Skip to main content
Top
Published in: Cardiovascular Toxicology 10-11/2022

Open Access 15-10-2022 | Dapagliflozin

RETRACTED ARTICLE: Dapagliflozin Guards Against Cadmium-Induced Cardiotoxicity via Modulation of IL6/STAT3 and TLR2/TNFα Signaling Pathways

Authors: Marwa M. M. Refaie, Rehab Ahmed Rifaai, Michael Atef Fawzy, Sayed Shehata

Published in: Cardiovascular Toxicology | Issue 10-11/2022

Login to get access

Abstract

Cadmium (Cd) is a common environmental pollutant that leads to severe cardiotoxic hazards. Several studies were carried out to protect the myocardium against Cd-induced cardiotoxicity. Up till now, no researches evaluated the protective effect of dapagliflozin (DAP) against Cd induced cardiotoxicity. Thus, we aimed to explore the role of DAP in such model with deep studying of the involved mechanisms. 40 male Wistar albino rats were included in current study. Cd (5 mg/kg/day) was administered orally for 7 days to induce cardiotoxicity with or without co-administration of DAP in three different doses (2.5, 5, 10 mg/kg/day) orally for 7 days. Our data revealed that Cd could induce cardiotoxicity with significant increase in serum cardiac enzymes, heart weight, tissue malondialdehyde (MDA), tumor necrosis factor alpha (TNFα), nuclear factor kappa B (NFκB), toll like receptor2 (TLR2), interleukin 6 (IL6) and caspase3 immunoexpression with abnormal histopathological changes. In addition, Cd significantly decreased the level of heme oxygenase1 (HO1), nuclear factor erythroid 2-related factor 2 (Nrf2), signal transducer and activator of transcription (STAT3), reduced glutathione (GSH), glutathione peroxidase (GPx), and total antioxidant capacity (TAC). Co-administration of DAP could ameliorate Cd cardiotoxicity with significant improvement of the biochemical and histopathological changes. We found that DAP had protective properties against Cd induced cardiotoxicity and this may be due to its anti-oxidant, anti-inflammatory, anti-apoptotic properties and modulation of IL6/STAT3 and TLR2/TNFα-signaling pathways.
Appendix
Available only for authorised users
Literature
1.
go back to reference Sarmiento-Ortega, V. E., Brambila, E., Flores-Hernández, J. Á., Díaz, A., Peña-Rosas, U., & Moroni-González, D. (2018). The NOAEL metformin dose is ineffective against metabolic disruption induced by chronic cadmium exposure in wistar rats. Toxics, 6(3), E55.CrossRef Sarmiento-Ortega, V. E., Brambila, E., Flores-Hernández, J. Á., Díaz, A., Peña-Rosas, U., & Moroni-González, D. (2018). The NOAEL metformin dose is ineffective against metabolic disruption induced by chronic cadmium exposure in wistar rats. Toxics, 6(3), E55.CrossRef
2.
go back to reference Refaie, M. M. M., El-Hussieny, M., Bayoumi, A. M. A., & Shehata, S. (2019). Mechanisms mediating the cardioprotective effect of carvedilol in cadmium induced cardiotoxicity. Role of eNOS and HO1/Nrf2 pathway. Environmental Toxicology Pharmacology, 70, 103198.PubMedCrossRef Refaie, M. M. M., El-Hussieny, M., Bayoumi, A. M. A., & Shehata, S. (2019). Mechanisms mediating the cardioprotective effect of carvedilol in cadmium induced cardiotoxicity. Role of eNOS and HO1/Nrf2 pathway. Environmental Toxicology Pharmacology, 70, 103198.PubMedCrossRef
3.
go back to reference Chang, H., Zhao, F., Xie, X., et al. (2019). PPARα suppresses Th17 cell differentiation through IL-6/STAT3/RORγt pathway in experimental autoimmune myocarditis. Experimental Cell Research, 375(1), 22–30.PubMedCrossRef Chang, H., Zhao, F., Xie, X., et al. (2019). PPARα suppresses Th17 cell differentiation through IL-6/STAT3/RORγt pathway in experimental autoimmune myocarditis. Experimental Cell Research, 375(1), 22–30.PubMedCrossRef
4.
go back to reference Shati, A. A., & El-Kott, A. F. (2019). Acylated ghrelin prevents doxorubicin-induced cardiac intrinsic cell death and fibrosis in rats by restoring IL-6/JAK2/STAT3 signaling pathway and inhibition of STAT1. Naunyn Schmiedebergs Arch Pharmacology, 392(9), 1151–1168.CrossRef Shati, A. A., & El-Kott, A. F. (2019). Acylated ghrelin prevents doxorubicin-induced cardiac intrinsic cell death and fibrosis in rats by restoring IL-6/JAK2/STAT3 signaling pathway and inhibition of STAT1. Naunyn Schmiedebergs Arch Pharmacology, 392(9), 1151–1168.CrossRef
6.
go back to reference Heinrich, P. C., Behrmann, I., Haan, S., Hermanns, H. M., Müller-Newen, G., & Schaper, F. (2003). Principles of interleukin (IL)-6-type cytokine signalling and its regulation. Biochemical Journal, 374(1), 1–20.PubMedPubMedCentralCrossRef Heinrich, P. C., Behrmann, I., Haan, S., Hermanns, H. M., Müller-Newen, G., & Schaper, F. (2003). Principles of interleukin (IL)-6-type cytokine signalling and its regulation. Biochemical Journal, 374(1), 1–20.PubMedPubMedCentralCrossRef
7.
go back to reference Lee, T. M., Chang, N. C., & Lin, S. Z. (2017). Dapagliflozin, a selective SGLT2 inhibitor, attenuated cardiac fibrosis by regulating the macrophage polarization via STAT3 signaling in infarcted rat hearts. Free Radical Biology and Medicine, 104, 298–310.PubMedCrossRef Lee, T. M., Chang, N. C., & Lin, S. Z. (2017). Dapagliflozin, a selective SGLT2 inhibitor, attenuated cardiac fibrosis by regulating the macrophage polarization via STAT3 signaling in infarcted rat hearts. Free Radical Biology and Medicine, 104, 298–310.PubMedCrossRef
8.
go back to reference Refaie, M. M. M., Shehata, S., Bayoumi, A. M. A., El-Tahawy, N. F. G., & Abdelzaher, W. Y. (2022). The IL-6/STAT signaling pathway and PPARα are involved in mediating the dose-dependent cardioprotective effects of fenofibrate in 5-fluorouracil-induced cardiotoxicity. Cardiovascular Drugs & Therapy., 36(5), 817–827.CrossRef Refaie, M. M. M., Shehata, S., Bayoumi, A. M. A., El-Tahawy, N. F. G., & Abdelzaher, W. Y. (2022). The IL-6/STAT signaling pathway and PPARα are involved in mediating the dose-dependent cardioprotective effects of fenofibrate in 5-fluorouracil-induced cardiotoxicity. Cardiovascular Drugs & Therapy., 36(5), 817–827.CrossRef
9.
go back to reference El-Zayat, S. R., Sibaii, H., & Mannaa, F. A. (2019). Toll-like receptors activation, signaling, and targeting: An overview. Bulletin of the National Research Centre., 43(1), 187.CrossRef El-Zayat, S. R., Sibaii, H., & Mannaa, F. A. (2019). Toll-like receptors activation, signaling, and targeting: An overview. Bulletin of the National Research Centre., 43(1), 187.CrossRef
10.
go back to reference Arslan, F., Smeets, M. B., O’Neill, L. A., et al. (2010). Myocardial ischemia/reperfusion injury is mediated by leukocytic toll-like receptor-2 and reduced by systemic administration of a novel anti-toll-like receptor-2 antibody. Circulation, 121(1), 80–90.PubMedCrossRef Arslan, F., Smeets, M. B., O’Neill, L. A., et al. (2010). Myocardial ischemia/reperfusion injury is mediated by leukocytic toll-like receptor-2 and reduced by systemic administration of a novel anti-toll-like receptor-2 antibody. Circulation, 121(1), 80–90.PubMedCrossRef
11.
go back to reference Cristofaro, P., & Opal, S. M. (2003). The Toll-like receptors and their role in septic shock. Expert Opinion on Therapeutic Targets, 7(5), 603–612.PubMedCrossRef Cristofaro, P., & Opal, S. M. (2003). The Toll-like receptors and their role in septic shock. Expert Opinion on Therapeutic Targets, 7(5), 603–612.PubMedCrossRef
12.
go back to reference Ehrentraut, H., Weber, C., Ehrentraut, S., et al. (2011). The toll-like receptor 4-antagonist eritoran reduces murine cardiac hypertrophy. European Journal of Heart Failure, 13(6), 602–610.PubMedCrossRef Ehrentraut, H., Weber, C., Ehrentraut, S., et al. (2011). The toll-like receptor 4-antagonist eritoran reduces murine cardiac hypertrophy. European Journal of Heart Failure, 13(6), 602–610.PubMedCrossRef
13.
14.
go back to reference Abdel-Wahab, A. F., Bamagous, G. A., Al-Harizy, R. M., et al. (2018). Renal protective effect of SGLT2 inhibitor dapagliflozin alone and in combination with irbesartan in a rat model of diabetic nephropathy. Biomedicine & Pharmacotherapy., 103, 59–66.CrossRef Abdel-Wahab, A. F., Bamagous, G. A., Al-Harizy, R. M., et al. (2018). Renal protective effect of SGLT2 inhibitor dapagliflozin alone and in combination with irbesartan in a rat model of diabetic nephropathy. Biomedicine & Pharmacotherapy., 103, 59–66.CrossRef
15.
go back to reference Tanajak, P., Sa-Nguanmoo, P., Sivasinprasasn, S., et al. (2018). Cardioprotection of dapagliflozin and vildagliptin in rats with cardiac ischemia-reperfusion injury. Journal of Endocrinololgy, 236(2), 69–84.CrossRef Tanajak, P., Sa-Nguanmoo, P., Sivasinprasasn, S., et al. (2018). Cardioprotection of dapagliflozin and vildagliptin in rats with cardiac ischemia-reperfusion injury. Journal of Endocrinololgy, 236(2), 69–84.CrossRef
16.
go back to reference Erdogan, M. A., Yusuf, D., Christy, J., et al. (2018). Highly selective SGLT2 inhibitor dapagliflozin reduces seizure activity in pentylenetetrazol-induced murine model of epilepsy. BMC Neurology Journal, 18(1), 81.CrossRef Erdogan, M. A., Yusuf, D., Christy, J., et al. (2018). Highly selective SGLT2 inhibitor dapagliflozin reduces seizure activity in pentylenetetrazol-induced murine model of epilepsy. BMC Neurology Journal, 18(1), 81.CrossRef
17.
go back to reference Oguma, T., Nakayama, K., Kuriyama, C., et al. (2015). Intestinal sodium glucose cotransporter 1 inhibition enhances glucagon-like peptide-1 secretion in normal and diabetic rodents. Journal of Pharmacology and Experimental Therapeutics, 354, 279–289.PubMedCrossRef Oguma, T., Nakayama, K., Kuriyama, C., et al. (2015). Intestinal sodium glucose cotransporter 1 inhibition enhances glucagon-like peptide-1 secretion in normal and diabetic rodents. Journal of Pharmacology and Experimental Therapeutics, 354, 279–289.PubMedCrossRef
18.
go back to reference Lahnwong, S., Palee, S., Apaijai, N., et al. (2020). Acute dapagliflozin administration exerts cardioprotective effects in rats with cardiac ischemia/reperfusion injury. Cardiovascular Diabetology, 19(1), 91.PubMedPubMedCentralCrossRef Lahnwong, S., Palee, S., Apaijai, N., et al. (2020). Acute dapagliflozin administration exerts cardioprotective effects in rats with cardiac ischemia/reperfusion injury. Cardiovascular Diabetology, 19(1), 91.PubMedPubMedCentralCrossRef
19.
go back to reference Shin, S. J., Chung, S., Kim, S. J., et al. (2016). Effect of sodium-glucose co-transporter 2 inhibitor, dapagliflozin, on renal renin-angiotensin system in an animal model of type 2 diabetes. PLoS ONE, 11(11), e0165703.PubMedPubMedCentralCrossRef Shin, S. J., Chung, S., Kim, S. J., et al. (2016). Effect of sodium-glucose co-transporter 2 inhibitor, dapagliflozin, on renal renin-angiotensin system in an animal model of type 2 diabetes. PLoS ONE, 11(11), e0165703.PubMedPubMedCentralCrossRef
20.
go back to reference Lahnwong, S., Chattipakorn, S. C., & Chattipakorn, N. (2018). Potential mechanisms responsible for cardioprotective effects of sodium–glucose co-transporter 2 inhibitors. Cardiovascular Diabetology, 17(10), 1. Lahnwong, S., Chattipakorn, S. C., & Chattipakorn, N. (2018). Potential mechanisms responsible for cardioprotective effects of sodium–glucose co-transporter 2 inhibitors. Cardiovascular Diabetology, 17(10), 1.
21.
go back to reference Joubert, M., Jagu, B., Montaigne, D., et al. (2017). The sodium-glucose cotransporter 2 inhibitor dapagliflozin prevents cardiomyopathy in a diabetic lipodystrophic mouse model. Diabetes, 66(4), 1030–1040.PubMedCrossRef Joubert, M., Jagu, B., Montaigne, D., et al. (2017). The sodium-glucose cotransporter 2 inhibitor dapagliflozin prevents cardiomyopathy in a diabetic lipodystrophic mouse model. Diabetes, 66(4), 1030–1040.PubMedCrossRef
22.
go back to reference Jaikumkao, K., Pongchaidecha, A., Chueakula, N., et al. (2018). Dapagliflozin, a sodium-glucose co-transporter-2 inhibitor, slows the progression of renal complications through the suppression of renal inflammation, endoplasmic reticulum stress and apoptosis in prediabetic rats. Diabetes, Obesity and Metabolism, 20(11), 2617–2626.PubMedCrossRef Jaikumkao, K., Pongchaidecha, A., Chueakula, N., et al. (2018). Dapagliflozin, a sodium-glucose co-transporter-2 inhibitor, slows the progression of renal complications through the suppression of renal inflammation, endoplasmic reticulum stress and apoptosis in prediabetic rats. Diabetes, Obesity and Metabolism, 20(11), 2617–2626.PubMedCrossRef
23.
go back to reference Mukherjee, R., Banerjee, S., Joshi, N., Singh, P. K., Baxi, D., & Ramachandran, A. V. (2011). A combination of melatonin and alpha lipoic acid has greater cardioprotective effect than either of them singly against cadmium-induced oxidative damage. Cardiovascular Toxicology, 11(1), 78–88.PubMedCrossRef Mukherjee, R., Banerjee, S., Joshi, N., Singh, P. K., Baxi, D., & Ramachandran, A. V. (2011). A combination of melatonin and alpha lipoic acid has greater cardioprotective effect than either of them singly against cadmium-induced oxidative damage. Cardiovascular Toxicology, 11(1), 78–88.PubMedCrossRef
24.
go back to reference Arab, H. H., Al-Shorbagy, M. Y., & Saad, M. A. (2021). Activation of autophagy and suppression of apoptosis by dapagliflozin attenuates experimental inflammatory bowel disease in rats: Targeting AMPK/mTOR, HMGB1/RAGE and Nrf2/HO-1 pathways. Chemico-Biological Interactions, 335, 109368.PubMedCrossRef Arab, H. H., Al-Shorbagy, M. Y., & Saad, M. A. (2021). Activation of autophagy and suppression of apoptosis by dapagliflozin attenuates experimental inflammatory bowel disease in rats: Targeting AMPK/mTOR, HMGB1/RAGE and Nrf2/HO-1 pathways. Chemico-Biological Interactions, 335, 109368.PubMedCrossRef
25.
go back to reference Kingir, Z. B., Özdemir Kural, Z. N., Cam, M. E., et al. (2019). Effects of dapagliflozin in experimental sepsis model in rats. Ulus Travma Acil Cerrahi Derg, 25(3), 213–221.PubMed Kingir, Z. B., Özdemir Kural, Z. N., Cam, M. E., et al. (2019). Effects of dapagliflozin in experimental sepsis model in rats. Ulus Travma Acil Cerrahi Derg, 25(3), 213–221.PubMed
26.
go back to reference Buege, J. A., & Aust, S. D. (1978). Microsomal lipid peroxidation. Methods in Enzymology, 52, 302–310.PubMedCrossRef Buege, J. A., & Aust, S. D. (1978). Microsomal lipid peroxidation. Methods in Enzymology, 52, 302–310.PubMedCrossRef
27.
go back to reference Moron, M. S., Depierre, J. W., & Mannervik, B. (1979). Levels of glutathione, glutathione reductase and glutathione S-transferase activities in rat lung and liver. Biochimica et Biophysica Acta, 582(1), 67–78.PubMedCrossRef Moron, M. S., Depierre, J. W., & Mannervik, B. (1979). Levels of glutathione, glutathione reductase and glutathione S-transferase activities in rat lung and liver. Biochimica et Biophysica Acta, 582(1), 67–78.PubMedCrossRef
28.
go back to reference Chadha, S., Wang, L., Hancock, W. W., & Beier, U. H. (2019). Sirtuin-1 in immunotherapy: A Janus-headed target. Journal of Leukocyte Biology, 106(2), 337–343.PubMedCrossRef Chadha, S., Wang, L., Hancock, W. W., & Beier, U. H. (2019). Sirtuin-1 in immunotherapy: A Janus-headed target. Journal of Leukocyte Biology, 106(2), 337–343.PubMedCrossRef
29.
go back to reference Chen, Y., Zhang, Y., Huo, Y., Wang, D., & Hong, Y. (2016). Adrenomedullin mediates tumor necrosis factor-alpha-induced responses in dorsal root ganglia in rats. Brain Research, 1644, 183–191.PubMedCrossRef Chen, Y., Zhang, Y., Huo, Y., Wang, D., & Hong, Y. (2016). Adrenomedullin mediates tumor necrosis factor-alpha-induced responses in dorsal root ganglia in rats. Brain Research, 1644, 183–191.PubMedCrossRef
30.
go back to reference Hamza, A. A., Fikry, E. M., Abdallah, W., & Amin, A. (2018). Mechanistic insights into the augmented effect of bone marrow mesenchymal stem cells and thiazolidinediones in streptozotocin-nicotinamide induced diabetic rat. Scientific Reports, 8(1), 9827.PubMedPubMedCentralCrossRef Hamza, A. A., Fikry, E. M., Abdallah, W., & Amin, A. (2018). Mechanistic insights into the augmented effect of bone marrow mesenchymal stem cells and thiazolidinediones in streptozotocin-nicotinamide induced diabetic rat. Scientific Reports, 8(1), 9827.PubMedPubMedCentralCrossRef
31.
go back to reference Milton Prabu, S., Muthumani, M., & Shagirtha, K. (2013). Quercetin potentially attenuates cadmium induced oxidative stress mediated cardiotoxicity and dyslipidemia in rats. European Review for Medical and Pharmacological Sciences, 17(5), 582–595.PubMed Milton Prabu, S., Muthumani, M., & Shagirtha, K. (2013). Quercetin potentially attenuates cadmium induced oxidative stress mediated cardiotoxicity and dyslipidemia in rats. European Review for Medical and Pharmacological Sciences, 17(5), 582–595.PubMed
32.
go back to reference Nishiyama, S., Saito, N., Konishi, Y., Abe, Y., & Kusumi, K. (1990). Cardiotoxicity in magnesium-deficient rats fed cadmium. Journal of Nutritional Science and Vitaminology, 36(1), 33–44.PubMedCrossRef Nishiyama, S., Saito, N., Konishi, Y., Abe, Y., & Kusumi, K. (1990). Cardiotoxicity in magnesium-deficient rats fed cadmium. Journal of Nutritional Science and Vitaminology, 36(1), 33–44.PubMedCrossRef
33.
go back to reference Oyinloye, B. E., Ajiboye, B. O., Ojo, O. A., Nwozo, S. O., & Kappo, A. P. (2016). Cardioprotective and antioxidant influence of aqueous extracts from Sesamum indicum seeds on oxidative stress induced by cadmium in Wistar rats. Pharmacognosy Magazine, 12(Suppl 2), S170–S174.PubMedPubMedCentral Oyinloye, B. E., Ajiboye, B. O., Ojo, O. A., Nwozo, S. O., & Kappo, A. P. (2016). Cardioprotective and antioxidant influence of aqueous extracts from Sesamum indicum seeds on oxidative stress induced by cadmium in Wistar rats. Pharmacognosy Magazine, 12(Suppl 2), S170–S174.PubMedPubMedCentral
34.
go back to reference Priya, L. B., Baskaran, R., Elangovan, P., Dhivya, V., Huang, C. Y., & Padma, V. V. (2017). Tinospora cordifolia extract attenuates cadmium-induced biochemical and histological alterations in the heart of male Wistar rats. Biomedicine & Pharmacotherapy, 87, 280–287.CrossRef Priya, L. B., Baskaran, R., Elangovan, P., Dhivya, V., Huang, C. Y., & Padma, V. V. (2017). Tinospora cordifolia extract attenuates cadmium-induced biochemical and histological alterations in the heart of male Wistar rats. Biomedicine & Pharmacotherapy, 87, 280–287.CrossRef
35.
go back to reference Jamall, I. S., & Smith, J. C. (1985). Effects of cadmium on glutathione peroxidase, superoxide dismutase, and lipid peroxidation in the rat heart: A possible mechanism of cadmium cardiotoxicity. Toxicolog and Applied Pharmacology, 80(1), 33–42.CrossRef Jamall, I. S., & Smith, J. C. (1985). Effects of cadmium on glutathione peroxidase, superoxide dismutase, and lipid peroxidation in the rat heart: A possible mechanism of cadmium cardiotoxicity. Toxicolog and Applied Pharmacology, 80(1), 33–42.CrossRef
36.
go back to reference Alpsoy, S., Kanter, M., Aktas, C., et al. (2014). Protective effects of onion extract on cadmium-induced oxidative stress, histological damage, and apoptosis in rat heart. Biological Trace Element Research, 159(1–3), 297–303.PubMedCrossRef Alpsoy, S., Kanter, M., Aktas, C., et al. (2014). Protective effects of onion extract on cadmium-induced oxidative stress, histological damage, and apoptosis in rat heart. Biological Trace Element Research, 159(1–3), 297–303.PubMedCrossRef
37.
go back to reference Yao, Y., Zhao, X., Zheng, S., Wang, S., Liu, H., & Xu, S. (2021). Subacute cadmium exposure promotes M1 macrophage polarization through oxidative stress-evoked inflammatory response and induces porcine adrenal fibrosis. Toxicology, 461, 152899.PubMedCrossRef Yao, Y., Zhao, X., Zheng, S., Wang, S., Liu, H., & Xu, S. (2021). Subacute cadmium exposure promotes M1 macrophage polarization through oxidative stress-evoked inflammatory response and induces porcine adrenal fibrosis. Toxicology, 461, 152899.PubMedCrossRef
38.
go back to reference Xu, S., Xiaojing, L., Xinyue, S., Wei, C., Honggui, L., & Shiwen, X. (2021). Pig lung fibrosis is active in the subacute CdCl 2 exposure model and exerts cumulative toxicity through the M1/M2 imbalance. Ecotoxicology and Environmental Safety, 225, 112757.PubMedCrossRef Xu, S., Xiaojing, L., Xinyue, S., Wei, C., Honggui, L., & Shiwen, X. (2021). Pig lung fibrosis is active in the subacute CdCl 2 exposure model and exerts cumulative toxicity through the M1/M2 imbalance. Ecotoxicology and Environmental Safety, 225, 112757.PubMedCrossRef
39.
go back to reference Lubos, E., Loscalzo, J., & Handy, D. E. (2011). Glutathione peroxidase-1 in health and disease: From molecular mechanisms to therapeutic opportunities. Antioxidants & Redox Signaling, 15(7), 1957–1997.CrossRef Lubos, E., Loscalzo, J., & Handy, D. E. (2011). Glutathione peroxidase-1 in health and disease: From molecular mechanisms to therapeutic opportunities. Antioxidants & Redox Signaling, 15(7), 1957–1997.CrossRef
40.
go back to reference Esworthy, R. S., Ho, Y. S., & Chu, F. F. (1997). The Gpx1 gene encodes mitochondrial glutathione peroxidase in the mouse liver. Archives of Biochemistry and Biophysics, 340, 59–63.PubMedCrossRef Esworthy, R. S., Ho, Y. S., & Chu, F. F. (1997). The Gpx1 gene encodes mitochondrial glutathione peroxidase in the mouse liver. Archives of Biochemistry and Biophysics, 340, 59–63.PubMedCrossRef
41.
go back to reference Esworthy, R. S., Yang, L., Frankel, P. H., & Chu, F. F. (2005). Epithelium-specific glutathione peroxidase, Gpx2, is involved in the prevention of intestinal inflammation in selenium-deficient mice. Journal of Nutrition, 135, 740–745.PubMedCrossRef Esworthy, R. S., Yang, L., Frankel, P. H., & Chu, F. F. (2005). Epithelium-specific glutathione peroxidase, Gpx2, is involved in the prevention of intestinal inflammation in selenium-deficient mice. Journal of Nutrition, 135, 740–745.PubMedCrossRef
42.
go back to reference Darwish, W. S., Chen, Z., Li, Y., Wu, Y., Chiba, H., & Hui, S. P. (2020). Identification of cadmium-produced lipid hydroperoxides, transcriptomic changes in antioxidant enzymes, xenobiotic transporters, and pro-inflammatory markers in human breast cancer cells (MCF7) and protection with fat-soluble vitamins. Environmental Science and Pollution Research, 27(2), 1978–1990.PubMedCrossRef Darwish, W. S., Chen, Z., Li, Y., Wu, Y., Chiba, H., & Hui, S. P. (2020). Identification of cadmium-produced lipid hydroperoxides, transcriptomic changes in antioxidant enzymes, xenobiotic transporters, and pro-inflammatory markers in human breast cancer cells (MCF7) and protection with fat-soluble vitamins. Environmental Science and Pollution Research, 27(2), 1978–1990.PubMedCrossRef
43.
go back to reference Refaie, M. M. M., El-Hussieny, M., Bayoumi, A. M. A., & Shehata, S. (2019). Mechanisms mediating the cardioprotective effect of carvedilol in cadmium induced cardiotoxicity. Role of eNOS and HO1/Nrf2 pathway. Environmental Toxicology Pharmacology, 70, 103198.PubMedCrossRef Refaie, M. M. M., El-Hussieny, M., Bayoumi, A. M. A., & Shehata, S. (2019). Mechanisms mediating the cardioprotective effect of carvedilol in cadmium induced cardiotoxicity. Role of eNOS and HO1/Nrf2 pathway. Environmental Toxicology Pharmacology, 70, 103198.PubMedCrossRef
44.
go back to reference Bashir, N., Shagirtha, K., Manoharan, V., & Miltonprabu, S. (2019). The molecular and biochemical insight view of grape seed proanthocyanidins in ameliorating cadmium-induced testes-toxicity in rat model: Implication of PI3K/Akt/Nrf-2 signaling. Bioscience Reports, 39(1), BSR20180515.PubMedPubMedCentralCrossRef Bashir, N., Shagirtha, K., Manoharan, V., & Miltonprabu, S. (2019). The molecular and biochemical insight view of grape seed proanthocyanidins in ameliorating cadmium-induced testes-toxicity in rat model: Implication of PI3K/Akt/Nrf-2 signaling. Bioscience Reports, 39(1), BSR20180515.PubMedPubMedCentralCrossRef
45.
go back to reference Zhang, J., Sun, Z., Lin, N., et al. (2020). Fucoidan from Fucus vesiculosus attenuates doxorubicin-induced acute cardiotoxicity by regulating JAK2/STAT3-mediated apoptosis and autophagy. Biomedicine & Pharmacotherapy, 130, 110534.CrossRef Zhang, J., Sun, Z., Lin, N., et al. (2020). Fucoidan from Fucus vesiculosus attenuates doxorubicin-induced acute cardiotoxicity by regulating JAK2/STAT3-mediated apoptosis and autophagy. Biomedicine & Pharmacotherapy, 130, 110534.CrossRef
46.
go back to reference Zhang, L., Liu, L., & Li, X. (2020). MiR-526b-3p mediates doxorubicin-induced cardiotoxicity by targeting STAT3 to inactivate VEGFA. Biomedicine & Pharmacotherapy, 123, 109751.CrossRef Zhang, L., Liu, L., & Li, X. (2020). MiR-526b-3p mediates doxorubicin-induced cardiotoxicity by targeting STAT3 to inactivate VEGFA. Biomedicine & Pharmacotherapy, 123, 109751.CrossRef
47.
go back to reference Pipicz, M., Demján, V., Sárközy, M., & Csont, T. (2018). Effects of cardiovascular risk factors on cardiac STAT3. International Journal of Molecular Sciences, 19(11), 3572.PubMedPubMedCentralCrossRef Pipicz, M., Demján, V., Sárközy, M., & Csont, T. (2018). Effects of cardiovascular risk factors on cardiac STAT3. International Journal of Molecular Sciences, 19(11), 3572.PubMedPubMedCentralCrossRef
48.
go back to reference Chu, X., Zhang, Y., Xue, Y., et al. (2020). Crocin protects against cardiotoxicity induced by doxorubicin through TLR-2/NF-kappaB signal pathway in vivo and vitro. International Immunopharmacology, 84, 106548.PubMedCrossRef Chu, X., Zhang, Y., Xue, Y., et al. (2020). Crocin protects against cardiotoxicity induced by doxorubicin through TLR-2/NF-kappaB signal pathway in vivo and vitro. International Immunopharmacology, 84, 106548.PubMedCrossRef
49.
go back to reference Kabel, A. M., & Elkhoely, A. A. (2017). Targeting proinflammatory cytokines, oxidative stress, TGF-beta1 and STAT-3 by rosuvastatin and ubiquinone to ameliorate trastuzumab cardiotoxicity. Biomedicine & Pharmacotherapy, 93, 17–26.CrossRef Kabel, A. M., & Elkhoely, A. A. (2017). Targeting proinflammatory cytokines, oxidative stress, TGF-beta1 and STAT-3 by rosuvastatin and ubiquinone to ameliorate trastuzumab cardiotoxicity. Biomedicine & Pharmacotherapy, 93, 17–26.CrossRef
50.
go back to reference McIlwain, D. R., Berger, T., & Mak, T. W. (2013). Caspase functions in cell death and disease. Cold Spring Harbor Perspectives in Biology, 5(4), a008656.PubMedPubMedCentralCrossRef McIlwain, D. R., Berger, T., & Mak, T. W. (2013). Caspase functions in cell death and disease. Cold Spring Harbor Perspectives in Biology, 5(4), a008656.PubMedPubMedCentralCrossRef
51.
go back to reference Kang, T. B., Ben-Moshe, T., Varfolomeev, E. E., Pewzner-Jung, Y., Yogev, N., Jurewicz, A., Waisman, A., Brenner, O., Haffner, R., Gustafsson, E., et al. (2004). Caspase-8 serves both apoptotic and nonapoptotic roles. Journal of Immunology, 173, 2976–2984.CrossRef Kang, T. B., Ben-Moshe, T., Varfolomeev, E. E., Pewzner-Jung, Y., Yogev, N., Jurewicz, A., Waisman, A., Brenner, O., Haffner, R., Gustafsson, E., et al. (2004). Caspase-8 serves both apoptotic and nonapoptotic roles. Journal of Immunology, 173, 2976–2984.CrossRef
52.
go back to reference Brenner, D., & Mak, T. W. (2009). Mitochondrial cell death effectors. Current Opinion in Cell Biology, 21, 871–877.PubMedCrossRef Brenner, D., & Mak, T. W. (2009). Mitochondrial cell death effectors. Current Opinion in Cell Biology, 21, 871–877.PubMedCrossRef
53.
go back to reference Chang, Y. K., Choi, H., Jeong, J. Y., et al. (2016). Dapagliflozin, SGLT2 inhibitor, attenuates renal ischemia-reperfusion injury. PLoS ONE, 11(7), e0158810.PubMedPubMedCentralCrossRef Chang, Y. K., Choi, H., Jeong, J. Y., et al. (2016). Dapagliflozin, SGLT2 inhibitor, attenuates renal ischemia-reperfusion injury. PLoS ONE, 11(7), e0158810.PubMedPubMedCentralCrossRef
54.
go back to reference Dekkers, C. C. J., Petrykiv, S., Laverman, G. D., Cherney, D. Z., Gansevoort, R. T., & Heerspink, H. J. L. (2018). Effects of the SGLT-2 inhibitor dapagliflozin on glomerular and tubular injury markers. Diabetes, Obesity and Metabolism, 20(8), 1988–1993.PubMedCrossRef Dekkers, C. C. J., Petrykiv, S., Laverman, G. D., Cherney, D. Z., Gansevoort, R. T., & Heerspink, H. J. L. (2018). Effects of the SGLT-2 inhibitor dapagliflozin on glomerular and tubular injury markers. Diabetes, Obesity and Metabolism, 20(8), 1988–1993.PubMedCrossRef
55.
go back to reference Shibusawa, R., Yamada, E., Okada, S., et al. (2019). Dapagliflozin rescues endoplasmic reticulum stress-mediated cell death. Scientific Reports, 9(1), 9887.PubMedPubMedCentralCrossRef Shibusawa, R., Yamada, E., Okada, S., et al. (2019). Dapagliflozin rescues endoplasmic reticulum stress-mediated cell death. Scientific Reports, 9(1), 9887.PubMedPubMedCentralCrossRef
56.
go back to reference Chang, W. T., Lin, Y. W., Ho, C. H., Chen, Z. C., Liu, P. Y., & Shih, J. Y. (2021). Dapagliflozin suppresses ER stress and protects doxorubicin-induced cardiotoxicity in breast cancer patients. Archives of Toxicology, 95(2), 659–671.PubMedCrossRef Chang, W. T., Lin, Y. W., Ho, C. H., Chen, Z. C., Liu, P. Y., & Shih, J. Y. (2021). Dapagliflozin suppresses ER stress and protects doxorubicin-induced cardiotoxicity in breast cancer patients. Archives of Toxicology, 95(2), 659–671.PubMedCrossRef
57.
go back to reference Zhang, N., Feng, B., Ma, X., Sun, K., Xu, G., & Zhou, Y. (2019). Dapagliflozin improves left ventricular remodeling and aorta sympathetic tone in a pig model of heart failure with preserved ejection fraction. Cardiovascular Diabetology, 18(1), 107.PubMedPubMedCentralCrossRef Zhang, N., Feng, B., Ma, X., Sun, K., Xu, G., & Zhou, Y. (2019). Dapagliflozin improves left ventricular remodeling and aorta sympathetic tone in a pig model of heart failure with preserved ejection fraction. Cardiovascular Diabetology, 18(1), 107.PubMedPubMedCentralCrossRef
58.
go back to reference Lim, G. B. (2020). Dapagliflozin reduces left ventricular mass. Nature Reviews Cardiology, 17(9), 540.PubMed Lim, G. B. (2020). Dapagliflozin reduces left ventricular mass. Nature Reviews Cardiology, 17(9), 540.PubMed
59.
go back to reference Garnock-Jones, K. P. (2017). Saxagliptin/dapagliflozin: A review in type 2 diabetes mellitus. Drugs, 77(3), 319–330.PubMedCrossRef Garnock-Jones, K. P. (2017). Saxagliptin/dapagliflozin: A review in type 2 diabetes mellitus. Drugs, 77(3), 319–330.PubMedCrossRef
Metadata
Title
RETRACTED ARTICLE: Dapagliflozin Guards Against Cadmium-Induced Cardiotoxicity via Modulation of IL6/STAT3 and TLR2/TNFα Signaling Pathways
Authors
Marwa M. M. Refaie
Rehab Ahmed Rifaai
Michael Atef Fawzy
Sayed Shehata
Publication date
15-10-2022
Publisher
Springer US
Keyword
Dapagliflozin
Published in
Cardiovascular Toxicology / Issue 10-11/2022
Print ISSN: 1530-7905
Electronic ISSN: 1559-0259
DOI
https://doi.org/10.1007/s12012-022-09768-0

Other articles of this Issue 10-11/2022

Cardiovascular Toxicology 10-11/2022 Go to the issue