Skip to main content
Top
Published in: Molecular Cancer 1/2014

Open Access 01-12-2014 | Research

Autophagic flux determines cell death and survival in response to Apo2L/TRAIL (dulanermin)

Authors: Kamini Singh, Arishya Sharma, Maria C Mir, Judith A Drazba, Warren D Heston, Cristina Magi-Galluzzi, Donna Hansel, Brian P Rubin, Eric A Klein, Alexandru Almasan

Published in: Molecular Cancer | Issue 1/2014

Login to get access

Abstract

Background

Macroautophagy is a catabolic process that can mediate cell death or survival. Apo2 ligand (Apo2L)/tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) treatment (TR) is known to induce autophagy. Here we investigated whether SQSTM1/p62 (p62) overexpression, as a marker of autophagic flux, was related to aggressiveness of human prostate cancer (PCa) and whether autophagy regulated the treatment response in sensitive but not resistant PCa cell lines.

Methods

Immunostaining and immunoblotting analyses of the autophagic markers p62 [in PCa tissue microarrays (TMAs) and PCa cell lines] and LC3 (in PCa cell lines), transmission electron microscopy, and GFP-mCherry-LC3 were used to study autophagy induction and flux. The effect of autophagy inhibition using pharmacologic (3-methyladenine and chloroquine) and genetic [(short hairpin (sh)-mediated knock-down of ATG7 and LAMP2) and small interfering (si)RNA-mediated BECN1 knock-down] approaches on TR-induced cell death was assessed by clonogenic survival, sub-G1 DNA content, and annexinV/PI staining by flow cytometry. Caspase-8 activation was determined by immunoblotting.

Results

We found that increased cytoplasmic expression of p62 was associated with high-grade PCa, indicating that autophagy signaling might be important for survival in high-grade tumors. TR-resistant cells exhibited high autophagic flux, with more efficient clearance of p62-aggregates in four TR-resistant PCa cell lines: C4-2, LNCaP, DU145, and CWRv22.1. In contrast, autophagic flux was low in TR-sensitive PC3 cells, leading to accumulation of p62-aggregates. Pharmacologic (chloroquine or 3-methyladenine) and genetic (shATG7 or shLAMP2) inhibition of autophagy led to cell death in TR-resistant C4-2 cells. shATG7-expressing PC3 cells, were less sensitive to TR-induced cell death whereas those shLAMP2-expressing were as sensitive as shControl-expressing PC3 cells. Inhibition of autophagic flux using chloroquine prevented clearance of p62 aggregates, leading to caspase-8 activation and cell death in C4-2 cells. In PC3 cells, inhibition of autophagy induction prevented p62 accumulation and hence caspase-8 activation.

Conclusions

We show that p62 overexpression correlates with advanced stage human PCa. Pharmacologic and genetic inhibition of autophagy in PCa cell lines indicate that autophagic flux can determine the cellular response to TR by regulating caspase-8 activation. Thus, combining various autophagic inhibitors may have a differential impact on TR-induced cell death.
Appendix
Available only for authorised users
Literature
2.
go back to reference Kourtis N, Tavernarakis N: Autophagy and cell death in model organisms. Cell Death Differ. 2009, 16: 21-30. 10.1038/cdd.2008.120CrossRefPubMed Kourtis N, Tavernarakis N: Autophagy and cell death in model organisms. Cell Death Differ. 2009, 16: 21-30. 10.1038/cdd.2008.120CrossRefPubMed
3.
go back to reference Kroemer G, Jaattela M: Lysosomes and autophagy in cell death control. Nat Rev Cancer. 2005, 5: 886-897. 10.1038/nrc1738CrossRefPubMed Kroemer G, Jaattela M: Lysosomes and autophagy in cell death control. Nat Rev Cancer. 2005, 5: 886-897. 10.1038/nrc1738CrossRefPubMed
4.
go back to reference Nakatogawa H, Ichimura Y, Ohsumi Y: Atg8, a ubiquitin-like protein required for autophagosome formation, mediates membrane tethering and hemifusion. Cell. 2007, 130: 165-178. 10.1016/j.cell.2007.05.021CrossRefPubMed Nakatogawa H, Ichimura Y, Ohsumi Y: Atg8, a ubiquitin-like protein required for autophagosome formation, mediates membrane tethering and hemifusion. Cell. 2007, 130: 165-178. 10.1016/j.cell.2007.05.021CrossRefPubMed
5.
go back to reference Xie Z, Nair U, Klionsky DJ: Atg8 controls phagophore expansion during autophagosome formation. Mol Biol Cell. 2008, 19: 3290-3298. 10.1091/mbc.E07-12-1292PubMedCentralCrossRefPubMed Xie Z, Nair U, Klionsky DJ: Atg8 controls phagophore expansion during autophagosome formation. Mol Biol Cell. 2008, 19: 3290-3298. 10.1091/mbc.E07-12-1292PubMedCentralCrossRefPubMed
6.
go back to reference Itakura E, Mizushima N: p62 Targeting to the autophagosome formation site requires self-oligomerization but not LC3 binding. J Cell Biol. 2011, 192: 17-27. 10.1083/jcb.201009067PubMedCentralCrossRefPubMed Itakura E, Mizushima N: p62 Targeting to the autophagosome formation site requires self-oligomerization but not LC3 binding. J Cell Biol. 2011, 192: 17-27. 10.1083/jcb.201009067PubMedCentralCrossRefPubMed
7.
go back to reference Almasan A, Ashkenazi A: Apo2L/TRAIL: apoptosis signaling, biology, and potential for cancer therapy. Cytokine Growth Factor Rev. 2003, 14: 337-348. 10.1016/S1359-6101(03)00029-7CrossRefPubMed Almasan A, Ashkenazi A: Apo2L/TRAIL: apoptosis signaling, biology, and potential for cancer therapy. Cytokine Growth Factor Rev. 2003, 14: 337-348. 10.1016/S1359-6101(03)00029-7CrossRefPubMed
8.
go back to reference Gonzalvez F, Ashkenazi A: New insights into apoptosis signaling by Apo2L/TRAIL. Oncogene. 2010, 29: 4752-4765. 10.1038/onc.2010.221CrossRefPubMed Gonzalvez F, Ashkenazi A: New insights into apoptosis signaling by Apo2L/TRAIL. Oncogene. 2010, 29: 4752-4765. 10.1038/onc.2010.221CrossRefPubMed
9.
go back to reference Mora R, Abschuetz A, Kees T, Dokic I, Joschko N, Kleber S, Geibig R, Mosconi E, Zentgraf H, Martin-Villalba A, Regnier-Vigouroux A: TNF-alpha- and TRAIL-resistant glioma cells undergo autophagy-dependent cell death induced by activated microglia. Glia. 2009, 57: 561-581. 10.1002/glia.20785CrossRefPubMed Mora R, Abschuetz A, Kees T, Dokic I, Joschko N, Kleber S, Geibig R, Mosconi E, Zentgraf H, Martin-Villalba A, Regnier-Vigouroux A: TNF-alpha- and TRAIL-resistant glioma cells undergo autophagy-dependent cell death induced by activated microglia. Glia. 2009, 57: 561-581. 10.1002/glia.20785CrossRefPubMed
10.
go back to reference Herrero-Martin G, Hoyer-Hansen M, Garcia-Garcia C, Fumarola C, Farkas T, Lopez-Rivas A, Jaattela M: TAK1 activates AMPK-dependent cytoprotective autophagy in TRAIL-treated epithelial cells. EMBO J. 2009, 28: 677-685. 10.1038/emboj.2009.8PubMedCentralCrossRefPubMed Herrero-Martin G, Hoyer-Hansen M, Garcia-Garcia C, Fumarola C, Farkas T, Lopez-Rivas A, Jaattela M: TAK1 activates AMPK-dependent cytoprotective autophagy in TRAIL-treated epithelial cells. EMBO J. 2009, 28: 677-685. 10.1038/emboj.2009.8PubMedCentralCrossRefPubMed
11.
go back to reference Chhipa RR, Wu Y, Ip C: AMPK-mediated autophagy is a survival mechanism in androgen-dependent prostate cancer cells subjected to androgen deprivation and hypoxia. Cell Signal. 2011, 23: 1466-1472. 10.1016/j.cellsig.2011.04.008PubMedCentralCrossRefPubMed Chhipa RR, Wu Y, Ip C: AMPK-mediated autophagy is a survival mechanism in androgen-dependent prostate cancer cells subjected to androgen deprivation and hypoxia. Cell Signal. 2011, 23: 1466-1472. 10.1016/j.cellsig.2011.04.008PubMedCentralCrossRefPubMed
12.
go back to reference Wu Z, Chang PC, Yang JC, Chu CY, Wang LY, Chen NT, Ma AH, Desai SJ, Lo SH, Evans CP, Lam KS, Kung HJ: Autophagy blockade sensitizes prostate cancer cells towards Src family kinase inhibitors. Genes Cancer. 2010, 1: 40-49. 10.1177/1947601909358324PubMedCentralCrossRefPubMed Wu Z, Chang PC, Yang JC, Chu CY, Wang LY, Chen NT, Ma AH, Desai SJ, Lo SH, Evans CP, Lam KS, Kung HJ: Autophagy blockade sensitizes prostate cancer cells towards Src family kinase inhibitors. Genes Cancer. 2010, 1: 40-49. 10.1177/1947601909358324PubMedCentralCrossRefPubMed
13.
go back to reference Jin Z, Li Y, Pitti R, Lawrence D, Pham VC, Lill JR, Ashkenazi A: Cullin3-based polyubiquitination and p62-dependent aggregation of caspase-8 mediate extrinsic apoptosis signaling. Cell. 2009, 137: 721-735. 10.1016/j.cell.2009.03.015CrossRefPubMed Jin Z, Li Y, Pitti R, Lawrence D, Pham VC, Lill JR, Ashkenazi A: Cullin3-based polyubiquitination and p62-dependent aggregation of caspase-8 mediate extrinsic apoptosis signaling. Cell. 2009, 137: 721-735. 10.1016/j.cell.2009.03.015CrossRefPubMed
14.
go back to reference Wagner KW, Punnoose EA, Januario T, Lawrence DA, Pitti RM, Lancaster K, Lee D, von Goetz M, Yee SF, Totpal K, Huw L, Katta V, Cavet G, Hymowitz SG, Amler L, Ashkenazi A: Death-receptor O-glycosylation controls tumor-cell sensitivity to the proapoptotic ligand Apo2L/TRAIL. Nat Med. 2007, 13: 1070-1077. 10.1038/nm1627CrossRefPubMed Wagner KW, Punnoose EA, Januario T, Lawrence DA, Pitti RM, Lancaster K, Lee D, von Goetz M, Yee SF, Totpal K, Huw L, Katta V, Cavet G, Hymowitz SG, Amler L, Ashkenazi A: Death-receptor O-glycosylation controls tumor-cell sensitivity to the proapoptotic ligand Apo2L/TRAIL. Nat Med. 2007, 13: 1070-1077. 10.1038/nm1627CrossRefPubMed
15.
go back to reference Hughes MA, Harper N, Butterworth M, Cain K, Cohen GM, MacFarlane M: Reconstitution of the death-inducing signaling complex reveals a substrate switch that determines CD95-mediated death or survival. Mol Cell. 2009, 35: 265-279. 10.1016/j.molcel.2009.06.012CrossRefPubMed Hughes MA, Harper N, Butterworth M, Cain K, Cohen GM, MacFarlane M: Reconstitution of the death-inducing signaling complex reveals a substrate switch that determines CD95-mediated death or survival. Mol Cell. 2009, 35: 265-279. 10.1016/j.molcel.2009.06.012CrossRefPubMed
16.
go back to reference Spencer SL, Gaudet S, Albeck JG, Burke JM, Sorger PK: Non-genetic origins of cell-to-cell variability in TRAIL-induced apoptosis. Nature. 2009, 459: 428-432. 10.1038/nature08012PubMedCentralCrossRefPubMed Spencer SL, Gaudet S, Albeck JG, Burke JM, Sorger PK: Non-genetic origins of cell-to-cell variability in TRAIL-induced apoptosis. Nature. 2009, 459: 428-432. 10.1038/nature08012PubMedCentralCrossRefPubMed
17.
go back to reference Pankiv S, Lamark T, Bruun JA, Overvatn A, Bjorkoy G, Johansen T: Nucleocytoplasmic shuttling of p62/SQSTM1 and its role in recruitment of nuclear polyubiquitinated proteins to promyelocytic leukemia bodies. J Biol Chem. 2010, 285: 5941-5953. 10.1074/jbc.M109.039925PubMedCentralCrossRefPubMed Pankiv S, Lamark T, Bruun JA, Overvatn A, Bjorkoy G, Johansen T: Nucleocytoplasmic shuttling of p62/SQSTM1 and its role in recruitment of nuclear polyubiquitinated proteins to promyelocytic leukemia bodies. J Biol Chem. 2010, 285: 5941-5953. 10.1074/jbc.M109.039925PubMedCentralCrossRefPubMed
18.
go back to reference Kirkin V, McEwan DG, Novak I, Dikic I: A role for ubiquitin in selective autophagy. Mol Cell. 2009, 34: 259-269. 10.1016/j.molcel.2009.04.026CrossRefPubMed Kirkin V, McEwan DG, Novak I, Dikic I: A role for ubiquitin in selective autophagy. Mol Cell. 2009, 34: 259-269. 10.1016/j.molcel.2009.04.026CrossRefPubMed
19.
go back to reference Ray S, Shyam S, Fraizer GC, Almasan A: S-phase checkpoints regulate Apo2 ligand/TRAIL and CPT-11-induced apoptosis of prostate cancer cells. Mol Cancer Ther. 2007, 6: 1368-1378.CrossRefPubMed Ray S, Shyam S, Fraizer GC, Almasan A: S-phase checkpoints regulate Apo2 ligand/TRAIL and CPT-11-induced apoptosis of prostate cancer cells. Mol Cancer Ther. 2007, 6: 1368-1378.CrossRefPubMed
20.
go back to reference Ray S, Almasan A: Apoptosis induction in prostate cancer cells and xenografts by combined treatment with Apo2 ligand/tumor necrosis factor-related apoptosis-inducing ligand and CPT-11. Cancer Res. 2003, 63: 4713-4723.PubMed Ray S, Almasan A: Apoptosis induction in prostate cancer cells and xenografts by combined treatment with Apo2 ligand/tumor necrosis factor-related apoptosis-inducing ligand and CPT-11. Cancer Res. 2003, 63: 4713-4723.PubMed
21.
go back to reference Kabeya Y, Mizushima N, Ueno T, Yamamoto A, Kirisako T, Noda T, Kominami E, Ohsumi Y, Yoshimori T: LC3, a mammalian homologue of yeast Apg8p, is localized in autophagosome membranes after processing. EMBO J. 2000, 19: 5720-5728. 10.1093/emboj/19.21.5720PubMedCentralCrossRefPubMed Kabeya Y, Mizushima N, Ueno T, Yamamoto A, Kirisako T, Noda T, Kominami E, Ohsumi Y, Yoshimori T: LC3, a mammalian homologue of yeast Apg8p, is localized in autophagosome membranes after processing. EMBO J. 2000, 19: 5720-5728. 10.1093/emboj/19.21.5720PubMedCentralCrossRefPubMed
22.
go back to reference Bjorkoy G, Lamark T, Brech A, Outzen H, Perander M, Overvatn A, Stenmark H, Johansen T: p62/SQSTM1 forms protein aggregates degraded by autophagy and has a protective effect on huntingtin-induced cell death. J Cell Biol. 2005, 171: 603-614. 10.1083/jcb.200507002PubMedCentralCrossRefPubMed Bjorkoy G, Lamark T, Brech A, Outzen H, Perander M, Overvatn A, Stenmark H, Johansen T: p62/SQSTM1 forms protein aggregates degraded by autophagy and has a protective effect on huntingtin-induced cell death. J Cell Biol. 2005, 171: 603-614. 10.1083/jcb.200507002PubMedCentralCrossRefPubMed
23.
go back to reference Jaakkola PM, Pursiheimo JP: p62 degradation by autophagy: another way for cancer cells to survive under hypoxia. Autophagy. 2009, 5: 410-412. 10.4161/auto.5.3.7823CrossRefPubMed Jaakkola PM, Pursiheimo JP: p62 degradation by autophagy: another way for cancer cells to survive under hypoxia. Autophagy. 2009, 5: 410-412. 10.4161/auto.5.3.7823CrossRefPubMed
24.
go back to reference Cheong H, Lu C, Lindsten T, Thompson CB: Therapeutic targets in cancer cell metabolism and autophagy. Nat Biotechnol. 2012, 30: 671-678. 10.1038/nbt.2285CrossRefPubMed Cheong H, Lu C, Lindsten T, Thompson CB: Therapeutic targets in cancer cell metabolism and autophagy. Nat Biotechnol. 2012, 30: 671-678. 10.1038/nbt.2285CrossRefPubMed
25.
go back to reference Rubinsztein DC, Codogno P, Levine B: Autophagy modulation as a potential therapeutic target for diverse diseases. Nat Rev Drug Discov. 2012, 11: 709-730. 10.1038/nrd3802PubMedCentralCrossRefPubMed Rubinsztein DC, Codogno P, Levine B: Autophagy modulation as a potential therapeutic target for diverse diseases. Nat Rev Drug Discov. 2012, 11: 709-730. 10.1038/nrd3802PubMedCentralCrossRefPubMed
26.
go back to reference Han J, Hou W, Goldstein LA, Lu C, Stolz DB, Yin XM, Rabinowich H: Involvement of protective autophagy in TRAIL resistance of apoptosis-defective tumor cells. J Biol Chem. 2008, 283: 19665-19677. 10.1074/jbc.M710169200PubMedCentralCrossRefPubMed Han J, Hou W, Goldstein LA, Lu C, Stolz DB, Yin XM, Rabinowich H: Involvement of protective autophagy in TRAIL resistance of apoptosis-defective tumor cells. J Biol Chem. 2008, 283: 19665-19677. 10.1074/jbc.M710169200PubMedCentralCrossRefPubMed
27.
go back to reference Yang ZJ, Chee CE, Huang S, Sinicrope FA: The role of autophagy in cancer: therapeutic implications. Mol Cancer Ther. 2011, 10: 1533-1541. 10.1158/1535-7163.MCT-11-0047PubMedCentralCrossRefPubMed Yang ZJ, Chee CE, Huang S, Sinicrope FA: The role of autophagy in cancer: therapeutic implications. Mol Cancer Ther. 2011, 10: 1533-1541. 10.1158/1535-7163.MCT-11-0047PubMedCentralCrossRefPubMed
28.
go back to reference Ziparo E, Petrungaro S, Marini ES, Starace D, Conti S, Facchiano A, Filippini A, Giampietri C: Autophagy in prostate cancer and androgen suppression therapy. Int J Mol Sci. 2013, 14: 12090-12106. 10.3390/ijms140612090PubMedCentralCrossRefPubMed Ziparo E, Petrungaro S, Marini ES, Starace D, Conti S, Facchiano A, Filippini A, Giampietri C: Autophagy in prostate cancer and androgen suppression therapy. Int J Mol Sci. 2013, 14: 12090-12106. 10.3390/ijms140612090PubMedCentralCrossRefPubMed
29.
go back to reference Gupta A, Roy S, Lazar AJ, Wang WL, McAuliffe JC, Reynoso D, McMahon J, Taguchi T, Floris G, Debiec-Rychter M, Schoffski P, Trent JA, Debnath J, Rubin BP: Autophagy inhibition and antimalarials promote cell death in gastrointestinal stromal tumor (GIST). Proc Natl Acad Sci U S A. 2010, 107: 14333-14338. 10.1073/pnas.1000248107PubMedCentralCrossRefPubMed Gupta A, Roy S, Lazar AJ, Wang WL, McAuliffe JC, Reynoso D, McMahon J, Taguchi T, Floris G, Debiec-Rychter M, Schoffski P, Trent JA, Debnath J, Rubin BP: Autophagy inhibition and antimalarials promote cell death in gastrointestinal stromal tumor (GIST). Proc Natl Acad Sci U S A. 2010, 107: 14333-14338. 10.1073/pnas.1000248107PubMedCentralCrossRefPubMed
30.
go back to reference Singh K, Matsuyama S, Drazba JA, Almasan A: Autophagy-dependent senescence in response to DNA damage and chronic apoptotic stress. Autophagy. 2012, 8: 236-257. 10.4161/auto.8.2.18600PubMedCentralCrossRefPubMed Singh K, Matsuyama S, Drazba JA, Almasan A: Autophagy-dependent senescence in response to DNA damage and chronic apoptotic stress. Autophagy. 2012, 8: 236-257. 10.4161/auto.8.2.18600PubMedCentralCrossRefPubMed
Metadata
Title
Autophagic flux determines cell death and survival in response to Apo2L/TRAIL (dulanermin)
Authors
Kamini Singh
Arishya Sharma
Maria C Mir
Judith A Drazba
Warren D Heston
Cristina Magi-Galluzzi
Donna Hansel
Brian P Rubin
Eric A Klein
Alexandru Almasan
Publication date
01-12-2014
Publisher
BioMed Central
Published in
Molecular Cancer / Issue 1/2014
Electronic ISSN: 1476-4598
DOI
https://doi.org/10.1186/1476-4598-13-70

Other articles of this Issue 1/2014

Molecular Cancer 1/2014 Go to the issue
Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine