Skip to main content
Top
Published in: Molecular Cancer 1/2007

Open Access 01-12-2007 | Research

Cytotoxic effect of 5-aminoimidazole-4-carboxamide-1-β-4-ribofuranoside (AICAR) on childhood acute lymphoblastic leukemia (ALL) cells: implication for targeted therapy

Authors: Tapas K Sengupta, Gilles M Leclerc, Ting Ting Hsieh-Kinser, Guy J Leclerc, Inderjit Singh, Julio C Barredo

Published in: Molecular Cancer | Issue 1/2007

Login to get access

Abstract

Background

Acute lymphoblastic leukemia (ALL) is the most common hematological malignancy affecting children. Despite significant progress and success in the treatment of ALL, a significant number of children continue to relapse and for them, outcome remains poor. Therefore, the search for novel therapeutic approaches is warranted. The aim of this study was to investigate the AMP activated protein kinase (AMPK) as a potential target in childhood acute lymphoblastic leukemia (ALL) subtypes characterized by non-random translocation signature profiles. We evaluated the effects of the AMPK activator AICAR on cell growth, cell cycle regulators and apoptosis of various childhood ALL cells.

Results

We found that treatment with AICAR inhibited cell proliferation, induced cell cycle arrest in G1-phase, and apoptosis in CCRF-CEM (T-ALL), NALM6 (Bp-ALL), REH (Bp-ALL, TEL/AML1) and SupB15 (Bp-ALL, BCR/ABL) cells. These effects were abolished by treatment with the adenosine kinase inhibitor 5'-iodotubericidin prior to addition of AICAR indicating that AICAR's cytotoxicity is mediated through AMPK activation. Moreover, we determined that growth inhibition exerted by AICAR was associated with activation of p38-MAPK and increased expression of the cell cycle regulators p27 and p53. We also demonstrated that AICAR mediated apoptosis through the mitochondrial pathway as revealed by the release of cytochrome C and cleavage of caspase 9. Additionally, AICAR treatment resulted in phosphorylation of Akt suggesting that activation of the PI3K/Akt pathway may represent a compensatory survival mechanism in response to apoptosis and/or cell cycle arrest. Combined treatment with AICAR and the mTOR inhibitor rapamycin resulted in additive anti-proliferative activity ALL cells.

Conclusion

AICAR-mediated AMPK activation was found to be a proficient cytotoxic agent in ALL cells and the mechanism of its anti-proliferative and apoptotic effect appear to be mediated via activation of p38-MAPK pathway, increased expression of cell cycle inhibitory proteins p27 and p53, and downstream effects on the mTOR pathway, hence exhibiting therapeutic potential as a molecular target for the treatment of childhood ALL. Therefore, activation of AMPK by AICAR represents a novel approach to targeted therapy, and suggests a role for AICAR in combination therapy with inhibitors of the PI3K/Akt/mTOR pathways for the treatment of childhood in ALL.
Appendix
Available only for authorised users
Literature
1.
go back to reference Hardie DG, Carling D: The AMP-activated protein kinase--fuel gauge of the mammalian cell?. Eur J Biochem. 1997, 246 (2): 259-273.CrossRefPubMed Hardie DG, Carling D: The AMP-activated protein kinase--fuel gauge of the mammalian cell?. Eur J Biochem. 1997, 246 (2): 259-273.CrossRefPubMed
2.
go back to reference Kemp BE, Mitchelhill KI, Stapleton D, Michell BJ, Chen ZP, Witters LA: Dealing with energy demand: the AMP-activated protein kinase. Trends Biochem Sci. 1999, 24 (1): 22-25.CrossRefPubMed Kemp BE, Mitchelhill KI, Stapleton D, Michell BJ, Chen ZP, Witters LA: Dealing with energy demand: the AMP-activated protein kinase. Trends Biochem Sci. 1999, 24 (1): 22-25.CrossRefPubMed
3.
go back to reference Hardie DG, Scott JW, Pan DA, Hudson ER: Management of cellular energy by the AMP-activated protein kinase system. FEBS Lett. 2003, 546 (1): 113-120.CrossRefPubMed Hardie DG, Scott JW, Pan DA, Hudson ER: Management of cellular energy by the AMP-activated protein kinase system. FEBS Lett. 2003, 546 (1): 113-120.CrossRefPubMed
4.
go back to reference Davies SP, Carling D, Hardie DG: Tissue distribution of the AMP-activated protein kinase, and lack of activation by cyclic-AMP-dependent protein kinase, studied using a specific and sensitive peptide assay. Eur J Biochem. 1989, 186 (1-2): 123-128.CrossRefPubMed Davies SP, Carling D, Hardie DG: Tissue distribution of the AMP-activated protein kinase, and lack of activation by cyclic-AMP-dependent protein kinase, studied using a specific and sensitive peptide assay. Eur J Biochem. 1989, 186 (1-2): 123-128.CrossRefPubMed
5.
go back to reference Kemp BE, Stapleton D, Campbell DJ, Chen ZP, Murthy S, Walter M, Gupta A, Adams JJ, Katsis F, van Denderen B, Jennings IG, Iseli T, Michell BJ, Witters LA: AMP-activated protein kinase, super metabolic regulator. Biochem Soc Trans. 2003, 31 (Pt 1): 162-168.CrossRefPubMed Kemp BE, Stapleton D, Campbell DJ, Chen ZP, Murthy S, Walter M, Gupta A, Adams JJ, Katsis F, van Denderen B, Jennings IG, Iseli T, Michell BJ, Witters LA: AMP-activated protein kinase, super metabolic regulator. Biochem Soc Trans. 2003, 31 (Pt 1): 162-168.CrossRefPubMed
6.
go back to reference Hawley SA, Boudeau J, Reid JL, Mustard KJ, Udd L, Makela TP, Alessi DR, Hardie DG: Complexes between the LKB1 tumor suppressor, STRAD alpha/beta and MO25 alpha/beta are upstream kinases in the AMP-activated protein kinase cascade. J Biol. 2003, 2 (4): 28-PubMedCentralCrossRefPubMed Hawley SA, Boudeau J, Reid JL, Mustard KJ, Udd L, Makela TP, Alessi DR, Hardie DG: Complexes between the LKB1 tumor suppressor, STRAD alpha/beta and MO25 alpha/beta are upstream kinases in the AMP-activated protein kinase cascade. J Biol. 2003, 2 (4): 28-PubMedCentralCrossRefPubMed
7.
go back to reference Fryer LG, Parbu-Patel A, Carling D: The Anti-diabetic drugs rosiglitazone and metformin stimulate AMP-activated protein kinase through distinct signaling pathways. J Biol Chem. 2002, 277 (28): 25226-25232.CrossRefPubMed Fryer LG, Parbu-Patel A, Carling D: The Anti-diabetic drugs rosiglitazone and metformin stimulate AMP-activated protein kinase through distinct signaling pathways. J Biol Chem. 2002, 277 (28): 25226-25232.CrossRefPubMed
8.
go back to reference Sullivan JE, Brocklehurst KJ, Marley AE, Carey F, Carling D, Beri RK: Inhibition of lipolysis and lipogenesis in isolated rat adipocytes with AICAR, a cell-permeable activator of AMP-activated protein kinase. FEBS Lett. 1994, 353 (1): 33-36.CrossRefPubMed Sullivan JE, Brocklehurst KJ, Marley AE, Carey F, Carling D, Beri RK: Inhibition of lipolysis and lipogenesis in isolated rat adipocytes with AICAR, a cell-permeable activator of AMP-activated protein kinase. FEBS Lett. 1994, 353 (1): 33-36.CrossRefPubMed
9.
go back to reference Corton JM, Gillespie JG, Hawley SA, Hardie DG: 5-aminoimidazole-4-carboxamide ribonucleoside. A specific method for activating AMP-activated protein kinase in intact cells?. Eur J Biochem. 1995, 229 (2): 558-565.CrossRefPubMed Corton JM, Gillespie JG, Hawley SA, Hardie DG: 5-aminoimidazole-4-carboxamide ribonucleoside. A specific method for activating AMP-activated protein kinase in intact cells?. Eur J Biochem. 1995, 229 (2): 558-565.CrossRefPubMed
10.
go back to reference Kefas BA, Cai Y, Ling Z, Heimberg H, Hue L, Pipeleers D, Van de Casteele M: AMP-activated protein kinase can induce apoptosis of insulin-producing MIN6 cells through stimulation of c-Jun-N-terminal kinase. J Mol Endocrinol. 2003, 30 (2): 151-161.CrossRefPubMed Kefas BA, Cai Y, Ling Z, Heimberg H, Hue L, Pipeleers D, Van de Casteele M: AMP-activated protein kinase can induce apoptosis of insulin-producing MIN6 cells through stimulation of c-Jun-N-terminal kinase. J Mol Endocrinol. 2003, 30 (2): 151-161.CrossRefPubMed
11.
go back to reference Meisse D, Van de Casteele M, Beauloye C, Hainault I, Kefas BA, Rider MH, Foufelle F, Hue L: Sustained activation of AMP-activated protein kinase induces c-Jun N-terminal kinase activation and apoptosis in liver cells. FEBS Lett. 2002, 526 (1-3): 38-42.CrossRefPubMed Meisse D, Van de Casteele M, Beauloye C, Hainault I, Kefas BA, Rider MH, Foufelle F, Hue L: Sustained activation of AMP-activated protein kinase induces c-Jun N-terminal kinase activation and apoptosis in liver cells. FEBS Lett. 2002, 526 (1-3): 38-42.CrossRefPubMed
12.
go back to reference Dagon Y, Avraham Y, Berry EM: AMPK activation regulates apoptosis, adipogenesis, and lipolysis by eIF2alpha in adipocytes. Biochem Biophys Res Commun. 2006, 340 (1): 43-47.CrossRefPubMed Dagon Y, Avraham Y, Berry EM: AMPK activation regulates apoptosis, adipogenesis, and lipolysis by eIF2alpha in adipocytes. Biochem Biophys Res Commun. 2006, 340 (1): 43-47.CrossRefPubMed
14.
15.
go back to reference Gokbuget N, Hoelzer D: Treatment of adult acute lymphoblastic leukemia. Hematology Am Soc Hematol Educ Program. 2006, 133-141. Gokbuget N, Hoelzer D: Treatment of adult acute lymphoblastic leukemia. Hematology Am Soc Hematol Educ Program. 2006, 133-141.
16.
go back to reference Rattan R, Giri S, Singh AK, Singh I: 5-Aminoimidazole-4-carboxamide-1-beta-D-ribofuranoside inhibits cancer cell proliferation in vitro and in vivo via AMP-activated protein kinase. J Biol Chem. 2005, 280 (47): 39582-39593.CrossRefPubMed Rattan R, Giri S, Singh AK, Singh I: 5-Aminoimidazole-4-carboxamide-1-beta-D-ribofuranoside inhibits cancer cell proliferation in vitro and in vivo via AMP-activated protein kinase. J Biol Chem. 2005, 280 (47): 39582-39593.CrossRefPubMed
17.
go back to reference Xiang X, Saha AK, Wen R, Ruderman NB, Luo Z: AMP-activated protein kinase activators can inhibit the growth of prostate cancer cells by multiple mechanisms. Biochem Biophys Res Commun. 2004, 321 (1): 161-167.CrossRefPubMed Xiang X, Saha AK, Wen R, Ruderman NB, Luo Z: AMP-activated protein kinase activators can inhibit the growth of prostate cancer cells by multiple mechanisms. Biochem Biophys Res Commun. 2004, 321 (1): 161-167.CrossRefPubMed
18.
go back to reference Woods A, Johnstone SR, Dickerson K, Leiper FC, Fryer LG, Neumann D, Schlattner U, Wallimann T, Carlson M, Carling D: LKB1 is the upstream kinase in the AMP-activated protein kinase cascade. Curr Biol. 2003, 13 (22): 2004-2008.CrossRefPubMed Woods A, Johnstone SR, Dickerson K, Leiper FC, Fryer LG, Neumann D, Schlattner U, Wallimann T, Carlson M, Carling D: LKB1 is the upstream kinase in the AMP-activated protein kinase cascade. Curr Biol. 2003, 13 (22): 2004-2008.CrossRefPubMed
19.
go back to reference Astrinidis A, Henske EP: Tuberous sclerosis complex: linking growth and energy signaling pathways with human disease. Oncogene. 2005, 24 (50): 7475-7481.CrossRefPubMed Astrinidis A, Henske EP: Tuberous sclerosis complex: linking growth and energy signaling pathways with human disease. Oncogene. 2005, 24 (50): 7475-7481.CrossRefPubMed
20.
go back to reference Hemminki A, Markie D, Tomlinson I, Avizienyte E, Roth S, Loukola A, Bignell G, Warren W, Aminoff M, Hoglund P, Jarvinen H, Kristo P, Pelin K, Ridanpaa M, Salovaara R, Toro T, Bodmer W, Olschwang S, Olsen AS, Stratton MR, de la Chapelle A, Aaltonen LA: A serine/threonine kinase gene defective in Peutz-Jeghers syndrome. Nature. 1998, 391 (6663): 184-187.CrossRefPubMed Hemminki A, Markie D, Tomlinson I, Avizienyte E, Roth S, Loukola A, Bignell G, Warren W, Aminoff M, Hoglund P, Jarvinen H, Kristo P, Pelin K, Ridanpaa M, Salovaara R, Toro T, Bodmer W, Olschwang S, Olsen AS, Stratton MR, de la Chapelle A, Aaltonen LA: A serine/threonine kinase gene defective in Peutz-Jeghers syndrome. Nature. 1998, 391 (6663): 184-187.CrossRefPubMed
21.
go back to reference Jenne DE, Reimann H, Nezu J, Friedel W, Loff S, Jeschke R, Muller O, Back W, Zimmer M: Peutz-Jeghers syndrome is caused by mutations in a novel serine threonine kinase. Nat Genet. 1998, 18 (1): 38-43.CrossRefPubMed Jenne DE, Reimann H, Nezu J, Friedel W, Loff S, Jeschke R, Muller O, Back W, Zimmer M: Peutz-Jeghers syndrome is caused by mutations in a novel serine threonine kinase. Nat Genet. 1998, 18 (1): 38-43.CrossRefPubMed
22.
go back to reference Nakanishi C, Yamaguchi T, Iijima T, Saji S, Toi M, Mori T, Miyaki M: Germline mutation of the LKB1/STK11 gene with loss of the normal allele in an aggressive breast cancer of Peutz-Jeghers syndrome. Oncology. 2004, 67 (5-6): 476-479.CrossRefPubMed Nakanishi C, Yamaguchi T, Iijima T, Saji S, Toi M, Mori T, Miyaki M: Germline mutation of the LKB1/STK11 gene with loss of the normal allele in an aggressive breast cancer of Peutz-Jeghers syndrome. Oncology. 2004, 67 (5-6): 476-479.CrossRefPubMed
23.
go back to reference Forcet C, Etienne-Manneville S, Gaude H, Fournier L, Debilly S, Salmi M, Baas A, Olschwang S, Clevers H, Billaud M: Functional analysis of Peutz-Jeghers mutations reveals that the LKB1 C-terminal region exerts a crucial role in regulating both the AMPK pathway and the cell polarity. Hum Mol Genet. 2005, 14 (10): 1283-1292.CrossRefPubMed Forcet C, Etienne-Manneville S, Gaude H, Fournier L, Debilly S, Salmi M, Baas A, Olschwang S, Clevers H, Billaud M: Functional analysis of Peutz-Jeghers mutations reveals that the LKB1 C-terminal region exerts a crucial role in regulating both the AMPK pathway and the cell polarity. Hum Mol Genet. 2005, 14 (10): 1283-1292.CrossRefPubMed
24.
go back to reference Inoki K, Zhu T, Guan KL: TSC2 mediates cellular energy response to control cell growth and survival. Cell. 2003, 115 (5): 577-590.CrossRefPubMed Inoki K, Zhu T, Guan KL: TSC2 mediates cellular energy response to control cell growth and survival. Cell. 2003, 115 (5): 577-590.CrossRefPubMed
25.
go back to reference Li Y, Corradetti MN, Inoki K, Guan KL: TSC2: filling the GAP in the mTOR signaling pathway. Trends Biochem Sci. 2004, 29 (1): 32-38.CrossRefPubMed Li Y, Corradetti MN, Inoki K, Guan KL: TSC2: filling the GAP in the mTOR signaling pathway. Trends Biochem Sci. 2004, 29 (1): 32-38.CrossRefPubMed
26.
go back to reference Stapleton D, Woollatt E, Mitchelhill KI, Nicholl JK, Fernandez CS, Michell BJ, Witters LA, Power DA, Sutherland GR, Kemp BE: AMP-activated protein kinase isoenzyme family: subunit structure and chromosomal location. FEBS Lett. 1997, 409 (3): 452-456.CrossRefPubMed Stapleton D, Woollatt E, Mitchelhill KI, Nicholl JK, Fernandez CS, Michell BJ, Witters LA, Power DA, Sutherland GR, Kemp BE: AMP-activated protein kinase isoenzyme family: subunit structure and chromosomal location. FEBS Lett. 1997, 409 (3): 452-456.CrossRefPubMed
27.
go back to reference Shaw RJ, Lamia KA, Vasquez D, Koo SH, Bardeesy N, Depinho RA, Montminy M, Cantley LC: The kinase LKB1 mediates glucose homeostasis in liver and therapeutic effects of metformin. Science. 2005, 310 (5754): 1642-1646.PubMedCentralCrossRefPubMed Shaw RJ, Lamia KA, Vasquez D, Koo SH, Bardeesy N, Depinho RA, Montminy M, Cantley LC: The kinase LKB1 mediates glucose homeostasis in liver and therapeutic effects of metformin. Science. 2005, 310 (5754): 1642-1646.PubMedCentralCrossRefPubMed
28.
go back to reference Woods A, Vertommen D, Neumann D, Turk R, Bayliss J, Schlattner U, Wallimann T, Carling D, Rider MH: Identification of phosphorylation sites in AMP-activated protein kinase (AMPK) for upstream AMPK kinases and study of their roles by site-directed mutagenesis. J Biol Chem. 2003, 278 (31): 28434-28442.CrossRefPubMed Woods A, Vertommen D, Neumann D, Turk R, Bayliss J, Schlattner U, Wallimann T, Carling D, Rider MH: Identification of phosphorylation sites in AMP-activated protein kinase (AMPK) for upstream AMPK kinases and study of their roles by site-directed mutagenesis. J Biol Chem. 2003, 278 (31): 28434-28442.CrossRefPubMed
29.
go back to reference Hunger SP, Sun T, Boswell AF, Carroll AJ, McGavran L: Hyperdiploidy and E2A-PBX1 fusion in an adult with t(1;19)+ acute lymphoblastic leukemia: case report and review of the literature. Genes Chromosomes Cancer. 1997, 20 (4): 392-398.CrossRefPubMed Hunger SP, Sun T, Boswell AF, Carroll AJ, McGavran L: Hyperdiploidy and E2A-PBX1 fusion in an adult with t(1;19)+ acute lymphoblastic leukemia: case report and review of the literature. Genes Chromosomes Cancer. 1997, 20 (4): 392-398.CrossRefPubMed
30.
go back to reference Borkhardt A, Harbott J, Lampert F: Biology and clinical significance of the TEL/AML1 rearrangement. Curr Opin Pediatr. 1999, 11 (1): 33-38.CrossRefPubMed Borkhardt A, Harbott J, Lampert F: Biology and clinical significance of the TEL/AML1 rearrangement. Curr Opin Pediatr. 1999, 11 (1): 33-38.CrossRefPubMed
32.
go back to reference Pui CH, Chessells JM, Camitta B, Baruchel A, Biondi A, Boyett JM, Carroll A, Eden OB, Evans WE, Gadner H, Harbott J, Harms DO, Harrison CJ, Harrison PL, Heerema N, Janka-Schaub G, Kamps W, Masera G, Pullen J, Raimondi SC, Richards S, Riehm H, Sallan S, Sather H, Shuster J, Silverman LB, Valsecchi MG, Vilmer E, Zhou Y, Gaynon PS, Schrappe M: Clinical heterogeneity in childhood acute lymphoblastic leukemia with 11q23 rearrangements. Leukemia. 2003, 17 (4): 700-706.CrossRefPubMed Pui CH, Chessells JM, Camitta B, Baruchel A, Biondi A, Boyett JM, Carroll A, Eden OB, Evans WE, Gadner H, Harbott J, Harms DO, Harrison CJ, Harrison PL, Heerema N, Janka-Schaub G, Kamps W, Masera G, Pullen J, Raimondi SC, Richards S, Riehm H, Sallan S, Sather H, Shuster J, Silverman LB, Valsecchi MG, Vilmer E, Zhou Y, Gaynon PS, Schrappe M: Clinical heterogeneity in childhood acute lymphoblastic leukemia with 11q23 rearrangements. Leukemia. 2003, 17 (4): 700-706.CrossRefPubMed
33.
go back to reference Leclerc GJ, Leclerc GM, Kinser TT, Barredo JC: Analysis of folylpoly-gamma-glutamate synthetase gene expression in human B-precursor ALL and T-lineage ALL cells. BMC Cancer. 2006, 6: 132-PubMedCentralCrossRefPubMed Leclerc GJ, Leclerc GM, Kinser TT, Barredo JC: Analysis of folylpoly-gamma-glutamate synthetase gene expression in human B-precursor ALL and T-lineage ALL cells. BMC Cancer. 2006, 6: 132-PubMedCentralCrossRefPubMed
34.
go back to reference Parkinson FE, Geiger JD: Effects of iodotubercidin on adenosine kinase activity and nucleoside transport in DDT1 MF-2 smooth muscle cells. J Pharmacol Exp Ther. 1996, 277 (3): 1397-1401.PubMed Parkinson FE, Geiger JD: Effects of iodotubercidin on adenosine kinase activity and nucleoside transport in DDT1 MF-2 smooth muscle cells. J Pharmacol Exp Ther. 1996, 277 (3): 1397-1401.PubMed
36.
go back to reference Wang B, Matsuoka S, Carpenter PB, Elledge SJ: 53BP1, a mediator of the DNA damage checkpoint. Science. 2002, 298 (5597): 1435-1438.CrossRefPubMed Wang B, Matsuoka S, Carpenter PB, Elledge SJ: 53BP1, a mediator of the DNA damage checkpoint. Science. 2002, 298 (5597): 1435-1438.CrossRefPubMed
37.
go back to reference Schafer ZT, Kornbluth S: The apoptosome: physiological, developmental, and pathological modes of regulation. Dev Cell. 2006, 10 (5): 549-561.CrossRefPubMed Schafer ZT, Kornbluth S: The apoptosome: physiological, developmental, and pathological modes of regulation. Dev Cell. 2006, 10 (5): 549-561.CrossRefPubMed
38.
go back to reference Brancho D, Tanaka N, Jaeschke A, Ventura JJ, Kelkar N, Tanaka Y, Kyuuma M, Takeshita T, Flavell RA, Davis RJ: Mechanism of p38 MAP kinase activation in vivo. Genes Dev. 2003, 17 (16): 1969-1978.PubMedCentralCrossRefPubMed Brancho D, Tanaka N, Jaeschke A, Ventura JJ, Kelkar N, Tanaka Y, Kyuuma M, Takeshita T, Flavell RA, Davis RJ: Mechanism of p38 MAP kinase activation in vivo. Genes Dev. 2003, 17 (16): 1969-1978.PubMedCentralCrossRefPubMed
39.
go back to reference Ge B, Gram H, Di Padova F, Huang B, New L, Ulevitch RJ, Luo Y, Han J: MAPKK-independent activation of p38alpha mediated by TAB1-dependent autophosphorylation of p38alpha. Science. 2002, 295 (5558): 1291-1294.CrossRefPubMed Ge B, Gram H, Di Padova F, Huang B, New L, Ulevitch RJ, Luo Y, Han J: MAPKK-independent activation of p38alpha mediated by TAB1-dependent autophosphorylation of p38alpha. Science. 2002, 295 (5558): 1291-1294.CrossRefPubMed
40.
go back to reference Lisnock J, Tebben A, Frantz B, O'Neill EA, Croft G, O'Keefe SJ, Li B, Hacker C, de Laszlo S, Smith A, Libby B, Liverton N, Hermes J, LoGrasso P: Molecular basis for p38 protein kinase inhibitor specificity. Biochemistry. 1999, 38 (11): 3456-CrossRefPubMed Lisnock J, Tebben A, Frantz B, O'Neill EA, Croft G, O'Keefe SJ, Li B, Hacker C, de Laszlo S, Smith A, Libby B, Liverton N, Hermes J, LoGrasso P: Molecular basis for p38 protein kinase inhibitor specificity. Biochemistry. 1999, 38 (11): 3456-CrossRefPubMed
41.
go back to reference Davies SP, Reddy H, Caivano M, Cohen P: Specificity and mechanism of action of some commonly used protein kinase inhibitors. Biochem J. 2000, 351 (Pt 1): 95-105.PubMedCentralCrossRefPubMed Davies SP, Reddy H, Caivano M, Cohen P: Specificity and mechanism of action of some commonly used protein kinase inhibitors. Biochem J. 2000, 351 (Pt 1): 95-105.PubMedCentralCrossRefPubMed
42.
go back to reference Luo J, Manning BD, Cantley LC: Targeting the PI3K-Akt pathway in human cancer: rationale and promise. Cancer Cell. 2003, 4 (4): 257-262.CrossRefPubMed Luo J, Manning BD, Cantley LC: Targeting the PI3K-Akt pathway in human cancer: rationale and promise. Cancer Cell. 2003, 4 (4): 257-262.CrossRefPubMed
43.
go back to reference Vivanco I, Sawyers CL: The phosphatidylinositol 3-Kinase AKT pathway in human cancer. Nat Rev Cancer. 2002, 2 (7): 489-501.CrossRefPubMed Vivanco I, Sawyers CL: The phosphatidylinositol 3-Kinase AKT pathway in human cancer. Nat Rev Cancer. 2002, 2 (7): 489-501.CrossRefPubMed
44.
go back to reference Stefanelli C, Stanic I, Bonavita F, Flamigni F, Pignatti C, Guarnieri C, Caldarera CM: Inhibition of glucocorticoid-induced apoptosis with 5-aminoimidazole-4-carboxamide ribonucleoside, a cell-permeable activator of AMP-activated protein kinase. Biochem Biophys Res Commun. 1998, 243 (3): 821-826.CrossRefPubMed Stefanelli C, Stanic I, Bonavita F, Flamigni F, Pignatti C, Guarnieri C, Caldarera CM: Inhibition of glucocorticoid-induced apoptosis with 5-aminoimidazole-4-carboxamide ribonucleoside, a cell-permeable activator of AMP-activated protein kinase. Biochem Biophys Res Commun. 1998, 243 (3): 821-826.CrossRefPubMed
45.
go back to reference Kato K, Ogura T, Kishimoto A, Minegishi Y, Nakajima N, Miyazaki M, Esumi H: Critical roles of AMP-activated protein kinase in constitutive tolerance of cancer cells to nutrient deprivation and tumor formation. Oncogene. 2002, 21 (39): 6082-6090.CrossRefPubMed Kato K, Ogura T, Kishimoto A, Minegishi Y, Nakajima N, Miyazaki M, Esumi H: Critical roles of AMP-activated protein kinase in constitutive tolerance of cancer cells to nutrient deprivation and tumor formation. Oncogene. 2002, 21 (39): 6082-6090.CrossRefPubMed
46.
go back to reference Bolster DR, Crozier SJ, Kimball SR, Jefferson LS: AMP-activated protein kinase suppresses protein synthesis in rat skeletal muscle through down-regulated mammalian target of rapamycin (mTOR) signaling. J Biol Chem. 2002, 277 (27): 23977-23980.CrossRefPubMed Bolster DR, Crozier SJ, Kimball SR, Jefferson LS: AMP-activated protein kinase suppresses protein synthesis in rat skeletal muscle through down-regulated mammalian target of rapamycin (mTOR) signaling. J Biol Chem. 2002, 277 (27): 23977-23980.CrossRefPubMed
47.
go back to reference Swinnen JV, Beckers A, Brusselmans K, Organe S, Segers J, Timmermans L, Vanderhoydonc F, Deboel L, Derua R, Waelkens E, De Schrijver E, Van de Sande T, Noel A, Foufelle F, Verhoeven G: Mimicry of a cellular low energy status blocks tumor cell anabolism and suppresses the malignant phenotype. Cancer Res. 2005, 65 (6): 2441-2448.CrossRefPubMed Swinnen JV, Beckers A, Brusselmans K, Organe S, Segers J, Timmermans L, Vanderhoydonc F, Deboel L, Derua R, Waelkens E, De Schrijver E, Van de Sande T, Noel A, Foufelle F, Verhoeven G: Mimicry of a cellular low energy status blocks tumor cell anabolism and suppresses the malignant phenotype. Cancer Res. 2005, 65 (6): 2441-2448.CrossRefPubMed
48.
go back to reference Shaw RJ, Bardeesy N, Manning BD, Lopez L, Kosmatka M, DePinho RA, Cantley LC: The LKB1 tumor suppressor negatively regulates mTOR signaling. Cancer Cell. 2004, 6 (1): 91-99.CrossRefPubMed Shaw RJ, Bardeesy N, Manning BD, Lopez L, Kosmatka M, DePinho RA, Cantley LC: The LKB1 tumor suppressor negatively regulates mTOR signaling. Cancer Cell. 2004, 6 (1): 91-99.CrossRefPubMed
49.
go back to reference Imamura K, Ogura T, Kishimoto A, Kaminishi M, Esumi H: Cell cycle regulation via p53 phosphorylation by a 5'-AMP activated protein kinase activator, 5-aminoimidazole- 4-carboxamide-1-beta-D-ribofuranoside, in a human hepatocellular carcinoma cell line. Biochem Biophys Res Commun. 2001, 287 (2): 562-567.CrossRefPubMed Imamura K, Ogura T, Kishimoto A, Kaminishi M, Esumi H: Cell cycle regulation via p53 phosphorylation by a 5'-AMP activated protein kinase activator, 5-aminoimidazole- 4-carboxamide-1-beta-D-ribofuranoside, in a human hepatocellular carcinoma cell line. Biochem Biophys Res Commun. 2001, 287 (2): 562-567.CrossRefPubMed
50.
go back to reference Igata M, Motoshima H, Tsuruzoe K, Kojima K, Matsumura T, Kondo T, Taguchi T, Nakamaru K, Yano M, Kukidome D, Matsumoto K, Toyonaga T, Asano T, Nishikawa T, Araki E: Adenosine monophosphate-activated protein kinase suppresses vascular smooth muscle cell proliferation through the inhibition of cell cycle progression. Circ Res. 2005, 97 (8): 837-844.CrossRefPubMed Igata M, Motoshima H, Tsuruzoe K, Kojima K, Matsumura T, Kondo T, Taguchi T, Nakamaru K, Yano M, Kukidome D, Matsumoto K, Toyonaga T, Asano T, Nishikawa T, Araki E: Adenosine monophosphate-activated protein kinase suppresses vascular smooth muscle cell proliferation through the inhibition of cell cycle progression. Circ Res. 2005, 97 (8): 837-844.CrossRefPubMed
51.
go back to reference Jones RG, Plas DR, Kubek S, Buzzai M, Mu J, Xu Y, Birnbaum MJ, Thompson CB: AMP-activated protein kinase induces a p53-dependent metabolic checkpoint. Mol Cell. 2005, 18 (3): 283-293.CrossRefPubMed Jones RG, Plas DR, Kubek S, Buzzai M, Mu J, Xu Y, Birnbaum MJ, Thompson CB: AMP-activated protein kinase induces a p53-dependent metabolic checkpoint. Mol Cell. 2005, 18 (3): 283-293.CrossRefPubMed
52.
go back to reference Jimenez AI, Fernandez P, Dominguez O, Dopazo A, Sanchez-Cespedes M: Growth and molecular profile of lung cancer cells expressing ectopic LKB1: down-regulation of the phosphatidylinositol 3'-phosphate kinase/PTEN pathway. Cancer Res. 2003, 63 (6): 1382-1388.PubMed Jimenez AI, Fernandez P, Dominguez O, Dopazo A, Sanchez-Cespedes M: Growth and molecular profile of lung cancer cells expressing ectopic LKB1: down-regulation of the phosphatidylinositol 3'-phosphate kinase/PTEN pathway. Cancer Res. 2003, 63 (6): 1382-1388.PubMed
53.
go back to reference Rosner M, Hengstschlager M: Tuberin binds p27 and negatively regulates its interaction with the SCF component Skp2. J Biol Chem. 2004, 279 (47): 48707-48715.CrossRefPubMed Rosner M, Hengstschlager M: Tuberin binds p27 and negatively regulates its interaction with the SCF component Skp2. J Biol Chem. 2004, 279 (47): 48707-48715.CrossRefPubMed
54.
go back to reference Miloloza A, Rosner M, Nellist M, Halley D, Bernaschek G, Hengstschlager M: The TSC1 gene product, hamartin, negatively regulates cell proliferation. Hum Mol Genet. 2000, 9 (12): 1721-1727.CrossRefPubMed Miloloza A, Rosner M, Nellist M, Halley D, Bernaschek G, Hengstschlager M: The TSC1 gene product, hamartin, negatively regulates cell proliferation. Hum Mol Genet. 2000, 9 (12): 1721-1727.CrossRefPubMed
55.
go back to reference Pasumarthi KB, Nakajima H, Nakajima HO, Jing S, Field LJ: Enhanced cardiomyocyte DNA synthesis during myocardial hypertrophy in mice expressing a modified TSC2 transgene. Circ Res. 2000, 86 (10): 1069-1077.CrossRefPubMed Pasumarthi KB, Nakajima H, Nakajima HO, Jing S, Field LJ: Enhanced cardiomyocyte DNA synthesis during myocardial hypertrophy in mice expressing a modified TSC2 transgene. Circ Res. 2000, 86 (10): 1069-1077.CrossRefPubMed
56.
go back to reference Soucek T, Yeung RS, Hengstschlager M: Inactivation of the cyclin-dependent kinase inhibitor p27 upon loss of the tuberous sclerosis complex gene-2. Proc Natl Acad Sci U S A. 1998, 95 (26): 15653-15658.PubMedCentralCrossRefPubMed Soucek T, Yeung RS, Hengstschlager M: Inactivation of the cyclin-dependent kinase inhibitor p27 upon loss of the tuberous sclerosis complex gene-2. Proc Natl Acad Sci U S A. 1998, 95 (26): 15653-15658.PubMedCentralCrossRefPubMed
57.
go back to reference Wullschleger S, Loewith R, Hall MN: TOR signaling in growth and metabolism. Cell. 2006, 124 (3): 471-484.CrossRefPubMed Wullschleger S, Loewith R, Hall MN: TOR signaling in growth and metabolism. Cell. 2006, 124 (3): 471-484.CrossRefPubMed
Metadata
Title
Cytotoxic effect of 5-aminoimidazole-4-carboxamide-1-β-4-ribofuranoside (AICAR) on childhood acute lymphoblastic leukemia (ALL) cells: implication for targeted therapy
Authors
Tapas K Sengupta
Gilles M Leclerc
Ting Ting Hsieh-Kinser
Guy J Leclerc
Inderjit Singh
Julio C Barredo
Publication date
01-12-2007
Publisher
BioMed Central
Published in
Molecular Cancer / Issue 1/2007
Electronic ISSN: 1476-4598
DOI
https://doi.org/10.1186/1476-4598-6-46

Other articles of this Issue 1/2007

Molecular Cancer 1/2007 Go to the issue
Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine