Skip to main content
Top
Published in: Molecular Cancer 1/2014

Open Access 01-12-2014 | Research

Darpp-32 and t-Darpp are differentially expressed in normal and malignant mouse mammary tissue

Authors: Jessica L Christenson, Susan E Kane

Published in: Molecular Cancer | Issue 1/2014

Login to get access

Abstract

Background

Darpp-32 and t-Darpp are expressed in several forms of breast cancer. Both are transcribed from the gene PPP1R1B via alternative promoters. In humans, Darpp-32 is expressed in both normal and malignant breast tissue, whereas t-Darpp has only been found in malignant breast tissue. The exact biological functions of these proteins in the breast are not known. Although Darpp-32 is a well known regulator of neurotransmission, its role in other tissues and in cancer is less well understood. t-Darpp is known to increase cellular growth, inhibit apoptosis and contribute to acquired drug resistance. The use of transgenic mouse mammary tumor models to study Darpp-32 and t-Darpp in breast cancer in vivo has been limited by a lack of knowledge regarding t-Darpp expression in mice, in both normal and malignant tissue.

Methods

We used RT-PCR and Western analysis to investigate Darpp-32 and t-Darpp levels in normal and malignant mouse mammary tissue. To determine if Darpp-32 and t-Darpp play a direct role in mammary tumor development, Ppp1r1b gene knockout mice and wild-type mice were crossed with a mouse mammary tumor model. Tumor growth and metastasis were examined. Differences between groups were determined by the two-tailed Student’s t-test.

Results

We found that Darpp-32 was expressed in normal mouse mammary tissue and in some breast tumors, whereas t-Darpp was found exclusively in tumors, with t-Darpp usually expressed at equal or higher levels than Darpp-32. Ppp1r1b knockout in MMTV-PyMT transgenic tumor mice resulted in a decrease in tumor growth.

Conclusions

The shift in expression from Darpp-32 to t-Darpp during mouse mammary tumorigenesis is reminiscent of the expression patterns observed in humans and is consistent with a role for t-Darpp in promoting cell growth and Darpp-32 in inhibiting cell growth. Decreased tumor growth in Ppp1r1b knockout mice also suggests that t-Darpp plays a direct role, predominant to Darpp-32, in mammary tumor development. These results indicate that transgenic mouse mammary tumor models might be valuable tools for future investigation of Darpp-32 and t-Darpp in breast cancer.
Appendix
Available only for authorised users
Literature
1.
go back to reference Svenningsson P, Nishi A, Fisone G, Girault JA, Nairn AC, Greengard P: DARPP-32: an integrator of neurotransmission. Annu Rev Pharmacol Toxicol. 2004, 44: 269-296. 10.1146/annurev.pharmtox.44.101802.121415CrossRefPubMed Svenningsson P, Nishi A, Fisone G, Girault JA, Nairn AC, Greengard P: DARPP-32: an integrator of neurotransmission. Annu Rev Pharmacol Toxicol. 2004, 44: 269-296. 10.1146/annurev.pharmtox.44.101802.121415CrossRefPubMed
2.
go back to reference El-Rifai W, Smith MF, Li G, Beckler A, Carl VS, Montgomery E, Knuutila S, Moskaluk CA, Frierson HF, Powell SM: Gastric cancers overexpress DARPP-32 and a novel isoform, t-DARPP. Cancer Res. 2002, 62 (14): 4061-4064.PubMed El-Rifai W, Smith MF, Li G, Beckler A, Carl VS, Montgomery E, Knuutila S, Moskaluk CA, Frierson HF, Powell SM: Gastric cancers overexpress DARPP-32 and a novel isoform, t-DARPP. Cancer Res. 2002, 62 (14): 4061-4064.PubMed
3.
go back to reference Beckler A, Moskaluk CA, Zaika A, Hampton GM, Powell SM, Frierson HF, El-Rifai W: Overexpression of the 32-kilodalton dopamine and cyclic adenosine 3′, 5′-monophosphate-regulated phosphoprotein in common adenocarcinomas. Cancer. 2003, 98 (7): 1547-1551. 10.1002/cncr.11654CrossRefPubMed Beckler A, Moskaluk CA, Zaika A, Hampton GM, Powell SM, Frierson HF, El-Rifai W: Overexpression of the 32-kilodalton dopamine and cyclic adenosine 3′, 5′-monophosphate-regulated phosphoprotein in common adenocarcinomas. Cancer. 2003, 98 (7): 1547-1551. 10.1002/cncr.11654CrossRefPubMed
4.
go back to reference Ebihara Y, Miyamoto M, Fukunaga A, Kato K, Shichinohe T, Kawarada Y, Kurokawa T, Cho Y, Murakami S, Uehara H, Kaneko H, Hashimoto H, Murakami Y, Itoh T, Okushiba S, Kondo S, Katoh H: DARPP-32 expression arises after a phase of dysplasia in oesophageal squamous cell carcinoma. Br J Cancer. 2004, 91 (1): 119-123. 10.1038/sj.bjc.6601899PubMedCentralCrossRefPubMed Ebihara Y, Miyamoto M, Fukunaga A, Kato K, Shichinohe T, Kawarada Y, Kurokawa T, Cho Y, Murakami S, Uehara H, Kaneko H, Hashimoto H, Murakami Y, Itoh T, Okushiba S, Kondo S, Katoh H: DARPP-32 expression arises after a phase of dysplasia in oesophageal squamous cell carcinoma. Br J Cancer. 2004, 91 (1): 119-123. 10.1038/sj.bjc.6601899PubMedCentralCrossRefPubMed
5.
go back to reference Hansen C, Greengard P, Nairn AC, Andersson T, Vogel WF: Phosphorylation of DARPP-32 regulates breast cancer cell migration downstream of the receptor tyrosine kinase DDR1. Exp Cell Res. 2006, 312 (20): 4011-4018. 10.1016/j.yexcr.2006.09.003CrossRefPubMed Hansen C, Greengard P, Nairn AC, Andersson T, Vogel WF: Phosphorylation of DARPP-32 regulates breast cancer cell migration downstream of the receptor tyrosine kinase DDR1. Exp Cell Res. 2006, 312 (20): 4011-4018. 10.1016/j.yexcr.2006.09.003CrossRefPubMed
6.
go back to reference Hansen C, Howlin J, Tengholm A, Dyachok O, Vogel WF, Nairn AC, Greengard P, Andersson T: Wnt-5a-induced phosphorylation of DARPP-32 inhibits breast cancer cell migration in a CREB-dependent manner. J Biol Chem. 2009, 284 (40): 27533-27543. 10.1074/jbc.M109.048884PubMedCentralCrossRefPubMed Hansen C, Howlin J, Tengholm A, Dyachok O, Vogel WF, Nairn AC, Greengard P, Andersson T: Wnt-5a-induced phosphorylation of DARPP-32 inhibits breast cancer cell migration in a CREB-dependent manner. J Biol Chem. 2009, 284 (40): 27533-27543. 10.1074/jbc.M109.048884PubMedCentralCrossRefPubMed
7.
go back to reference Pimenta FJ, Horta MC, Vidigal PV, De Souza BR, De Marco L, Romano-Silva MA, Gomez RS: Decreased expression of DARPP-32 in oral premalignant and malignant lesions. Anticancer Res. 2007, 27 (4B): 2339-2343.PubMed Pimenta FJ, Horta MC, Vidigal PV, De Souza BR, De Marco L, Romano-Silva MA, Gomez RS: Decreased expression of DARPP-32 in oral premalignant and malignant lesions. Anticancer Res. 2007, 27 (4B): 2339-2343.PubMed
8.
go back to reference Televantou D, Karkavelas G, Hytiroglou P, Lampaki S, Iliadis G, Selviaridis P, Polyzoidis KS, Fountzilas G, Kotoula V: DARPP32, STAT5 and STAT3 mRNA expression ratios in glioblastomas are associated with patient outcome. Pathol Oncol Res. 2013, 19 (2): 329-343. 10.1007/s12253-012-9588-7PubMedCentralCrossRefPubMed Televantou D, Karkavelas G, Hytiroglou P, Lampaki S, Iliadis G, Selviaridis P, Polyzoidis KS, Fountzilas G, Kotoula V: DARPP32, STAT5 and STAT3 mRNA expression ratios in glioblastomas are associated with patient outcome. Pathol Oncol Res. 2013, 19 (2): 329-343. 10.1007/s12253-012-9588-7PubMedCentralCrossRefPubMed
9.
go back to reference Belkhiri A, Zaika A, Pidkovka N, Knuutila S, Moskaluk C, El-Rifai W: Darpp-32: a novel antiapoptotic gene in upper gastrointestinal carcinomas. Cancer Res. 2005, 65 (15): 6583-6592. 10.1158/0008-5472.CAN-05-1433CrossRefPubMed Belkhiri A, Zaika A, Pidkovka N, Knuutila S, Moskaluk C, El-Rifai W: Darpp-32: a novel antiapoptotic gene in upper gastrointestinal carcinomas. Cancer Res. 2005, 65 (15): 6583-6592. 10.1158/0008-5472.CAN-05-1433CrossRefPubMed
11.
go back to reference Vangamudi B, Peng DF, Cai Q, El-Rifai W, Zheng W, Belkhiri A: t-DARPP regulates phosphatidylinositol-3-kinase-dependent cell growth in breast cancer. Mol Cancer. 2010, 9: 240- 10.1186/1476-4598-9-240PubMedCentralCrossRefPubMed Vangamudi B, Peng DF, Cai Q, El-Rifai W, Zheng W, Belkhiri A: t-DARPP regulates phosphatidylinositol-3-kinase-dependent cell growth in breast cancer. Mol Cancer. 2010, 9: 240- 10.1186/1476-4598-9-240PubMedCentralCrossRefPubMed
12.
go back to reference Vangamudi B, Zhu S, Soutto M, Belkhiri A, El-Rifai W: Regulation of beta-catenin by t-DARPP in upper gastrointestinal cancer cells. Mol Cancer. 2011, 10: 32- 10.1186/1476-4598-10-32PubMedCentralCrossRefPubMed Vangamudi B, Zhu S, Soutto M, Belkhiri A, El-Rifai W: Regulation of beta-catenin by t-DARPP in upper gastrointestinal cancer cells. Mol Cancer. 2011, 10: 32- 10.1186/1476-4598-10-32PubMedCentralCrossRefPubMed
13.
go back to reference Belkhiri A, Dar AA, Zaika A, Kelley M, El-Rifai W: t-Darpp promotes cancer cell survival by up-regulation of Bcl2 through Akt-dependent mechanism. Cancer Res. 2008, 68 (2): 395-403. 10.1158/0008-5472.CAN-07-1580CrossRefPubMed Belkhiri A, Dar AA, Zaika A, Kelley M, El-Rifai W: t-Darpp promotes cancer cell survival by up-regulation of Bcl2 through Akt-dependent mechanism. Cancer Res. 2008, 68 (2): 395-403. 10.1158/0008-5472.CAN-07-1580CrossRefPubMed
14.
go back to reference Belkhiri A, Dar AA, Peng DF, Razvi MH, Rinehart C, Arteaga CL, El-Rifai W: Expression of t-DARPP mediates trastuzumab resistance in breast cancer cells. Clin Cancer Res. 2008, 14 (14): 4564-4571. 10.1158/1078-0432.CCR-08-0121PubMedCentralCrossRefPubMed Belkhiri A, Dar AA, Peng DF, Razvi MH, Rinehart C, Arteaga CL, El-Rifai W: Expression of t-DARPP mediates trastuzumab resistance in breast cancer cells. Clin Cancer Res. 2008, 14 (14): 4564-4571. 10.1158/1078-0432.CCR-08-0121PubMedCentralCrossRefPubMed
15.
go back to reference Gu L, Waliany S, Kane SE: Darpp-32 and its truncated variant t-Darpp have antagonistic effects on breast cancer cell growth and herceptin resistance. PLoS One. 2009, 4 (7): e6220- 10.1371/journal.pone.0006220PubMedCentralCrossRefPubMed Gu L, Waliany S, Kane SE: Darpp-32 and its truncated variant t-Darpp have antagonistic effects on breast cancer cell growth and herceptin resistance. PLoS One. 2009, 4 (7): e6220- 10.1371/journal.pone.0006220PubMedCentralCrossRefPubMed
16.
go back to reference Hamel S, Bouchard A, Ferrario C, Hassan S, Aguilar-Mahecha A, Buchanan M, Quenneville L, Miller W, Basik M: Both t-Darpp and DARPP-32 can cause resistance to trastuzumab in breast cancer cells and are frequently expressed in primary breast cancers. Breast Cancer Res Treat. 2010, 120 (1): 47-57. 10.1007/s10549-009-0364-7CrossRefPubMed Hamel S, Bouchard A, Ferrario C, Hassan S, Aguilar-Mahecha A, Buchanan M, Quenneville L, Miller W, Basik M: Both t-Darpp and DARPP-32 can cause resistance to trastuzumab in breast cancer cells and are frequently expressed in primary breast cancers. Breast Cancer Res Treat. 2010, 120 (1): 47-57. 10.1007/s10549-009-0364-7CrossRefPubMed
17.
go back to reference Hong J, Katsha A, Lu P, Shyr Y, Belkhiri A, El-Rifai W: Regulation of ERBB2 receptor by t-DARPP mediates trastuzumab resistance in human esophageal adenocarcinoma. Cancer Res. 2012, 72 (17): 4504-4514. 10.1158/0008-5472.CAN-12-1119PubMedCentralCrossRefPubMed Hong J, Katsha A, Lu P, Shyr Y, Belkhiri A, El-Rifai W: Regulation of ERBB2 receptor by t-DARPP mediates trastuzumab resistance in human esophageal adenocarcinoma. Cancer Res. 2012, 72 (17): 4504-4514. 10.1158/0008-5472.CAN-12-1119PubMedCentralCrossRefPubMed
18.
go back to reference Hutchinson JN, Muller WJ: Transgenic mouse models of human breast cancer. Oncogene. 2000, 19 (53): 6130-6137. 10.1038/sj.onc.1203970CrossRefPubMed Hutchinson JN, Muller WJ: Transgenic mouse models of human breast cancer. Oncogene. 2000, 19 (53): 6130-6137. 10.1038/sj.onc.1203970CrossRefPubMed
19.
go back to reference Alvaro-Bartolome M, La Harpe R, Callado LF, Meana JJ, Garcia-Sevilla JA: Molecular adaptations of apoptotic pathways and signaling partners in the cerebral cortex of human cocaine addicts and cocaine-treated rats. Neuroscience. 2011, 196: 1-15.CrossRefPubMed Alvaro-Bartolome M, La Harpe R, Callado LF, Meana JJ, Garcia-Sevilla JA: Molecular adaptations of apoptotic pathways and signaling partners in the cerebral cortex of human cocaine addicts and cocaine-treated rats. Neuroscience. 2011, 196: 1-15.CrossRefPubMed
20.
go back to reference Fienberg AA, Greengard P: The DARPP-32 knockout mouse. Brain Res Brain Res Rev. 2000, 31 (2–3): 313-319.CrossRefPubMed Fienberg AA, Greengard P: The DARPP-32 knockout mouse. Brain Res Brain Res Rev. 2000, 31 (2–3): 313-319.CrossRefPubMed
21.
go back to reference Guy CT, Cardiff RD, Muller WJ: Induction of mammary tumors by expression of polyomavirus middle T oncogene: a transgenic mouse model for metastatic disease. Mol Cell Biol. 1992, 12 (3): 954-961.PubMedCentralCrossRefPubMed Guy CT, Cardiff RD, Muller WJ: Induction of mammary tumors by expression of polyomavirus middle T oncogene: a transgenic mouse model for metastatic disease. Mol Cell Biol. 1992, 12 (3): 954-961.PubMedCentralCrossRefPubMed
22.
go back to reference Klein CA: Cancer. The metastasis cascade. Science. 2008, 321 (5897): 1785-1787. 10.1126/science.1164853CrossRefPubMed Klein CA: Cancer. The metastasis cascade. Science. 2008, 321 (5897): 1785-1787. 10.1126/science.1164853CrossRefPubMed
23.
go back to reference Guy CT, Webster MA, Schaller M, Parsons TJ, Cardiff RD, Muller WJ: Expression of the neu protooncogene in the mammary epithelium of transgenic mice induces metastatic disease. Proc Natl Acad Sci U S A. 1992, 89 (22): 10578-10582. 10.1073/pnas.89.22.10578PubMedCentralCrossRefPubMed Guy CT, Webster MA, Schaller M, Parsons TJ, Cardiff RD, Muller WJ: Expression of the neu protooncogene in the mammary epithelium of transgenic mice induces metastatic disease. Proc Natl Acad Sci U S A. 1992, 89 (22): 10578-10582. 10.1073/pnas.89.22.10578PubMedCentralCrossRefPubMed
24.
go back to reference Muller WJ, Arteaga CL, Muthuswamy SK, Siegel PM, Webster MA, Cardiff RD, Meise KS, Li F, Halter SA, Coffey RJ: Synergistic interaction of the Neu proto-oncogene product and transforming growth factor alpha in the mammary epithelium of transgenic mice. Mol Cell Biol. 1996, 16 (10): 5726-5736.PubMedCentralCrossRefPubMed Muller WJ, Arteaga CL, Muthuswamy SK, Siegel PM, Webster MA, Cardiff RD, Meise KS, Li F, Halter SA, Coffey RJ: Synergistic interaction of the Neu proto-oncogene product and transforming growth factor alpha in the mammary epithelium of transgenic mice. Mol Cell Biol. 1996, 16 (10): 5726-5736.PubMedCentralCrossRefPubMed
25.
go back to reference Fluck MM, Schaffhausen BS: Lessons in signaling and tumorigenesis from polyomavirus middle T antigen. Microbiol Mol Biol Rev. 2009, 73 (3): 542-563. Table of Contents, 10.1128/MMBR.00009-09PubMedCentralCrossRefPubMed Fluck MM, Schaffhausen BS: Lessons in signaling and tumorigenesis from polyomavirus middle T antigen. Microbiol Mol Biol Rev. 2009, 73 (3): 542-563. Table of Contents, 10.1128/MMBR.00009-09PubMedCentralCrossRefPubMed
26.
go back to reference Tomayko MM, Reynolds CP: Determination of subcutaneous tumor size in athymic (nude) mice. Cancer Chemother Pharmacol. 1989, 24 (3): 148-154. 10.1007/BF00300234CrossRefPubMed Tomayko MM, Reynolds CP: Determination of subcutaneous tumor size in athymic (nude) mice. Cancer Chemother Pharmacol. 1989, 24 (3): 148-154. 10.1007/BF00300234CrossRefPubMed
27.
go back to reference Jensen MM, Jorgensen JT, Binderup T, Kjaer A: Tumor volume in subcutaneous mouse xenografts measured by microCT is more accurate and reproducible than determined by 18F-FDG-microPET or external caliper. BMC Med Imaging. 2008, 8: 16- 10.1186/1471-2342-8-16PubMedCentralCrossRefPubMed Jensen MM, Jorgensen JT, Binderup T, Kjaer A: Tumor volume in subcutaneous mouse xenografts measured by microCT is more accurate and reproducible than determined by 18F-FDG-microPET or external caliper. BMC Med Imaging. 2008, 8: 16- 10.1186/1471-2342-8-16PubMedCentralCrossRefPubMed
28.
go back to reference Gil M, Seshadri M, Komorowski MP, Abrams SI, Kozbor D: Targeting CXCL12/CXCR4 signaling with oncolytic virotherapy disrupts tumor vasculature and inhibits breast cancer metastases. Proc Natl Acad Sci U S A. 2013, 110 (14): E1291-E1300. 10.1073/pnas.1220580110PubMedCentralCrossRefPubMed Gil M, Seshadri M, Komorowski MP, Abrams SI, Kozbor D: Targeting CXCL12/CXCR4 signaling with oncolytic virotherapy disrupts tumor vasculature and inhibits breast cancer metastases. Proc Natl Acad Sci U S A. 2013, 110 (14): E1291-E1300. 10.1073/pnas.1220580110PubMedCentralCrossRefPubMed
29.
go back to reference Weidner N: Current pathologic methods for measuring intratumoral microvessel density within breast carcinoma and other solid tumors. Breast Cancer Res Treat. 1995, 36 (2): 169-180. 10.1007/BF00666038CrossRefPubMed Weidner N: Current pathologic methods for measuring intratumoral microvessel density within breast carcinoma and other solid tumors. Breast Cancer Res Treat. 1995, 36 (2): 169-180. 10.1007/BF00666038CrossRefPubMed
Metadata
Title
Darpp-32 and t-Darpp are differentially expressed in normal and malignant mouse mammary tissue
Authors
Jessica L Christenson
Susan E Kane
Publication date
01-12-2014
Publisher
BioMed Central
Published in
Molecular Cancer / Issue 1/2014
Electronic ISSN: 1476-4598
DOI
https://doi.org/10.1186/1476-4598-13-192

Other articles of this Issue 1/2014

Molecular Cancer 1/2014 Go to the issue
Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine