Saba L, Suri JS (2023) Fused deep learning paradigm for the prediction of o6-methylguanine-DNA methyltransferase genotype in glioblastoma patients: a neuro-oncological investigation. Comput Biol Med 153:106492PubMedCrossRef
28.
go back to reference Sanagala SS, Nicolaides A, Gupta SK, Koppula VK, Saba L, Agarwal S, Johri AM, Kalra MS, Suri JS (2021) Ten fast transfer learning models for carotid ultrasound plaque tissue characterization in augmentation framework embedded with heatmaps for stroke risk stratification. Diagnostics 11(11):2109PubMedPubMedCentralCrossRef Sanagala SS, Nicolaides A, Gupta SK, Koppula VK, Saba L, Agarwal S, Johri AM, Kalra MS, Suri JS (2021) Ten fast transfer learning models for carotid ultrasound plaque tissue characterization in augmentation framework embedded with heatmaps for stroke risk stratification. Diagnostics 11(11):2109PubMedPubMedCentralCrossRef
29.
go back to reference Saba L, Sanagala SS, Gupta SK, Koppula VK, Johri AM, Sharma AM, Kolluri R, Bhatt DL, Nicolaides A, Suri JS (2021) Ultrasound-based internal carotid artery plaque characterization using deep learning paradigm on a supercomputer: a cardiovascular disease/stroke risk assessment system. Int J Cardiovasc Imaging 37:1511–1528PubMedCrossRef Saba L, Sanagala SS, Gupta SK, Koppula VK, Johri AM, Sharma AM, Kolluri R, Bhatt DL, Nicolaides A, Suri JS (2021) Ultrasound-based internal carotid artery plaque characterization using deep learning paradigm on a supercomputer: a cardiovascular disease/stroke risk assessment system. Int J Cardiovasc Imaging 37:1511–1528PubMedCrossRef
30.
go back to reference Johri AM, Singh KV, Mantella LE, Saba L, Sharma A, Laird JR, Utkarsh K, Singh IM, Gupta S, Kalra MS (2022) Deep learning artificial intelligence framework for multiclass coronary artery disease prediction using combination of conventional risk factors, carotid ultrasound, and intraplaque neovascularization. Comput Biol Med 150:106018PubMedCrossRef Johri AM, Singh KV, Mantella LE, Saba L, Sharma A, Laird JR, Utkarsh K, Singh IM, Gupta S, Kalra MS (2022) Deep learning artificial intelligence framework for multiclass coronary artery disease prediction using combination of conventional risk factors, carotid ultrasound, and intraplaque neovascularization. Comput Biol Med 150:106018PubMedCrossRef
31.
go back to reference Khanna NN, Maindarkar MA, Viswanathan V, Puvvula A, Paul S, Bhagawati M, Ahluwalia P, Ruzsa Z, Sharma A, Kolluri R (2022) Cardiovascular/stroke risk stratification in diabetic foot infection patients using deep learning-based artificial intelligence: an investigative study. J Clin Med 11(22):6844PubMedPubMedCentralCrossRef Khanna NN, Maindarkar MA, Viswanathan V, Puvvula A, Paul S, Bhagawati M, Ahluwalia P, Ruzsa Z, Sharma A, Kolluri R (2022) Cardiovascular/stroke risk stratification in diabetic foot infection patients using deep learning-based artificial intelligence: an investigative study. J Clin Med 11(22):6844PubMedPubMedCentralCrossRef
32.
go back to reference Suri JS, Bhagawati M, Paul S, Protogerou AD, Sfikakis PP, Kitas GD, Khanna NN, Ruzsa Z, Sharma AM, Saxena S (2022) A powerful paradigm for cardiovascular risk stratification using multiclass, multi-label, and ensemble-based machine learning paradigms: a narrative review. Diagnostics 12(3):722PubMedPubMedCentralCrossRef Suri JS, Bhagawati M, Paul S, Protogerou AD, Sfikakis PP, Kitas GD, Khanna NN, Ruzsa Z, Sharma AM, Saxena S (2022) A powerful paradigm for cardiovascular risk stratification using multiclass, multi-label, and ensemble-based machine learning paradigms: a narrative review. Diagnostics 12(3):722PubMedPubMedCentralCrossRef
33.
go back to reference Johri AM, Mantella LE, Jamthikar AD, Saba L, Laird JR, Suri JS (2021) Role of artificial intelligence in cardiovascular risk prediction and outcomes: comparison of machine-learning and conventional statistical approaches for the analysis of carotid ultrasound features and intra-plaque neovascularization. Int J Cardiovasc Imaging 37(11):3145–3156PubMedCrossRef Johri AM, Mantella LE, Jamthikar AD, Saba L, Laird JR, Suri JS (2021) Role of artificial intelligence in cardiovascular risk prediction and outcomes: comparison of machine-learning and conventional statistical approaches for the analysis of carotid ultrasound features and intra-plaque neovascularization. Int J Cardiovasc Imaging 37(11):3145–3156PubMedCrossRef
34.
go back to reference Johri AM, Chitty DW, Matangi M, Malik P, Mousavi P, Day A, Gravett M, Simpson C (2013) Can carotid bulb plaque assessment rule out significant coronary artery disease? A comparison of plaque quantification by two-and three-dimensional ultrasound. J Am Soc Echocardiogr 26(1):86–95PubMedCrossRef Johri AM, Chitty DW, Matangi M, Malik P, Mousavi P, Day A, Gravett M, Simpson C (2013) Can carotid bulb plaque assessment rule out significant coronary artery disease? A comparison of plaque quantification by two-and three-dimensional ultrasound. J Am Soc Echocardiogr 26(1):86–95PubMedCrossRef
35.
go back to reference Jamthikar AD, Gupta D, Mantella LE, Saba L, Laird JR, Johri AM, Suri JS (2021) Multiclass machine learning vs. conventional calculators for stroke/CVD risk assessment using carotid plaque predictors with coronary angiography scores as gold standard: a 500 participants study. Int J Cardiovasc Imaging 37:1171–1187PubMedCrossRef Jamthikar AD, Gupta D, Mantella LE, Saba L, Laird JR, Johri AM, Suri JS (2021) Multiclass machine learning vs. conventional calculators for stroke/CVD risk assessment using carotid plaque predictors with coronary angiography scores as gold standard: a 500 participants study. Int J Cardiovasc Imaging 37:1171–1187PubMedCrossRef
36.
go back to reference Johri AM, Calnan CM, Matangi MF, MacHaalany J, Hétu M-F (2016) Focused vascular ultrasound for the assessment of atherosclerosis: a proof-of-concept study. J Am Soc Echocardiogr 29(9):842–849PubMedCrossRef Johri AM, Calnan CM, Matangi MF, MacHaalany J, Hétu M-F (2016) Focused vascular ultrasound for the assessment of atherosclerosis: a proof-of-concept study. J Am Soc Echocardiogr 29(9):842–849PubMedCrossRef
37.
go back to reference Members TF, Montalescot G, Sechtem U, Achenbach S, Andreotti F, Arden C, Budaj A, Bugiardini R, Crea F, Cuisset T (2013) 2013 ESC guidelines on the management of stable coronary artery disease: the task force on the management of stable coronary artery disease of the European society of cardiology. Eur Heart J 34(38):2949–3003CrossRef Members TF, Montalescot G, Sechtem U, Achenbach S, Andreotti F, Arden C, Budaj A, Bugiardini R, Crea F, Cuisset T (2013) 2013 ESC guidelines on the management of stable coronary artery disease: the task force on the management of stable coronary artery disease of the European society of cardiology. Eur Heart J 34(38):2949–3003CrossRef
38.
go back to reference Braun T, Spiliopoulos S, Veltman C, Hergesell V, Passow A, Tenderich G, Borggrefe M, Koerner MM (2020) Detection of myocardial ischemia due to clinically asymptomatic coronary artery stenosis at rest using supervised artificial intelligence-enabled vectorcardiography—a five-fold cross validation of accuracy. J Electrocardiol 59:100–105PubMedCrossRef Braun T, Spiliopoulos S, Veltman C, Hergesell V, Passow A, Tenderich G, Borggrefe M, Koerner MM (2020) Detection of myocardial ischemia due to clinically asymptomatic coronary artery stenosis at rest using supervised artificial intelligence-enabled vectorcardiography—a five-fold cross validation of accuracy. J Electrocardiol 59:100–105PubMedCrossRef
39.
go back to reference Touboul P-J, Hennerici M, Meairs S, Adams H, Amarenco P, Bornstein N, Csiba L, Desvarieux M, Ebrahim S, Hernandez Hernandez R (2012) Mannheim carotid intima-media thickness and Plaque consensus (2004–2006–2011) an update on behalf of the advisory board of the 3rd, 4th and 5th watching the risk symposia, at the 13th, 15th and 20th European Stroke conferences, Mannheim, Germany, 2004, Brussels, Belgium, 2006, and Hamburg, Germany, 2011. Cerebrovasc Dis 34(4):290–296PubMedCrossRef Touboul P-J, Hennerici M, Meairs S, Adams H, Amarenco P, Bornstein N, Csiba L, Desvarieux M, Ebrahim S, Hernandez Hernandez R (2012) Mannheim carotid intima-media thickness and Plaque consensus (2004–2006–2011) an update on behalf of the advisory board of the 3rd, 4th and 5th watching the risk symposia, at the 13th, 15th and 20th European Stroke conferences, Mannheim, Germany, 2004, Brussels, Belgium, 2006, and Hamburg, Germany, 2011. Cerebrovasc Dis 34(4):290–296PubMedCrossRef
40.
go back to reference Deyama J, Nakamura T, Takishima I, Fujioka D, Kawabata K-I, Obata J-E, Watanabe K, Watanabe Y, Saito Y, Mishina H (2013) Contrast-enhanced ultrasound imaging of carotid plaque neovascularization is useful for identifying high-risk patients with coronary artery disease. Circ J 77(6):1499–1507PubMedCrossRef Deyama J, Nakamura T, Takishima I, Fujioka D, Kawabata K-I, Obata J-E, Watanabe K, Watanabe Y, Saito Y, Mishina H (2013) Contrast-enhanced ultrasound imaging of carotid plaque neovascularization is useful for identifying high-risk patients with coronary artery disease. Circ J 77(6):1499–1507PubMedCrossRef
41.
go back to reference Tandel GS, Tiwari A, Kakde OG, Gupta N, Saba L, Suri JS (2023) Role of ensemble deep learning for brain tumor classification in multiple magnetic resonance imaging sequence data. Diagnostics 13(3):481PubMedPubMedCentralCrossRef Tandel GS, Tiwari A, Kakde OG, Gupta N, Saba L, Suri JS (2023) Role of ensemble deep learning for brain tumor classification in multiple magnetic resonance imaging sequence data. Diagnostics 13(3):481PubMedPubMedCentralCrossRef
42.
go back to reference Suri JS, Agarwal S, Saba L, Chabert GL, Carriero A, Paschè A, Danna P, Mehmedović A, Faa G, Jujaray T (2022) Multicenter study on COVID-19 lung computed tomography segmentation with varying glass ground opacities using unseen deep learning artificial intelligence paradigms: COVLIAS 1.0 validation. J Med Syst 46(10):62PubMedPubMedCentralCrossRef Suri JS, Agarwal S, Saba L, Chabert GL, Carriero A, Paschè A, Danna P, Mehmedović A, Faa G, Jujaray T (2022) Multicenter study on COVID-19 lung computed tomography segmentation with varying glass ground opacities using unseen deep learning artificial intelligence paradigms: COVLIAS 1.0 validation. J Med Syst 46(10):62PubMedPubMedCentralCrossRef
43.
go back to reference Jain PK, Dubey A, Saba L, Khanna NN, Laird JR, Nicolaides A, Fouda MM, Suri JS, Sharma N (2022) Attention-based UNet deep learning model for plaque segmentation in carotid ultrasound for stroke risk stratification: an artificial intelligence paradigm. J Cardiovasc Dev Dis 9(10):326PubMedPubMedCentral Jain PK, Dubey A, Saba L, Khanna NN, Laird JR, Nicolaides A, Fouda MM, Suri JS, Sharma N (2022) Attention-based UNet deep learning model for plaque segmentation in carotid ultrasound for stroke risk stratification: an artificial intelligence paradigm. J Cardiovasc Dev Dis 9(10):326PubMedPubMedCentral
44.
go back to reference Jain PK, Sharma N, Saba L, Paraskevas KI, Kalra MK, Johri A, Laird JR, Nicolaides AN, Suri JS (2021) Unseen artificial intelligence—deep learning paradigm for segmentation of low atherosclerotic plaque in carotid ultrasound: a multicenter cardiovascular study. Diagnostics 11(12):2257PubMedPubMedCentralCrossRef Jain PK, Sharma N, Saba L, Paraskevas KI, Kalra MK, Johri A, Laird JR, Nicolaides AN, Suri JS (2021) Unseen artificial intelligence—deep learning paradigm for segmentation of low atherosclerotic plaque in carotid ultrasound: a multicenter cardiovascular study. Diagnostics 11(12):2257PubMedPubMedCentralCrossRef
45.
go back to reference Dubey AK, Chabert GL, Carriero A, Pasche A, Danna PS, Agarwal S, Mohanty L, Nillmani SN, Yadav S (2023) Ensemble deep learning derived from transfer learning for classification of COVID-19 patients on hybrid deep-learning-based lung segmentation: a data augmentation and balancing framework. Diagnostics 13(11):1954PubMedPubMedCentralCrossRef Dubey AK, Chabert GL, Carriero A, Pasche A, Danna PS, Agarwal S, Mohanty L, Nillmani SN, Yadav S (2023) Ensemble deep learning derived from transfer learning for classification of COVID-19 patients on hybrid deep-learning-based lung segmentation: a data augmentation and balancing framework. Diagnostics 13(11):1954PubMedPubMedCentralCrossRef
46.
go back to reference Suri JS, Agarwal S, Gupta SK, Puvvula A, Viskovic K, Suri N, Alizad A, El-Baz A, Saba L, Fatemi M (2021) Systematic review of artificial intelligence in acute respiratory distress syndrome for COVID-19 lung patients: a biomedical imaging perspective. IEEE J Biomed Health Inform 25(11):4128–4139PubMedCrossRef Suri JS, Agarwal S, Gupta SK, Puvvula A, Viskovic K, Suri N, Alizad A, El-Baz A, Saba L, Fatemi M (2021) Systematic review of artificial intelligence in acute respiratory distress syndrome for COVID-19 lung patients: a biomedical imaging perspective. IEEE J Biomed Health Inform 25(11):4128–4139PubMedCrossRef
47.
go back to reference Wu DH, Chen Z, North JC, Biswas M, Vo J, Suri JS (2020) Machine learning pardigm for dynamic contrast-enhanced MRI evaluation of expanding bladder. Front Biosci-Landmark 25(9):1746–1764CrossRef Wu DH, Chen Z, North JC, Biswas M, Vo J, Suri JS (2020) Machine learning pardigm for dynamic contrast-enhanced MRI evaluation of expanding bladder. Front Biosci-Landmark 25(9):1746–1764CrossRef
48.
go back to reference Wong T-T (2015) Performance evaluation of classification algorithms by k-fold and leave-one-out cross validation. Pattern Recogn 48(9):2839–2846CrossRef Wong T-T (2015) Performance evaluation of classification algorithms by k-fold and leave-one-out cross validation. Pattern Recogn 48(9):2839–2846CrossRef
49.
go back to reference Duval S, Van’t Hof JR, Steffen LM, Luepker RV (2020) Estimation of cardiovascular risk from self-reported knowledge of risk factors: insights from the Minnesota heart survey. Clin Epidemiol 12:41–49PubMedPubMedCentralCrossRef Duval S, Van’t Hof JR, Steffen LM, Luepker RV (2020) Estimation of cardiovascular risk from self-reported knowledge of risk factors: insights from the Minnesota heart survey. Clin Epidemiol 12:41–49PubMedPubMedCentralCrossRef
50.
go back to reference Sammut C, Webb GI (2011) Encyclopedia of machine learning. Springer, Berlin Sammut C, Webb GI (2011) Encyclopedia of machine learning. Springer, Berlin
51.
go back to reference Revathi T, Sathiyabhama B, Sankar S (2021) Diagnosing cardio vascular disease (CVD) using generative adversarial network (GAN) in retinal fundus images. Ann Roman Soc Cell Biol 25:2563–2572 Revathi T, Sathiyabhama B, Sankar S (2021) Diagnosing cardio vascular disease (CVD) using generative adversarial network (GAN) in retinal fundus images. Ann Roman Soc Cell Biol 25:2563–2572
52.
go back to reference O’Donncha F, Hu Y, Palmes P, Burke M, Filgueira R, Grant J (2022) A spatio-temporal LSTM model to forecast across multiple temporal and spatial scales. Eco Inform 69:101687CrossRef O’Donncha F, Hu Y, Palmes P, Burke M, Filgueira R, Grant J (2022) A spatio-temporal LSTM model to forecast across multiple temporal and spatial scales. Eco Inform 69:101687CrossRef
53.
go back to reference Suri JS, Agarwal S, Carriero A, Paschè A, Danna PS, Columbu M, Saba L, Viskovic K, Mehmedović A, Agarwal S (2021) COVLIAS 1.0 vs. MedSeg: artificial intelligence-based comparative study for automated COVID-19 computed tomography lung segmentation in Italian and croatian cohorts. Diagnostics 11(12):2367PubMedPubMedCentralCrossRef Suri JS, Agarwal S, Carriero A, Paschè A, Danna PS, Columbu M, Saba L, Viskovic K, Mehmedović A, Agarwal S (2021) COVLIAS 1.0 vs. MedSeg: artificial intelligence-based comparative study for automated COVID-19 computed tomography lung segmentation in Italian and croatian cohorts. Diagnostics 11(12):2367PubMedPubMedCentralCrossRef
54.
go back to reference Maniruzzaman M, Rahman MJ, Ahammed B, Abedin MM, Suri HS, Biswas M, El-Baz A, Bangeas P, Tsoulfas G, Suri JS (2019) Statistical characterization and classification of colon microarray gene expression data using multiple machine learning paradigms. Comput Methods Progr Biomed 176:173–193CrossRef Maniruzzaman M, Rahman MJ, Ahammed B, Abedin MM, Suri HS, Biswas M, El-Baz A, Bangeas P, Tsoulfas G, Suri JS (2019) Statistical characterization and classification of colon microarray gene expression data using multiple machine learning paradigms. Comput Methods Progr Biomed 176:173–193CrossRef
55.
go back to reference Saba L, Banchhor SK, Londhe ND, Araki T, Laird JR, Gupta A, Nicolaides A, Suri JS (2017) Web-based accurate measurements of carotid lumen diameter and stenosis severity: an ultrasound-based clinical tool for stroke risk assessment during multicenter clinical trials. Comput Biol Med 91:306–317PubMedCrossRef Saba L, Banchhor SK, Londhe ND, Araki T, Laird JR, Gupta A, Nicolaides A, Suri JS (2017) Web-based accurate measurements of carotid lumen diameter and stenosis severity: an ultrasound-based clinical tool for stroke risk assessment during multicenter clinical trials. Comput Biol Med 91:306–317PubMedCrossRef
56.
go back to reference Saba L, Than JC, Noor NM, Rijal OM, Kassim RM, Yunus A, Ng CR, Suri JS (2016) Inter-observer variability analysis of automatic lung delineation in normal and disease patients. J Med Syst 40:1–18CrossRef Saba L, Than JC, Noor NM, Rijal OM, Kassim RM, Yunus A, Ng CR, Suri JS (2016) Inter-observer variability analysis of automatic lung delineation in normal and disease patients. J Med Syst 40:1–18CrossRef
57.
go back to reference Molinari F, Zeng G, Suri JS (2010) Intima-media thickness: setting a standard for a completely automated method of ultrasound measurement. IEEE Trans Ultrasonics Ferroelectr Freq Control 57(5):1112–1124CrossRef Molinari F, Zeng G, Suri JS (2010) Intima-media thickness: setting a standard for a completely automated method of ultrasound measurement. IEEE Trans Ultrasonics Ferroelectr Freq Control 57(5):1112–1124CrossRef
58.
go back to reference Molinari F, Pattichis CS, Zeng G, Saba L, Acharya UR, Sanfilippo R, Nicolaides A, Suri JS (2011) Completely automated multiresolution edge snapper—a new technique for an accurate carotid ultrasound IMT measurement: clinical validation and benchmarking on a multi-institutional database. IEEE Trans Image Process 21(3):1211–1222PubMedCrossRef Molinari F, Pattichis CS, Zeng G, Saba L, Acharya UR, Sanfilippo R, Nicolaides A, Suri JS (2011) Completely automated multiresolution edge snapper—a new technique for an accurate carotid ultrasound IMT measurement: clinical validation and benchmarking on a multi-institutional database. IEEE Trans Image Process 21(3):1211–1222PubMedCrossRef
59.
go back to reference Biswas M, Saba L, Chakrabartty S, Khanna NN, Song H, Suri HS, Sfikakis PP, Mavrogeni S, Viskovic K, Laird JR (2020) Two-stage artificial intelligence model for jointly measurement of atherosclerotic wall thickness and plaque burden in carotid ultrasound: a screening tool for cardiovascular/stroke risk assessment. Comput Biol Med 123:103847PubMedCrossRef Biswas M, Saba L, Chakrabartty S, Khanna NN, Song H, Suri HS, Sfikakis PP, Mavrogeni S, Viskovic K, Laird JR (2020) Two-stage artificial intelligence model for jointly measurement of atherosclerotic wall thickness and plaque burden in carotid ultrasound: a screening tool for cardiovascular/stroke risk assessment. Comput Biol Med 123:103847PubMedCrossRef
60.
go back to reference Cuadrado-Godia E, Maniruzzaman M, Araki T, Puvvula A, Rahman MJ, Saba L, Suri HS, Gupta A, Banchhor SK, Teji JS (2018) Morphologic TPA (mTPA) and composite risk score for moderate carotid atherosclerotic plaque is strongly associated with HbA1c in diabetes cohort. Comput Biol Med 101:128–145PubMedCrossRef Cuadrado-Godia E, Maniruzzaman M, Araki T, Puvvula A, Rahman MJ, Saba L, Suri HS, Gupta A, Banchhor SK, Teji JS (2018) Morphologic TPA (mTPA) and composite risk score for moderate carotid atherosclerotic plaque is strongly associated with HbA1c in diabetes cohort. Comput Biol Med 101:128–145PubMedCrossRef
61.
go back to reference Saba L., Maindarkar M., Khanna N.N., Johri A.M., Mantella L., Laird J.R., Paraskevas K.I., Ruzsa Z., Kalra M.K., and Fernandes J.F.E., A pharmaceutical paradigm for cardiovascular composite risk assessment using novel radiogenomics risk predictors in precision explainable artificial intelligence framework: clinical trial tool. Front Biosci, 2023. 28(10). Saba L., Maindarkar M., Khanna N.N., Johri A.M., Mantella L., Laird J.R., Paraskevas K.I., Ruzsa Z., Kalra M.K., and Fernandes J.F.E., A pharmaceutical paradigm for cardiovascular composite risk assessment using novel radiogenomics risk predictors in precision explainable artificial intelligence framework: clinical trial tool. Front Biosci, 2023. 28(10).
62.
go back to reference Khanna NN, Maindarkar M, Puvvula A, Paul S, Bhagawati M, Ahluwalia P, Ruzsa Z, Sharma A, Munjral S, Kolluri R (2022) Vascular implications of COVID-19: role of radiological imaging, artificial intelligence, and tissue characterization: a special report. J Cardiovasc Dev Dis 9(8):268PubMedPubMedCentral Khanna NN, Maindarkar M, Puvvula A, Paul S, Bhagawati M, Ahluwalia P, Ruzsa Z, Sharma A, Munjral S, Kolluri R (2022) Vascular implications of COVID-19: role of radiological imaging, artificial intelligence, and tissue characterization: a special report. J Cardiovasc Dev Dis 9(8):268PubMedPubMedCentral
63.
go back to reference Saxena S, Jena B, Gupta N, Das S, Sarmah D, Bhattacharya P, Nath T, Paul S, Fouda MM, Kalra M (2022) Role of artificial intelligence in radiogenomics for cancers in the era of precision medicine. Cancers 14(12):2860PubMedPubMedCentralCrossRef Saxena S, Jena B, Gupta N, Das S, Sarmah D, Bhattacharya P, Nath T, Paul S, Fouda MM, Kalra M (2022) Role of artificial intelligence in radiogenomics for cancers in the era of precision medicine. Cancers 14(12):2860PubMedPubMedCentralCrossRef
65.
go back to reference Zhou R, Guo F, Azarpazhooh MR, Hashemi S, Cheng X, Spence JD, Ding M, Fenster A (2021) Deep learning-based measurement of total plaque area in B-mode ultrasound images. IEEE J Biomed Health Inform 25(8):2967–2977PubMedCrossRef Zhou R, Guo F, Azarpazhooh MR, Hashemi S, Cheng X, Spence JD, Ding M, Fenster A (2021) Deep learning-based measurement of total plaque area in B-mode ultrasound images. IEEE J Biomed Health Inform 25(8):2967–2977PubMedCrossRef
66.
go back to reference Jain PK, Sharma N, Giannopoulos AA, Saba L, Nicolaides A, Suri JS (2021) Hybrid deep learning segmentation models for atherosclerotic plaque in internal carotid artery B-mode ultrasound. Comput Biol Med 136:104721PubMedCrossRef Jain PK, Sharma N, Giannopoulos AA, Saba L, Nicolaides A, Suri JS (2021) Hybrid deep learning segmentation models for atherosclerotic plaque in internal carotid artery B-mode ultrasound. Comput Biol Med 136:104721PubMedCrossRef
67.
go back to reference Jain PK, Sharma N, Saba L, Paraskevas KI, Kalra MK, Johri A, Nicolaides AN, Suri JS (2021) Automated deep learning-based paradigm for high-risk plaque detection in B-mode common carotid ultrasound scans: an asymptomatic Japanese cohort study. Int Angiol 41:9–23PubMed Jain PK, Sharma N, Saba L, Paraskevas KI, Kalra MK, Johri A, Nicolaides AN, Suri JS (2021) Automated deep learning-based paradigm for high-risk plaque detection in B-mode common carotid ultrasound scans: an asymptomatic Japanese cohort study. Int Angiol 41:9–23PubMed
68.
go back to reference Rumelhart DE, Hinton GE, Williams RJ (1985) Learning internal representations by error propagation. Institute for Cognitive Science, University of California, San Diego LaCrossRef Rumelhart DE, Hinton GE, Williams RJ (1985) Learning internal representations by error propagation. Institute for Cognitive Science, University of California, San Diego LaCrossRef
69.
go back to reference Durstewitz D (2017) A state space approach for piecewise-linear recurrent neural networks for identifying computational dynamics from neural measurements. PLoS Comput Biol 13(6):e1005542PubMedPubMedCentralCrossRef Durstewitz D (2017) A state space approach for piecewise-linear recurrent neural networks for identifying computational dynamics from neural measurements. PLoS Comput Biol 13(6):e1005542PubMedPubMedCentralCrossRef
70.
go back to reference Bengio Y, Simard P, Frasconi P (1994) Learning long-term dependencies with gradient descent is difficult. IEEE Trans Neural Net 5(2):157–166CrossRef Bengio Y, Simard P, Frasconi P (1994) Learning long-term dependencies with gradient descent is difficult. IEEE Trans Neural Net 5(2):157–166CrossRef
71.
go back to reference Sarra RR, Dinar AM, Mohammed MA, Ghani MKA, Albahar MA (2022) A robust framework for data generative and heart disease prediction based on efficient deep learning models. Diagnostics 12(12):2899PubMedPubMedCentralCrossRef Sarra RR, Dinar AM, Mohammed MA, Ghani MKA, Albahar MA (2022) A robust framework for data generative and heart disease prediction based on efficient deep learning models. Diagnostics 12(12):2899PubMedPubMedCentralCrossRef
72.
go back to reference García-Vicente C, Chushig-Muzo D, Mora-Jiménez I, Fabelo H, Gram IT, Løchen M-L, Granja C, Soguero-Ruiz C (2022) Clinical synthetic data generation to predict and identify risk factors for cardiovascular diseases. VLDB workshop on data management and analytics for medicine and healthcare. Springer, Berlin García-Vicente C, Chushig-Muzo D, Mora-Jiménez I, Fabelo H, Gram IT, Løchen M-L, Granja C, Soguero-Ruiz C (2022) Clinical synthetic data generation to predict and identify risk factors for cardiovascular diseases. VLDB workshop on data management and analytics for medicine and healthcare. Springer, Berlin
73.
go back to reference Dogan A, Li Y, Odo CP, Sonawane K, Lin Y, Liu C (2023) A utility-based machine learning-driven personalized lifestyle recommendation for cardiovascular disease prevention. J Biomed Inform 141:104342PubMedCrossRef Dogan A, Li Y, Odo CP, Sonawane K, Lin Y, Liu C (2023) A utility-based machine learning-driven personalized lifestyle recommendation for cardiovascular disease prevention. J Biomed Inform 141:104342PubMedCrossRef
74.
go back to reference Ossenberg-Engels J, Grau V (2019) Conditional generative adversarial networks for the prediction of cardiac contraction from individual frames. International workshop on statistical atlases and computational models of the heart. Springer, Berlin Ossenberg-Engels J, Grau V (2019) Conditional generative adversarial networks for the prediction of cardiac contraction from individual frames. International workshop on statistical atlases and computational models of the heart. Springer, Berlin
75.
go back to reference Shokrollahi Y, Dong P, Zhou C, Li X, Gu L (2023) Deep Learning-based prediction of stress and strain maps in arterial walls for improved cardiovascular risk assessment. Appl Sci 14(1):379CrossRef Shokrollahi Y, Dong P, Zhou C, Li X, Gu L (2023) Deep Learning-based prediction of stress and strain maps in arterial walls for improved cardiovascular risk assessment. Appl Sci 14(1):379CrossRef
76.
go back to reference Agarwal M, Agarwal S, Saba L, Chabert GL, Gupta S, Carriero A, Pasche A, Danna P, Mehmedovic A, Faa G (2022) Eight pruning deep learning models for low storage and high-speed COVID-19 computed tomography lung segmentation and heatmap-based lesion localization: a multicenter study using COVLIAS 2.0. Comput Biol Med 146:105571PubMedPubMedCentralCrossRef Agarwal M, Agarwal S, Saba L, Chabert GL, Gupta S, Carriero A, Pasche A, Danna P, Mehmedovic A, Faa G (2022) Eight pruning deep learning models for low storage and high-speed COVID-19 computed tomography lung segmentation and heatmap-based lesion localization: a multicenter study using COVLIAS 2.0. Comput Biol Med 146:105571PubMedPubMedCentralCrossRef
77.
go back to reference Suri JS, Bhagawati M, Paul S, Protogeron A, Sfikakis PP, Kitas GD, Khanna NN, Ruzsa Z, Sharma AM, Saxena S (2022) Understanding the bias in machine learning systems for cardiovascular disease risk assessment: the first of its kind review. Comput Biol Med 142:105204PubMedCrossRef Suri JS, Bhagawati M, Paul S, Protogeron A, Sfikakis PP, Kitas GD, Khanna NN, Ruzsa Z, Sharma AM, Saxena S (2022) Understanding the bias in machine learning systems for cardiovascular disease risk assessment: the first of its kind review. Comput Biol Med 142:105204PubMedCrossRef
78.
go back to reference Narayanan R, Werahera P, Barqawi A, Crawford E, Shinohara K, Simoneau A, Suri J (2008) Adaptation of a 3D prostate cancer atlas for transrectal ultrasound guided target-specific biopsy. Phys Med Biol 53(20):N397PubMedCrossRef Narayanan R, Werahera P, Barqawi A, Crawford E, Shinohara K, Simoneau A, Suri J (2008) Adaptation of a 3D prostate cancer atlas for transrectal ultrasound guided target-specific biopsy. Phys Med Biol 53(20):N397PubMedCrossRef
79.
go back to reference Suri JS, Agarwal S, Chabert GL, Carriero A, Paschè A, Danna PS, Saba L, Mehmedović A, Faa G, Singh IM (2022) COVLIAS 2.0-cXAI: cloud-based explainable deep learning system for COVID-19 lesion localization in computed tomography scans. Diagnostics 12(6):1482PubMedPubMedCentralCrossRef Suri JS, Agarwal S, Chabert GL, Carriero A, Paschè A, Danna PS, Saba L, Mehmedović A, Faa G, Singh IM (2022) COVLIAS 2.0-cXAI: cloud-based explainable deep learning system for COVID-19 lesion localization in computed tomography scans. Diagnostics 12(6):1482PubMedPubMedCentralCrossRef
80.
go back to reference Skandha SS, Nicolaides A, Gupta SK, Koppula VK, Saba L, Johri AM, Kalra MS, Suri JS (2022) A hybrid deep learning paradigm for carotid plaque tissue characterization and its validation in multicenter cohorts using a supercomputer framework. Comput Biol Med 141:105131PubMedCrossRef Skandha SS, Nicolaides A, Gupta SK, Koppula VK, Saba L, Johri AM, Kalra MS, Suri JS (2022) A hybrid deep learning paradigm for carotid plaque tissue characterization and its validation in multicenter cohorts using a supercomputer framework. Comput Biol Med 141:105131PubMedCrossRef
81.
go back to reference Saba L, Sanagala SS, Gupta SK, Koppula VK, Johri AM, Khanna NN, Mavrogeni S, Laird JR, Pareek G, Miner M (2021) Multimodality carotid plaque tissue characterization and classification in the artificial intelligence paradigm: a narrative review for stroke application. Ann Trans Med. https://doi.org/10.21037/atm-20-7676CrossRef Saba L, Sanagala SS, Gupta SK, Koppula VK, Johri AM, Khanna NN, Mavrogeni S, Laird JR, Pareek G, Miner M (2021) Multimodality carotid plaque tissue characterization and classification in the artificial intelligence paradigm: a narrative review for stroke application. Ann Trans Med. https://​doi.​org/​10.​21037/​atm-20-7676CrossRef
82.
go back to reference El-Baz A, Suri JS (2019) Big data in multimodal medical imaging. CRC Press, Boca RatonCrossRef El-Baz A, Suri JS (2019) Big data in multimodal medical imaging. CRC Press, Boca RatonCrossRef
83.
go back to reference Jena B, Saxena S, Nayak GK, Saba L, Sharma N, Suri JS (2021) Artificial intelligence-based hybrid deep learning models for image classification: the first narrative review. Comput Biol Med 137:104803PubMedCrossRef Jena B, Saxena S, Nayak GK, Saba L, Sharma N, Suri JS (2021) Artificial intelligence-based hybrid deep learning models for image classification: the first narrative review. Comput Biol Med 137:104803PubMedCrossRef
84.
go back to reference Dey R. and Salem F.M. Gate-variants of gated recurrent unit (GRU) neural networks. in 2017 IEEE 60th international midwest symposium on circuits and systems (MWSCAS). 2017. IEEE. Dey R. and Salem F.M. Gate-variants of gated recurrent unit (GRU) neural networks. in 2017 IEEE 60th international midwest symposium on circuits and systems (MWSCAS). 2017. IEEE.
85.
go back to reference Creswell A, White T, Dumoulin V, Arulkumaran K, Sengupta B, Bharath AA (2018) Generative adversarial networks: an overview. IEEE Signal Process Mag 35(1):53–65CrossRef Creswell A, White T, Dumoulin V, Arulkumaran K, Sengupta B, Bharath AA (2018) Generative adversarial networks: an overview. IEEE Signal Process Mag 35(1):53–65CrossRef
86.
go back to reference Singh J, Singh N, Fouda MM, Saba L, Suri JS (2023) Attention-enabled ensemble deep learning models and their validation for depression detection: a domain adoption paradigm. Diagnostics 13(12):2092PubMedPubMedCentralCrossRef Singh J, Singh N, Fouda MM, Saba L, Suri JS (2023) Attention-enabled ensemble deep learning models and their validation for depression detection: a domain adoption paradigm. Diagnostics 13(12):2092PubMedPubMedCentralCrossRef
87.
go back to reference Olhosseiny H.H., Mirzaloo M., Bolic M., Dajani H.R., Groza V., and Yoshida M. Identifying high risk of atherosclerosis using deep learning and ensemble learning. in 2021 IEEE International Symposium on Medical Measurements and Applications (MeMeA). 2021. IEEE. Olhosseiny H.H., Mirzaloo M., Bolic M., Dajani H.R., Groza V., and Yoshida M. Identifying high risk of atherosclerosis using deep learning and ensemble learning. in 2021 IEEE International Symposium on Medical Measurements and Applications (MeMeA). 2021. IEEE.
88.
go back to reference Suri JS, Bhagawati M, Agarwal S, Paul S, Pandey A, Gupta SK, Saba L, Paraskevas KI, Khanna NN, Laird JR (2022) UNet deep learning architecture for segmentation of vascular and non-vascular images: a microscopic look at UNet components buffered with pruning, explainable artificial intelligence, and bias. IEEE Access 11:595–645CrossRef Suri JS, Bhagawati M, Agarwal S, Paul S, Pandey A, Gupta SK, Saba L, Paraskevas KI, Khanna NN, Laird JR (2022) UNet deep learning architecture for segmentation of vascular and non-vascular images: a microscopic look at UNet components buffered with pruning, explainable artificial intelligence, and bias. IEEE Access 11:595–645CrossRef
89.
go back to reference Donahue J., Krähenbühl P., and Darrell T., Adversarial feature learning. arXiv preprint arXiv:.09782, 2016. Donahue J., Krähenbühl P., and Darrell T., Adversarial feature learning. arXiv preprint arXiv:.09782, 2016.
90.
go back to reference DeLong ER, DeLong DM, Clarke-Pearson DL (1988) Comparing the areas under two or more correlated receiver operating characteristic curves: a nonparametric approach. Biometrics 44:837–845PubMedCrossRef DeLong ER, DeLong DM, Clarke-Pearson DL (1988) Comparing the areas under two or more correlated receiver operating characteristic curves: a nonparametric approach. Biometrics 44:837–845PubMedCrossRef
91.
go back to reference Sun X, Xu W (2014) Fast implementation of DeLong’s algorithm for comparing the areas under correlated receiver operating characteristic curves. IEEE Signal Process Lett 21(11):1389–1393CrossRef Sun X, Xu W (2014) Fast implementation of DeLong’s algorithm for comparing the areas under correlated receiver operating characteristic curves. IEEE Signal Process Lett 21(11):1389–1393CrossRef
Metadata
Title
Deep learning approach for cardiovascular disease risk stratification and survival analysis on a Canadian cohort
Authors
Mrinalini Bhagawati
Sudip Paul
Laura Mantella
Amer M. Johri
John R. Laird
Inder M. Singh
Rajesh Singh
Deepak Garg
Mostafa M. Fouda
Narendra N. Khanna
Riccardo Cau
Ajith Abraham
Mostafa Al-Maini
Esma R. Isenovic
Aditya M. Sharma
Jose Fernandes E. Fernandes
Seemant Chaturvedi
Mannudeep K. Karla
Andrew Nicolaides
Luca Saba
Jasjit S. Suri
Publication date
28-04-2024
Publisher
Springer Netherlands
Published in
The International Journal of Cardiovascular Imaging
Print ISSN: 1569-5794
Electronic ISSN: 1875-8312
DOI
https://doi.org/10.1007/s10554-024-03100-3