Skip to main content
Top
Published in: Journal of Neuroinflammation 1/2013

Open Access 01-12-2013 | Research

DAP12 and CD11b contribute to the microglial-induced death of dopaminergic neurons in vitro but not in vivo in the MPTP mouse model of Parkinson’s disease

Authors: Kiyoka Kinugawa, Yann Monnet, Catherine Béchade, Daniel Alvarez-Fischer, Etienne C Hirsch, Alain Bessis, Stéphane Hunot

Published in: Journal of Neuroinflammation | Issue 1/2013

Login to get access

Abstract

Background

Parkinson’s disease (PD) is a neurodegenerative disorder characterized by a loss of dopaminergic neurons (DN) in the substantia nigra (SN). Several lines of evidence suggest that apoptotic cell death of DN is driven in part by non-cell autonomous mechanisms orchestrated by microglial cell-mediated inflammatory processes. Although the mechanisms and molecular network underlying this deleterious cross-talk between DN and microglial cells remain largely unknown, previous work indicates that, upon DN injury, activation of the β2 integrin subunit CD11b is required for microglia-mediated DN cell death. Interestingly, during brain development, the CD11b integrin is also involved in microglial induction of neuronal apoptosis and has been shown to act in concert with the DAP12 immunoreceptor. Whether such a developmental CD11b/DAP12 pathway could be reactivated in a pathological context such as PD and play a role in microglia-induced DN cell death is a tantalizing hypothesis that we wished to test in this study.

Methods

To test the possibility that DAP12 could be involved in microglia-associated DN injury, we used both in vitro and in vivo toxin-based experimental models of PD recapitulating microglial-mediated non-cell autonomous mechanisms of DN cell death. In vitro, enriched mesencephalic neuronal/microglial co-cultures were exposed to the dopaminergic neurotoxin 1-methyl-4-phenylpyridinium (MPP+) whereas in vivo, mice were administrated with 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) according to acute or subchronic mode. Mice deficient for DAP12 or CD11b were used to determine the pathological function of the CD11b/DAP12 pathway in our disease models.

Results

Our results show that DAP12 and CD11b partially contribute to microglia-induced DN cell death in vitro. Yet, in vivo, mice deficient for either of these factors develop similar neuropathological alterations as their wild-type counterparts in two different MPTP mouse models of PD.

Conclusion

Overall, our data suggest that DAP12 and CD11b contribute to microglial-induced DN cell death in vitro but not in vivo in the MPTP mouse model of PD. Therefore, the CD11b/DAP12 pathway may not be considered as a promising therapeutic target for PD.
Literature
1.
go back to reference Hirsch EC, Hunot S: Neuroinflammation in Parkinson’s disease: a target for neuroprotection? Lancet Neurol 2009, 8:382–397.CrossRefPubMed Hirsch EC, Hunot S: Neuroinflammation in Parkinson’s disease: a target for neuroprotection? Lancet Neurol 2009, 8:382–397.CrossRefPubMed
2.
go back to reference Liberatore GT, Jackson-Lewis V, Vukosavic S, Mandir AS, Vila M, McAuliffe WG, Dawson VL, Dawson TM, Przedborski S: Inducible nitric oxide synthase stimulates dopaminergic neurodegeneration in the MPTP model of Parkinson disease. Nat Med 1999, 5:1403–1409.CrossRefPubMed Liberatore GT, Jackson-Lewis V, Vukosavic S, Mandir AS, Vila M, McAuliffe WG, Dawson VL, Dawson TM, Przedborski S: Inducible nitric oxide synthase stimulates dopaminergic neurodegeneration in the MPTP model of Parkinson disease. Nat Med 1999, 5:1403–1409.CrossRefPubMed
3.
go back to reference Wu DC, Teismann P, Tieu K, Vila M, Jackson-Lewis V, Ischiropoulos H, Przedborski S: NADPH oxidase mediates oxidative stress in the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine model of Parkinson’s disease. Proc Natl Acad Sci USA 2003, 100:6145–6150.CrossRefPubMedPubMedCentral Wu DC, Teismann P, Tieu K, Vila M, Jackson-Lewis V, Ischiropoulos H, Przedborski S: NADPH oxidase mediates oxidative stress in the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine model of Parkinson’s disease. Proc Natl Acad Sci USA 2003, 100:6145–6150.CrossRefPubMedPubMedCentral
4.
go back to reference Pei Z, Pang H, Qian L, Yang S, Wang T, Zhang W, Wu X, Dallas S, Wilson B, Reece JM, Miller DS, Hong JS, Block ML: MAC1 mediates LPS-induced production of superoxide by microglia: the role of pattern recognition receptors in dopaminergic neurotoxicity. Glia 2007, 73:259–277. Pei Z, Pang H, Qian L, Yang S, Wang T, Zhang W, Wu X, Dallas S, Wilson B, Reece JM, Miller DS, Hong JS, Block ML: MAC1 mediates LPS-induced production of superoxide by microglia: the role of pattern recognition receptors in dopaminergic neurotoxicity. Glia 2007, 73:259–277.
5.
go back to reference Hu X, Zhang D, Pang H, Caudle WM, Li Y, Gao H, Liu Y, Qian L, Wilson B, Di Monte DA, Ali SF, Zhang J, Block ML, Hong JS: Macrophage antigen complex-1 mediates reactive microgliosis and progressive dopaminergic neurodegeneration in the MPTP model of Parkinson’s disease. J Immunol 2008, 181:7194–7204.CrossRefPubMedPubMedCentral Hu X, Zhang D, Pang H, Caudle WM, Li Y, Gao H, Liu Y, Qian L, Wilson B, Di Monte DA, Ali SF, Zhang J, Block ML, Hong JS: Macrophage antigen complex-1 mediates reactive microgliosis and progressive dopaminergic neurodegeneration in the MPTP model of Parkinson’s disease. J Immunol 2008, 181:7194–7204.CrossRefPubMedPubMedCentral
6.
go back to reference Nathan C, Srimal S, Farber C, Sanchez E, Kabbash L, Asch A, Gailit J, Wright SD: Cytokine-induced respiratory burst of human neutrophils: dependence on extracellular matrix proteins and CD11/CD18 integrins. J Cell Biol 1989, 109:1341–1349.CrossRefPubMed Nathan C, Srimal S, Farber C, Sanchez E, Kabbash L, Asch A, Gailit J, Wright SD: Cytokine-induced respiratory burst of human neutrophils: dependence on extracellular matrix proteins and CD11/CD18 integrins. J Cell Biol 1989, 109:1341–1349.CrossRefPubMed
7.
go back to reference Abram CL, Lowell CA: The expanding role for ITAM-based signaling pathways in immune cells. Sci STKE 2007, 13:re2. Abram CL, Lowell CA: The expanding role for ITAM-based signaling pathways in immune cells. Sci STKE 2007, 13:re2.
8.
go back to reference Mócsai A, Abram CL, Jakus Z, Hu Y, Lanier LL, Lowell CA: Integrin signaling in neutrophils and macrophages uses adaptors containing immunoreceptor tyrosine-based activation motifs. Nat Immunol 2006, 7:1326–1333.CrossRefPubMedPubMedCentral Mócsai A, Abram CL, Jakus Z, Hu Y, Lanier LL, Lowell CA: Integrin signaling in neutrophils and macrophages uses adaptors containing immunoreceptor tyrosine-based activation motifs. Nat Immunol 2006, 7:1326–1333.CrossRefPubMedPubMedCentral
9.
go back to reference Wakselman S, Béchade C, Roumier A, Bernard D, Triller A, Bessis A: Developmental neuronal death in hippocampus requires the microglial CD11b integrin and DAP12 immunoreceptor. J Neurosci 2008, 28:8138–8143.CrossRefPubMed Wakselman S, Béchade C, Roumier A, Bernard D, Triller A, Bessis A: Developmental neuronal death in hippocampus requires the microglial CD11b integrin and DAP12 immunoreceptor. J Neurosci 2008, 28:8138–8143.CrossRefPubMed
10.
go back to reference Satoh J, Tabunoki H, Ishida T, Yagishita S, Jinnai K, Futamura N, Kobayashi M, Toyoshima I, Yoshioka T, Enomoto K, Arai N, Arima K: Immunohistochemical characterization of microglia in Nasu-Hakola disease brains. Neuropathology 2011, 31:363–375.CrossRefPubMed Satoh J, Tabunoki H, Ishida T, Yagishita S, Jinnai K, Futamura N, Kobayashi M, Toyoshima I, Yoshioka T, Enomoto K, Arai N, Arima K: Immunohistochemical characterization of microglia in Nasu-Hakola disease brains. Neuropathology 2011, 31:363–375.CrossRefPubMed
11.
go back to reference Roumier A, Béchade C, Poncer JC, Smalla KH, Tomasello E, Vivier E, Gundelfinger ED, Triller A, Bessis A: Impaired synaptic function in the microglial KARAP/DAP12-deficient mouse. J Neurosci 2004, 24:11421–11428.CrossRefPubMed Roumier A, Béchade C, Poncer JC, Smalla KH, Tomasello E, Vivier E, Gundelfinger ED, Triller A, Bessis A: Impaired synaptic function in the microglial KARAP/DAP12-deficient mouse. J Neurosci 2004, 24:11421–11428.CrossRefPubMed
12.
go back to reference Tomasello E, Desmoulins PO, Chemin K, Guia S, Cremer H, Ortaldo J, Love P, Kaiserlian D, Vivier E: Combined natural killer cell and dendritic cell functional deficiency in KARAP/DAP12 loss-of-function mutant mice. Immunity 2000, 13:355–364.CrossRefPubMed Tomasello E, Desmoulins PO, Chemin K, Guia S, Cremer H, Ortaldo J, Love P, Kaiserlian D, Vivier E: Combined natural killer cell and dendritic cell functional deficiency in KARAP/DAP12 loss-of-function mutant mice. Immunity 2000, 13:355–364.CrossRefPubMed
13.
go back to reference Guerreiro S, Toulorge D, Hirsch E, Marien M, Sokoloff P, Michel PP: Paraxanthine, the primary metabolite of caffeine, provides protection against dopaminergic cell death via stimulation of ryanodine receptor channels. Mol Pharmacol 2008, 74:980–989.CrossRefPubMed Guerreiro S, Toulorge D, Hirsch E, Marien M, Sokoloff P, Michel PP: Paraxanthine, the primary metabolite of caffeine, provides protection against dopaminergic cell death via stimulation of ryanodine receptor channels. Mol Pharmacol 2008, 74:980–989.CrossRefPubMed
14.
go back to reference Théry C, Chamak B, Mallat M: Cytotoxic effect of brain macrophages on developing. Eur J Neurosci 1991, 3:1155–1164.CrossRefPubMed Théry C, Chamak B, Mallat M: Cytotoxic effect of brain macrophages on developing. Eur J Neurosci 1991, 3:1155–1164.CrossRefPubMed
15.
go back to reference Nolan T, Hands RE, Bustin SA: Quantification of mRNA using real-time RT-PCR. Nat Protocol 2006, 1:1559–1582.CrossRef Nolan T, Hands RE, Bustin SA: Quantification of mRNA using real-time RT-PCR. Nat Protocol 2006, 1:1559–1582.CrossRef
16.
go back to reference Luster AD, Alon R, von Andrian UH: Immune cell migration in inflammation: present and future therapeutic targets. Nat Immunol 2005, 6:1182–1190.CrossRefPubMed Luster AD, Alon R, von Andrian UH: Immune cell migration in inflammation: present and future therapeutic targets. Nat Immunol 2005, 6:1182–1190.CrossRefPubMed
17.
go back to reference Zhang W, Qin L, Wang T, Wei SJ, Gao HM, Liu J, Wilson B, Liu B, Zhang W, Kim HC, Hong JS: 3-hydroxymorphinan is neurotrophic to dopaminergic neurons and is also neuroprotective against LPS-induced neurotoxicity. FASEB J 2005, 19:395–397.PubMed Zhang W, Qin L, Wang T, Wei SJ, Gao HM, Liu J, Wilson B, Liu B, Zhang W, Kim HC, Hong JS: 3-hydroxymorphinan is neurotrophic to dopaminergic neurons and is also neuroprotective against LPS-induced neurotoxicity. FASEB J 2005, 19:395–397.PubMed
18.
go back to reference Beck KD, Knusel B, Pasinetti G, Michel PP, Zawadzka H, Goldstein M, Hefti F: Tyrosine hydroxylase mRNA expression by dopaminergic neurons in culture: effect of 1-methyl-4-phenylpyridinium treatment. J Neurochem 1991, 57:527–532.CrossRefPubMed Beck KD, Knusel B, Pasinetti G, Michel PP, Zawadzka H, Goldstein M, Hefti F: Tyrosine hydroxylase mRNA expression by dopaminergic neurons in culture: effect of 1-methyl-4-phenylpyridinium treatment. J Neurochem 1991, 57:527–532.CrossRefPubMed
19.
go back to reference Bindokas VP, Jordán J, Lee CC, Miller RJ: Superoxide production in rat hippocampal neurons: selective imaging with hydroethidine. J Neurosci 1996, 16:1324–1336.PubMed Bindokas VP, Jordán J, Lee CC, Miller RJ: Superoxide production in rat hippocampal neurons: selective imaging with hydroethidine. J Neurosci 1996, 16:1324–1336.PubMed
20.
21.
go back to reference Marín-Teva JL, Dusart I, Colin C, Gervais A, van Rooijen N, Mallat M: Microglia promote the death of developing Purkinje cells. Neuron 2004, 41:535–547.CrossRefPubMed Marín-Teva JL, Dusart I, Colin C, Gervais A, van Rooijen N, Mallat M: Microglia promote the death of developing Purkinje cells. Neuron 2004, 41:535–547.CrossRefPubMed
22.
go back to reference Mallat M, Marín-Teva JL, Chéret C: Phagocytosis in the developing CNS: more than clearing the corpses. Curr Opin Neurobiol 2005, 15:101–107.CrossRefPubMed Mallat M, Marín-Teva JL, Chéret C: Phagocytosis in the developing CNS: more than clearing the corpses. Curr Opin Neurobiol 2005, 15:101–107.CrossRefPubMed
23.
go back to reference Sessa G, Podini P, Mariani M, Meroni A, Spreafico R, Sinigaglia F, Colonna M, Panina P, Meldolesi J: Distribution and signaling of TREM2/DAP12, the receptor system mutated in human polycystic lipomembraneous osteodysplasia with sclerosing leukoencephalopathy dementia. Eur J Neurosci 2004, 20:2617–2628.CrossRefPubMed Sessa G, Podini P, Mariani M, Meroni A, Spreafico R, Sinigaglia F, Colonna M, Panina P, Meldolesi J: Distribution and signaling of TREM2/DAP12, the receptor system mutated in human polycystic lipomembraneous osteodysplasia with sclerosing leukoencephalopathy dementia. Eur J Neurosci 2004, 20:2617–2628.CrossRefPubMed
24.
go back to reference Laflamme N, Rivest S: Toll-like receptor 4: the missing link of the cerebral innate immune response triggered by circulating gram-negative bacterial cell wall components. FASEB J 2001, 15:155–163.CrossRefPubMed Laflamme N, Rivest S: Toll-like receptor 4: the missing link of the cerebral innate immune response triggered by circulating gram-negative bacterial cell wall components. FASEB J 2001, 15:155–163.CrossRefPubMed
25.
go back to reference Kanzler H, Barrat FJ, Hessel EM, Coffman RL: Therapeutic targeting of innate immunity with Toll-like receptor agonists and antagonists. Nat Med 2007, 13:552–559.CrossRefPubMed Kanzler H, Barrat FJ, Hessel EM, Coffman RL: Therapeutic targeting of innate immunity with Toll-like receptor agonists and antagonists. Nat Med 2007, 13:552–559.CrossRefPubMed
26.
go back to reference Lehnardt S, Schott E, Trimbuch T, Laubisch D, Krueger C, Wulczyn G, Nitsch R, Weber JR: A vicious cycle involving release of heat shock protein 60 from injured cells and activation of toll-like receptor 4 mediates neurodegeneration in the CNS. J Neurosci 2008, 28:2320–2331.CrossRefPubMed Lehnardt S, Schott E, Trimbuch T, Laubisch D, Krueger C, Wulczyn G, Nitsch R, Weber JR: A vicious cycle involving release of heat shock protein 60 from injured cells and activation of toll-like receptor 4 mediates neurodegeneration in the CNS. J Neurosci 2008, 28:2320–2331.CrossRefPubMed
27.
go back to reference Stefano L, Racchetti G, Bianco F, Passini N, Gupta RS, PaninaBordignon P, Meldolesi J: The surface-exposed chaperone, Hsp60, is an agonist of the microglial TREM2 receptor. J Neurochem 2009, 110:284–294.CrossRefPubMed Stefano L, Racchetti G, Bianco F, Passini N, Gupta RS, PaninaBordignon P, Meldolesi J: The surface-exposed chaperone, Hsp60, is an agonist of the microglial TREM2 receptor. J Neurochem 2009, 110:284–294.CrossRefPubMed
28.
go back to reference Hamerman JA, Tchao NK, Lowell CA, Lanier LL: Enhanced Toll-like receptor responses in the absence of signaling adaptor DAP12. Nat Immunol 2005, 6:579–586.CrossRefPubMedPubMedCentral Hamerman JA, Tchao NK, Lowell CA, Lanier LL: Enhanced Toll-like receptor responses in the absence of signaling adaptor DAP12. Nat Immunol 2005, 6:579–586.CrossRefPubMedPubMedCentral
29.
go back to reference Hamerman JA, Jarjoura JR, Humphrey MB, Nakamura MC, Seaman WE, Lanier LL: Cutting edge: inhibition of TLR and FcR responses in macrophages by triggering receptor expressed on myeloid cells (TREM)-2 and DAP12. J Immunol 2006, 177:2051–2055.CrossRefPubMed Hamerman JA, Jarjoura JR, Humphrey MB, Nakamura MC, Seaman WE, Lanier LL: Cutting edge: inhibition of TLR and FcR responses in macrophages by triggering receptor expressed on myeloid cells (TREM)-2 and DAP12. J Immunol 2006, 177:2051–2055.CrossRefPubMed
Metadata
Title
DAP12 and CD11b contribute to the microglial-induced death of dopaminergic neurons in vitro but not in vivo in the MPTP mouse model of Parkinson’s disease
Authors
Kiyoka Kinugawa
Yann Monnet
Catherine Béchade
Daniel Alvarez-Fischer
Etienne C Hirsch
Alain Bessis
Stéphane Hunot
Publication date
01-12-2013
Publisher
BioMed Central
Published in
Journal of Neuroinflammation / Issue 1/2013
Electronic ISSN: 1742-2094
DOI
https://doi.org/10.1186/1742-2094-10-82

Other articles of this Issue 1/2013

Journal of Neuroinflammation 1/2013 Go to the issue