Skip to main content
Top
Published in: BMC Infectious Diseases 1/2009

Open Access 01-12-2009 | Research article

Daptomycin in experimental murine pneumococcal meningitis

Authors: Barry B Mook-Kanamori, Mark S Rouse, Cheol-In Kang, Diederik van de Beek, James M Steckelberg, Robin Patel

Published in: BMC Infectious Diseases | Issue 1/2009

Login to get access

Abstract

Background

Daptomycin, a lipopeptide antibiotic, could be an alternative to vancomycin for treatment of pneumococcal meningitis. We determined the activity of daptomycin versus vancomycin, with dexamethasone as an adjuvant, in a murine model of pneumococcal meningitis.

Methods

Ninety-six 25–30 gram mice were inoculated intracisternally with serotype 3 Streptococcus pneumoniae modified by the integration of a luminescent lux operon. All mice were treated with either dexamethasone 1 mg/kg intraperitoneally every 6 hours alone or in combination with either vancomycin or daptomycin, also administered intraperitoneally. Serum antimicrobial concentrations were selected to approximate those achieved in humans. Following treatment, bioluminescence and cerebrospinal fluid (CSF) bacterial concentrations were determined. Caspase-3 staining was used to assess apoptosis on brain histopathology.

Results

Sixteen hours post intracisternal inoculation, bacterial titers in CSF were 6.8 log10 cfu/ml. Amongst the animals given no antibiotic, vancomycin 50 mg/kg at 16 and 20 hours or daptomycin 25 mg/kg at 16 hours, CSF titers were 7.6, 3.4, and 3.9 log10 cfu/ml, respectively, at 24 hours post infection (p-value, < 0.001 for both vancomycin or daptomycin versus no antibiotic); there was no significant difference in bactericidal activity between the vancomycin and daptomycin groups (p-value, 0.18). CSF bioluminescence correlated with bacterial titer (Pearson regression coefficient, 0.75). The amount of apoptosis of brain parenchymal cells was equivalent among treatment groups.

Conclusion

Daptomycin or vancomycin, when given in combination with dexamethasone, is active in the treatment of experimental pneumococcal meningitis.
Appendix
Available only for authorised users
Literature
1.
go back to reference Beek van de D, de Gans J, Tunkel AR, et al: Community-acquired bacterial meningitis in adults. N Engl J Med. 2006, 354: 44-53. 10.1056/NEJMra052116.CrossRefPubMed Beek van de D, de Gans J, Tunkel AR, et al: Community-acquired bacterial meningitis in adults. N Engl J Med. 2006, 354: 44-53. 10.1056/NEJMra052116.CrossRefPubMed
2.
go back to reference Carpenter CF, Chambers HF: Daptomycin: another novel agent for treating infections due to drug-resistant gram-positive pathogens. Clin Infect Dis. 2004, 38: 994-1000. 10.1086/383472.CrossRefPubMed Carpenter CF, Chambers HF: Daptomycin: another novel agent for treating infections due to drug-resistant gram-positive pathogens. Clin Infect Dis. 2004, 38: 994-1000. 10.1086/383472.CrossRefPubMed
3.
go back to reference Rybak MJ: The efficacy and safety of daptomycin: first in a new class of antibiotics for Gram-positive bacteria. Clin Microbiol Infect. 2006, 12 (Suppl 1): 24-32. 10.1111/j.1469-0691.2006.01342.x.CrossRefPubMed Rybak MJ: The efficacy and safety of daptomycin: first in a new class of antibiotics for Gram-positive bacteria. Clin Microbiol Infect. 2006, 12 (Suppl 1): 24-32. 10.1111/j.1469-0691.2006.01342.x.CrossRefPubMed
4.
go back to reference Francis KP, Yu J, Bellinger-Kawahara C, et al: Visualizing pneumococcal infections in the lungs of live mice using bioluminescent Streptococcus pneumoniae transformed with a novel gram-positive lux transposon. Infect Immun. 2001, 69: 3350-8. 10.1128/IAI.69.5.3350-3358.2001.CrossRefPubMedPubMedCentral Francis KP, Yu J, Bellinger-Kawahara C, et al: Visualizing pneumococcal infections in the lungs of live mice using bioluminescent Streptococcus pneumoniae transformed with a novel gram-positive lux transposon. Infect Immun. 2001, 69: 3350-8. 10.1128/IAI.69.5.3350-3358.2001.CrossRefPubMedPubMedCentral
5.
go back to reference Beek van de D, de Gans J, Spanjaard L, et al: Clinical features and prognostic factors in adults with bacterial meningitis. N Engl J Med. 2004, 351: 1849-59. 10.1056/NEJMoa040845.CrossRefPubMed Beek van de D, de Gans J, Spanjaard L, et al: Clinical features and prognostic factors in adults with bacterial meningitis. N Engl J Med. 2004, 351: 1849-59. 10.1056/NEJMoa040845.CrossRefPubMed
6.
go back to reference Clinical and Laboratory Standards Institute: Methods for dilution antimicrobial susceptibility tests for bacteria that grow aerobically; approved standard. Wayne. 2006, M07-A7- Clinical and Laboratory Standards Institute: Methods for dilution antimicrobial susceptibility tests for bacteria that grow aerobically; approved standard. Wayne. 2006, M07-A7-
7.
go back to reference Anhalt JP, Washington JA: Bacterial Tests, Laboratory Procedures in Clinical Microbiology. 1985, Springer Verlag, New York, NY, 2731-745. 2 Anhalt JP, Washington JA: Bacterial Tests, Laboratory Procedures in Clinical Microbiology. 1985, Springer Verlag, New York, NY, 2731-745. 2
8.
go back to reference Cottagnoud P, Pfister M, Acosta F, et al: Daptomycin is highly efficacious against penicillin-resistant and penicillin- and quinolone-resistant pneumococci in experimental meningitis. Antimicrob Agents Chemother. 2004, 48: 3928-33. 10.1128/AAC.48.10.3928-3933.2004.CrossRefPubMedPubMedCentral Cottagnoud P, Pfister M, Acosta F, et al: Daptomycin is highly efficacious against penicillin-resistant and penicillin- and quinolone-resistant pneumococci in experimental meningitis. Antimicrob Agents Chemother. 2004, 48: 3928-33. 10.1128/AAC.48.10.3928-3933.2004.CrossRefPubMedPubMedCentral
9.
go back to reference Gerber P, Stucki A, Acosta F, et al: Daptomycin is more efficacious than vancomycin against a methicillin-susceptible Staphylococcus aureus in experimental meningitis. J Antimicrob Chemother. 2006, 57: 720-3. 10.1093/jac/dkl007.CrossRefPubMed Gerber P, Stucki A, Acosta F, et al: Daptomycin is more efficacious than vancomycin against a methicillin-susceptible Staphylococcus aureus in experimental meningitis. J Antimicrob Chemother. 2006, 57: 720-3. 10.1093/jac/dkl007.CrossRefPubMed
10.
go back to reference Stucki A, Cottagnoud M, Winkelmann V, et al: Daptomycin produces an enhanced bactericidal activity compared to ceftriaxone, measured by [3H]choline release in the cerebrospinal fluid, in experimental meningitis due to a penicillin-resistant pneumococcal strain without lysing its cell wall. Antimicrob Agents Chemother. 2007, 51: 2249-52. 10.1128/AAC.01000-06.CrossRefPubMedPubMedCentral Stucki A, Cottagnoud M, Winkelmann V, et al: Daptomycin produces an enhanced bactericidal activity compared to ceftriaxone, measured by [3H]choline release in the cerebrospinal fluid, in experimental meningitis due to a penicillin-resistant pneumococcal strain without lysing its cell wall. Antimicrob Agents Chemother. 2007, 51: 2249-52. 10.1128/AAC.01000-06.CrossRefPubMedPubMedCentral
11.
go back to reference Grandgirard D, Schurch C, Cottagnoud P, et al: Prevention of brain injury by the nonbacteriolytic antibiotic daptomycin in experimental pneumococcal meningitis. Antimicrob Agents Chemother. 2007, 51: 2173-8. 10.1128/AAC.01014-06.CrossRefPubMedPubMedCentral Grandgirard D, Schurch C, Cottagnoud P, et al: Prevention of brain injury by the nonbacteriolytic antibiotic daptomycin in experimental pneumococcal meningitis. Antimicrob Agents Chemother. 2007, 51: 2173-8. 10.1128/AAC.01014-06.CrossRefPubMedPubMedCentral
12.
go back to reference Paris MM, Hickey SM, Uscher MI, et al: Effect of dexamethasone on therapy of experimental penicillin- and cephalosporin-resistant pneumococcal meningitis. Antimicrob Agents Chemother. 1994, 38: 1320-4.CrossRefPubMedPubMedCentral Paris MM, Hickey SM, Uscher MI, et al: Effect of dexamethasone on therapy of experimental penicillin- and cephalosporin-resistant pneumococcal meningitis. Antimicrob Agents Chemother. 1994, 38: 1320-4.CrossRefPubMedPubMedCentral
13.
go back to reference Cabellos C, Martinez-Lacasa J, Martos A, et al: Influence of dexamethasone on efficacy of ceftriaxone and vancomycin therapy in experimental pneumococcal meningitis. Antimicrob Agents Chemother. 1995, 39: 2158-60.CrossRefPubMedPubMedCentral Cabellos C, Martinez-Lacasa J, Martos A, et al: Influence of dexamethasone on efficacy of ceftriaxone and vancomycin therapy in experimental pneumococcal meningitis. Antimicrob Agents Chemother. 1995, 39: 2158-60.CrossRefPubMedPubMedCentral
14.
go back to reference Arbeit RD, Maki D, Tally FP, et al: The safety and efficacy of daptomycin for the treatment of complicated skin and skin-structure infections. Clin Infect Dis. 2004, 38: 1673-81. 10.1086/420818.CrossRefPubMed Arbeit RD, Maki D, Tally FP, et al: The safety and efficacy of daptomycin for the treatment of complicated skin and skin-structure infections. Clin Infect Dis. 2004, 38: 1673-81. 10.1086/420818.CrossRefPubMed
15.
go back to reference Lee DH, Palermo B, Chowdhury M: Successful treatment of methicillin-resistant Staphylococcus aureus meningitis with daptomycin. Clin Infect Dis. 2008, 47: 588-90. 10.1086/590257.CrossRefPubMed Lee DH, Palermo B, Chowdhury M: Successful treatment of methicillin-resistant Staphylococcus aureus meningitis with daptomycin. Clin Infect Dis. 2008, 47: 588-90. 10.1086/590257.CrossRefPubMed
16.
go back to reference English BK, Maryniw EM, Talati AJ, et al: Diminished macrophage inflammatory response to Staphylococcus aureus isolates exposed to daptomycin versus vancomycin or oxacillin. Antimicrob Agents Chemother. 2006, 50: 2225-7. 10.1128/AAC.01559-05.CrossRefPubMedPubMedCentral English BK, Maryniw EM, Talati AJ, et al: Diminished macrophage inflammatory response to Staphylococcus aureus isolates exposed to daptomycin versus vancomycin or oxacillin. Antimicrob Agents Chemother. 2006, 50: 2225-7. 10.1128/AAC.01559-05.CrossRefPubMedPubMedCentral
Metadata
Title
Daptomycin in experimental murine pneumococcal meningitis
Authors
Barry B Mook-Kanamori
Mark S Rouse
Cheol-In Kang
Diederik van de Beek
James M Steckelberg
Robin Patel
Publication date
01-12-2009
Publisher
BioMed Central
Published in
BMC Infectious Diseases / Issue 1/2009
Electronic ISSN: 1471-2334
DOI
https://doi.org/10.1186/1471-2334-9-50

Other articles of this Issue 1/2009

BMC Infectious Diseases 1/2009 Go to the issue
Live Webinar | 27-06-2024 | 18:00 (CEST)

Keynote webinar | Spotlight on medication adherence

Live: Thursday 27th June 2024, 18:00-19:30 (CEST)

WHO estimates that half of all patients worldwide are non-adherent to their prescribed medication. The consequences of poor adherence can be catastrophic, on both the individual and population level.

Join our expert panel to discover why you need to understand the drivers of non-adherence in your patients, and how you can optimize medication adherence in your clinics to drastically improve patient outcomes.

Prof. Kevin Dolgin
Prof. Florian Limbourg
Prof. Anoop Chauhan
Developed by: Springer Medicine
Obesity Clinical Trial Summary

At a glance: The STEP trials

A round-up of the STEP phase 3 clinical trials evaluating semaglutide for weight loss in people with overweight or obesity.

Developed by: Springer Medicine

Highlights from the ACC 2024 Congress

Year in Review: Pediatric cardiology

Watch Dr. Anne Marie Valente present the last year's highlights in pediatric and congenital heart disease in the official ACC.24 Year in Review session.

Year in Review: Pulmonary vascular disease

The last year's highlights in pulmonary vascular disease are presented by Dr. Jane Leopold in this official video from ACC.24.

Year in Review: Valvular heart disease

Watch Prof. William Zoghbi present the last year's highlights in valvular heart disease from the official ACC.24 Year in Review session.

Year in Review: Heart failure and cardiomyopathies

Watch this official video from ACC.24. Dr. Biykem Bozkurt discusses last year's major advances in heart failure and cardiomyopathies.