Skip to main content
Top
Published in: BMC Cancer 1/2024

Open Access 01-12-2024 | Cytostatic Therapy | Research

Reductive prodrug and AIE copolymer nanoparticle for monitoring and chemotherapy

Authors: Zigui Wang, Guilin Li, Qiaohui Zhao, Guangyu Fu, Zengli Yang, Guojun Zhang

Published in: BMC Cancer | Issue 1/2024

Login to get access

Abstract

Polymeric micelle systems for drug delivery, monitor and chemotherapy have gained significant attention, and reductive polymeric micelle systems have become particularly attractive due to their controlled release behavior without additional assistance. However, there are challenges in accurately controlling drug and probe release from the nanoparticles and determining the loading content of drug and probe. To address these issues, we have developed a reduction-responsive Pt(IV) prodrug-based polymeric delivery system that can be dynamically monitored using aggregation-induced emission luminogens (AIE) based bioprobes. These polymeric micelle can self-assemble into nanoparticles and release both bio-active Pt(II) drug and bio-probe upon reduction activation. TPE molecules released in the inner endo/lysosomal microenvironment aggregate and fluoresce upon irradiation, thus allowing real-time tracking of drug biodistribution without additional contrast agents. Advantages of this system include position-specific chemical bond cleavage, control of platinum content, and monitoring of drug reduction and biodistribution.
Appendix
Available only for authorised users
Literature
1.
go back to reference Ghosh B, Biswas S. Polymeric micelles in cancer therapy: State of the art. J Control Release. 2021;332:127–47.CrossRefPubMed Ghosh B, Biswas S. Polymeric micelles in cancer therapy: State of the art. J Control Release. 2021;332:127–47.CrossRefPubMed
2.
go back to reference Wang Z, Wu P, He Z, He H, Rong W, Li J, Zhou D, Huang Y. Mesoporous silica nanoparticles with lactose-mediated targeting effect to deliver platinum(iv) prodrug for liver cancer therapy. J Mater Chem B. 2017;5(36):7591–7.CrossRefPubMed Wang Z, Wu P, He Z, He H, Rong W, Li J, Zhou D, Huang Y. Mesoporous silica nanoparticles with lactose-mediated targeting effect to deliver platinum(iv) prodrug for liver cancer therapy. J Mater Chem B. 2017;5(36):7591–7.CrossRefPubMed
3.
go back to reference Xiao H, Noble GT, Stefanick JF, Qi R, Kiziltepe T, Jing X, Bilgicer B. Photosensitive Pt(IV)–azide prodrug-loaded nanoparticles exhibit controlled drug release and enhanced efficacy in vivo. J Controlled Release. 2014;173:11–7.CrossRef Xiao H, Noble GT, Stefanick JF, Qi R, Kiziltepe T, Jing X, Bilgicer B. Photosensitive Pt(IV)–azide prodrug-loaded nanoparticles exhibit controlled drug release and enhanced efficacy in vivo. J Controlled Release. 2014;173:11–7.CrossRef
4.
go back to reference He S, Qi Y, Kuang G, Zhou D, Li J, Xie Z, Chen X, Jing X, Huang Y. Single-Stimulus Dual-Drug Sensitive Nanoplatform for Enhanced Photoactivated Therapy. Biomacromol. 2016;17(6):2120–7.CrossRef He S, Qi Y, Kuang G, Zhou D, Li J, Xie Z, Chen X, Jing X, Huang Y. Single-Stimulus Dual-Drug Sensitive Nanoplatform for Enhanced Photoactivated Therapy. Biomacromol. 2016;17(6):2120–7.CrossRef
5.
go back to reference Gao J, Meng Q, Zhao Y, et al. EHD1 confers resistance to cisplatin in non-small cell lung cancer by regulating intracellular cisplatin concentrations. BMC Cancer. 2016;16:470.CrossRefPubMedPubMedCentral Gao J, Meng Q, Zhao Y, et al. EHD1 confers resistance to cisplatin in non-small cell lung cancer by regulating intracellular cisplatin concentrations. BMC Cancer. 2016;16:470.CrossRefPubMedPubMedCentral
6.
go back to reference Wang Z, Kuang G, Yu Z, Li A, Zhou D, Huang Y. Light-activatable dual prodrug polymer nanoparticle for precise synergistic chemotherapy guided by drug-mediated computed tomography imaging. Acta Biomater. 2019;94:459–68.CrossRefPubMed Wang Z, Kuang G, Yu Z, Li A, Zhou D, Huang Y. Light-activatable dual prodrug polymer nanoparticle for precise synergistic chemotherapy guided by drug-mediated computed tomography imaging. Acta Biomater. 2019;94:459–68.CrossRefPubMed
7.
go back to reference Wu P, Wang X, Wang Z, Ma W, Guo J, Chen J, Yu Z, Li J, Zhou D. Light-Activatable Prodrug and AIEgen Copolymer Nanoparticle for Dual-Drug Monitoring and Combination Therapy. ACS Appl Mater Interfaces. 2019;11(20):18691–700.CrossRefPubMed Wu P, Wang X, Wang Z, Ma W, Guo J, Chen J, Yu Z, Li J, Zhou D. Light-Activatable Prodrug and AIEgen Copolymer Nanoparticle for Dual-Drug Monitoring and Combination Therapy. ACS Appl Mater Interfaces. 2019;11(20):18691–700.CrossRefPubMed
8.
go back to reference Saito G, Swanson JA, Lee KD. Drug delivery strategy utilizing conjugation via reversible disulfide linkages: role and site of cellular reducing activities. Adv Drug Res. 2003;55(2):199–215.CrossRef Saito G, Swanson JA, Lee KD. Drug delivery strategy utilizing conjugation via reversible disulfide linkages: role and site of cellular reducing activities. Adv Drug Res. 2003;55(2):199–215.CrossRef
9.
go back to reference Spiers L, Gray M, Lyon P, et al. Clinical trial protocol for PanDox: a phase I study of targeted chemotherapy delivery to non-resectable primary pancreatic tumours using thermosensitive liposomal doxorubicin (ThermoDox®) and focused ultrasound. BMC Cancer. 2023;23:896.CrossRefPubMedPubMedCentral Spiers L, Gray M, Lyon P, et al. Clinical trial protocol for PanDox: a phase I study of targeted chemotherapy delivery to non-resectable primary pancreatic tumours using thermosensitive liposomal doxorubicin (ThermoDox®) and focused ultrasound. BMC Cancer. 2023;23:896.CrossRefPubMedPubMedCentral
10.
go back to reference Stenzel MH. The Trojan Horse Goes Wild: The Effect of Drug Loading on the Behavior of Nanoparticles. Angew Chem Int Ed Engl. 2021;60(5):2202–6.CrossRefPubMed Stenzel MH. The Trojan Horse Goes Wild: The Effect of Drug Loading on the Behavior of Nanoparticles. Angew Chem Int Ed Engl. 2021;60(5):2202–6.CrossRefPubMed
11.
go back to reference Chertok B, Moffat BA, David AE, Yu F, Bergemann C, Ross BD, Yang VC. Iron oxide nanoparticles as a drug delivery vehicle for MRI monitored magnetic targeting of brain tumors. Biomaterials. 2008;29(4):487–96.CrossRefPubMed Chertok B, Moffat BA, David AE, Yu F, Bergemann C, Ross BD, Yang VC. Iron oxide nanoparticles as a drug delivery vehicle for MRI monitored magnetic targeting of brain tumors. Biomaterials. 2008;29(4):487–96.CrossRefPubMed
13.
go back to reference Yan GP, Robinson L, Hogg P. Magnetic resonance imaging contrast agents: Overview and perspectives. Radiography. 2007;13:e5–19.CrossRef Yan GP, Robinson L, Hogg P. Magnetic resonance imaging contrast agents: Overview and perspectives. Radiography. 2007;13:e5–19.CrossRef
14.
go back to reference Ghezzi M, Pescina S, Padula C, Santi P, Del Favero E, Cantù L, Nicoli S. Polymeric micelles in drug delivery: An insight of the techniques for their characterization and assessment in biorelevant conditions. J Controlled Release. 2021;332:312–36.CrossRef Ghezzi M, Pescina S, Padula C, Santi P, Del Favero E, Cantù L, Nicoli S. Polymeric micelles in drug delivery: An insight of the techniques for their characterization and assessment in biorelevant conditions. J Controlled Release. 2021;332:312–36.CrossRef
16.
go back to reference Wang X, Li S, Wang S, Zheng S, Chen Z, Song H. Protein Binding Nanoparticles as an Integrated Platform for Cancer Diagnosis and Treatment. Adv Sci. 2022;9(29):2202453.CrossRef Wang X, Li S, Wang S, Zheng S, Chen Z, Song H. Protein Binding Nanoparticles as an Integrated Platform for Cancer Diagnosis and Treatment. Adv Sci. 2022;9(29):2202453.CrossRef
17.
go back to reference Mariani G, Bruselli L, Kuwert T, Kim EE, Flotats A, Israel O, Dondi M, Watanabe N. A review on the clinical uses of SPECT/CT. Eur J Nucl Med Mol Imaging. 2010;37(10):1959–85.CrossRefPubMed Mariani G, Bruselli L, Kuwert T, Kim EE, Flotats A, Israel O, Dondi M, Watanabe N. A review on the clinical uses of SPECT/CT. Eur J Nucl Med Mol Imaging. 2010;37(10):1959–85.CrossRefPubMed
18.
go back to reference Katti G, Ara SA, Shireen A. Magnetic resonance imaging (MRI)–A review. Int J Dent Clin. 2011;3(1):65–70. Katti G, Ara SA, Shireen A. Magnetic resonance imaging (MRI)–A review. Int J Dent Clin. 2011;3(1):65–70.
19.
go back to reference Rao J, Dragulescu-Andrasi A, Yao H. Fluorescence imaging in vivo: recent advances. Curr Opin Biotechnol. 2007;18(1):17–25.CrossRefPubMed Rao J, Dragulescu-Andrasi A, Yao H. Fluorescence imaging in vivo: recent advances. Curr Opin Biotechnol. 2007;18(1):17–25.CrossRefPubMed
20.
go back to reference Wang S, Ren WX, Hou J-T, Won M, An J, Chen X, Shu J, Kim JS. Fluorescence imaging of pathophysiological microenvironments. Chem Soc Rev. 2021;50(16):8887–902.CrossRefPubMed Wang S, Ren WX, Hou J-T, Won M, An J, Chen X, Shu J, Kim JS. Fluorescence imaging of pathophysiological microenvironments. Chem Soc Rev. 2021;50(16):8887–902.CrossRefPubMed
21.
go back to reference Yin Q, Yap FY, Yin L, Ma L, Zhou Q, Dobrucki LW, Fan TM, Gaba RC, Cheng J. Poly(iohexol) Nanoparticles As Contrast Agents for in Vivo X-ray Computed Tomography Imaging. J Am Chem Soc. 2013;135(37):13620–3.CrossRefPubMedPubMedCentral Yin Q, Yap FY, Yin L, Ma L, Zhou Q, Dobrucki LW, Fan TM, Gaba RC, Cheng J. Poly(iohexol) Nanoparticles As Contrast Agents for in Vivo X-ray Computed Tomography Imaging. J Am Chem Soc. 2013;135(37):13620–3.CrossRefPubMedPubMedCentral
22.
go back to reference Ding D, Li K, Liu B, Tang BZ. Bioprobes Based on AIE Fluorogens. Acc Chem Res. 2013;46(11):2441–53.CrossRefPubMed Ding D, Li K, Liu B, Tang BZ. Bioprobes Based on AIE Fluorogens. Acc Chem Res. 2013;46(11):2441–53.CrossRefPubMed
23.
go back to reference Mérian J, Gravier J, Navarro F, Texier I. Fluorescent Nanoprobes Dedicated to in Vivo Imaging: From Preclinical Validations to Clinical Translation. Molecules. 2012;17(5):5564–91.CrossRefPubMedPubMedCentral Mérian J, Gravier J, Navarro F, Texier I. Fluorescent Nanoprobes Dedicated to in Vivo Imaging: From Preclinical Validations to Clinical Translation. Molecules. 2012;17(5):5564–91.CrossRefPubMedPubMedCentral
24.
go back to reference Chen M, Yin M. Design and development of fluorescent nanostructures for bioimaging. Prog Polym Sci. 2014;39(2):365–95.CrossRef Chen M, Yin M. Design and development of fluorescent nanostructures for bioimaging. Prog Polym Sci. 2014;39(2):365–95.CrossRef
25.
go back to reference Qi J, Hu X, Dong X, Lu Y, Lu H, Zhao W, Wu W. Towards more accurate bioimaging of drug nanocarriers: turning aggregation-caused quenching into a useful tool. Adv Drug Deliv Rev. 2019;143:206–25.CrossRefPubMed Qi J, Hu X, Dong X, Lu Y, Lu H, Zhao W, Wu W. Towards more accurate bioimaging of drug nanocarriers: turning aggregation-caused quenching into a useful tool. Adv Drug Deliv Rev. 2019;143:206–25.CrossRefPubMed
26.
go back to reference Yuan WZ, Lu P, Chen S, Lam JWY, Wang Z, Liu Y, Kwok HS, Ma Y, Tang BZ. Changing the Behavior of Chromophores from Aggregation-Caused Quenching to Aggregation-Induced Emission: Development of Highly Efficient Light Emitters in the Solid State. Adv Mater. 2010;22(19):2159–63.CrossRefPubMed Yuan WZ, Lu P, Chen S, Lam JWY, Wang Z, Liu Y, Kwok HS, Ma Y, Tang BZ. Changing the Behavior of Chromophores from Aggregation-Caused Quenching to Aggregation-Induced Emission: Development of Highly Efficient Light Emitters in the Solid State. Adv Mater. 2010;22(19):2159–63.CrossRefPubMed
27.
go back to reference He S, Li C, Zhang Q, Ding J, Liang X-J, Chen X, Xiao H, Chen X, Zhou D, Huang Y. Tailoring Platinum(IV) Amphiphiles for Self-Targeting All-in-One Assemblies as Precise Multimodal Theranostic Nanomedicine. ACS Nano. 2018;12(7):7272–81.CrossRefPubMed He S, Li C, Zhang Q, Ding J, Liang X-J, Chen X, Xiao H, Chen X, Zhou D, Huang Y. Tailoring Platinum(IV) Amphiphiles for Self-Targeting All-in-One Assemblies as Precise Multimodal Theranostic Nanomedicine. ACS Nano. 2018;12(7):7272–81.CrossRefPubMed
28.
go back to reference Johnstone TC, Suntharalingam K, Lippard SJ. The Next Generation of Platinum Drugs: Targeted Pt(II) Agents, Nanoparticle Delivery, and Pt(IV) Prodrugs. Chem Rev. 2016;116(5):3436–86.CrossRefPubMedPubMedCentral Johnstone TC, Suntharalingam K, Lippard SJ. The Next Generation of Platinum Drugs: Targeted Pt(II) Agents, Nanoparticle Delivery, and Pt(IV) Prodrugs. Chem Rev. 2016;116(5):3436–86.CrossRefPubMedPubMedCentral
29.
go back to reference Ravera M, Gabano E, McGlinchey MJ, Osella D. A view on multi-action Pt(IV) antitumor prodrugs. Inorg Chim Acta. 2019;492:32–47.CrossRef Ravera M, Gabano E, McGlinchey MJ, Osella D. A view on multi-action Pt(IV) antitumor prodrugs. Inorg Chim Acta. 2019;492:32–47.CrossRef
30.
go back to reference Rottenberg S, Disler C, Perego P. The rediscovery of platinum-based cancer therapy. Nat Rev Cancer. 2021;21(1):37–50.CrossRefPubMed Rottenberg S, Disler C, Perego P. The rediscovery of platinum-based cancer therapy. Nat Rev Cancer. 2021;21(1):37–50.CrossRefPubMed
31.
32.
go back to reference Miller MA, Zheng Y-R, Gadde S, Pfirschke C, Zope H, Engblom C, Kohler RH, Iwamoto Y, Yang KS, Askevold B, Kolishetti N, Pittet M, Lippard SJ, Farokhzad OC, Weissleder R. Tumour-associated macrophages act as a slow-release reservoir of nano-therapeutic Pt(IV) pro-drug. Nat Commun. 2015;6(1):8692.CrossRefPubMedPubMedCentral Miller MA, Zheng Y-R, Gadde S, Pfirschke C, Zope H, Engblom C, Kohler RH, Iwamoto Y, Yang KS, Askevold B, Kolishetti N, Pittet M, Lippard SJ, Farokhzad OC, Weissleder R. Tumour-associated macrophages act as a slow-release reservoir of nano-therapeutic Pt(IV) pro-drug. Nat Commun. 2015;6(1):8692.CrossRefPubMedPubMedCentral
Metadata
Title
Reductive prodrug and AIE copolymer nanoparticle for monitoring and chemotherapy
Authors
Zigui Wang
Guilin Li
Qiaohui Zhao
Guangyu Fu
Zengli Yang
Guojun Zhang
Publication date
01-12-2024
Publisher
BioMed Central
Published in
BMC Cancer / Issue 1/2024
Electronic ISSN: 1471-2407
DOI
https://doi.org/10.1186/s12885-024-12135-7

Other articles of this Issue 1/2024

BMC Cancer 1/2024 Go to the issue
Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine