Skip to main content
Top
Published in: BMC Cancer 1/2024

Open Access 01-12-2024 | Lung Cancer | Research

Assessing the causal relationship between 731 immunophenotypes and the risk of lung cancer: a bidirectional mendelian randomization study

Authors: Ming Xu, Chengkai Li, Liyan Xiang, Siyue Chen, Lin Chen, Gongxia Ling, Yanqing Hu, Lan Yang, Xiang Yuan, Xiaodong Xia, Hailin Zhang

Published in: BMC Cancer | Issue 1/2024

Login to get access

Abstract

Background

Previous studies have observed a link between immunophenotypes and lung cancer, both of which are closely associated with genetic factors. However, the causal relationship between them remains unclear.

Methods

Bidirectional Mendelian randomization (MR) was performed on publicly available genome-wide association study (GWAS) summary statistics to analyze the causal relationships between 731 immunophenotypes and lung cancer. Sensitivity analyses were conducted to verify the robustness, heterogeneity, and potential horizontal pleiotropy of our findings.

Results

Following Bonferroni adjustment, CD14 CD16+ monocyte (OR = 0.930, 95%CI 0.900–0.960, P = 8.648 × 10− 6, PBonferroni = 0.006) and CD27 on CD24+ CD27+ B cells (OR = 1.036, 95%CI 1.020–1.053, P = 1.595 × 10 − 5, PBonferroni = 0.012) were identified as having a causal role in lung cancer via the inverse variance weighted (IVW) method. At a more relaxed threshold, CD27 on IgD+ CD24+ B cell (OR = 1.035, 95%CI 1.017–1.053, P = 8.666 × 10− 5, PBonferroni = 0.063) and CD27 on switched memory B cell (OR = 1.037, 95%CI 1.018–1.056, P = 1.154 × 10− 4, PBonferroni = 0.084) were further identified. No statistically significant effects of lung cancer on immunophenotypes were found.

Conclusions

The elevated level of CD14 CD16+ monocytes was a protective factor against lung cancer. Conversely, CD27 on CD24+ CD27+ B cell was a risk factor. CD27 on class-switched memory B cells and IgD+ CD24+ B cells were potential risk factors for lung cancer. This research enhanced our comprehension of the interplay between immune responses and lung cancer risk. Additionally, these findings offer valuable perspectives for the development of immunologically oriented therapeutic strategies.
Appendix
Available only for authorised users
Literature
1.
go back to reference Thai AA, Solomon BJ, Sequist LV, Gainor JF, Heist RS. Lung cancer. Lancet (London England). 2021;398(10299):535–54.PubMedCrossRef Thai AA, Solomon BJ, Sequist LV, Gainor JF, Heist RS. Lung cancer. Lancet (London England). 2021;398(10299):535–54.PubMedCrossRef
2.
go back to reference GBD 2019 Lip O and Pharyngeal Cancer Collaborators. The Global, Regional, and National Burden of Adult Lip, oral, and pharyngeal Cancer in 204 countries and territories: a systematic analysis for the global burden of Disease Study 2019. JAMA Oncol. 2023;9(10):1401–16.CrossRef GBD 2019 Lip O and Pharyngeal Cancer Collaborators. The Global, Regional, and National Burden of Adult Lip, oral, and pharyngeal Cancer in 204 countries and territories: a systematic analysis for the global burden of Disease Study 2019. JAMA Oncol. 2023;9(10):1401–16.CrossRef
3.
go back to reference Alzate JD, Mullen R, Mashiach E, Bernstein K, De Nigris Vasconcellos F, Rotmann L, et al. EGFR-mutated non-small lung cancer brain metastases and radiosurgery outcomes with a focus on leptomeningeal disease. J Neurooncol. 2023;164(2):387–96.PubMedCrossRef Alzate JD, Mullen R, Mashiach E, Bernstein K, De Nigris Vasconcellos F, Rotmann L, et al. EGFR-mutated non-small lung cancer brain metastases and radiosurgery outcomes with a focus on leptomeningeal disease. J Neurooncol. 2023;164(2):387–96.PubMedCrossRef
4.
go back to reference Li C, Lei S, Ding L, Xu Y, Wu X, Wang H, et al. Global burden and trends of lung cancer incidence and mortality. Chin Med J (Engl). 2023;136(13):1583–90.PubMedCrossRef Li C, Lei S, Ding L, Xu Y, Wu X, Wang H, et al. Global burden and trends of lung cancer incidence and mortality. Chin Med J (Engl). 2023;136(13):1583–90.PubMedCrossRef
5.
go back to reference Freedman ND, Leitzmann MF, Hollenbeck AR, Schatzkin A, Abnet CC. Cigarette smoking and subsequent risk of lung cancer in men and women: analysis of a prospective cohort study. Lancet Oncol. 2008;9(7):649–56.PubMedPubMedCentralCrossRef Freedman ND, Leitzmann MF, Hollenbeck AR, Schatzkin A, Abnet CC. Cigarette smoking and subsequent risk of lung cancer in men and women: analysis of a prospective cohort study. Lancet Oncol. 2008;9(7):649–56.PubMedPubMedCentralCrossRef
6.
go back to reference GBD 2017 Causes of Death Collaborators. Global, regional, and national age-sex-specific mortality for 282 causes of death in 195 countries and territories, 1980–2017: a systematic analysis for the global burden of Disease Study 2017. Lancet (London England). 2018;392(10159):1736–88.CrossRef GBD 2017 Causes of Death Collaborators. Global, regional, and national age-sex-specific mortality for 282 causes of death in 195 countries and territories, 1980–2017: a systematic analysis for the global burden of Disease Study 2017. Lancet (London England). 2018;392(10159):1736–88.CrossRef
7.
go back to reference Wang N, Mengersen K, Tong S, Kimlin M, Zhou M, Hu W. Global, regional, and national burden of lung cancer and its attributable risk factors, 1990 to 2017. Cancer. 2020;126(18):4220–34.PubMedCrossRef Wang N, Mengersen K, Tong S, Kimlin M, Zhou M, Hu W. Global, regional, and national burden of lung cancer and its attributable risk factors, 1990 to 2017. Cancer. 2020;126(18):4220–34.PubMedCrossRef
8.
go back to reference Ji X, Mukherjee S, Landi MT, Bosse Y, Joubert P, Zhu D, et al. Protein-altering germline mutations implicate novel genes related to lung cancer development. Nat Commun. 2020;11(1):2220.ADSPubMedPubMedCentralCrossRef Ji X, Mukherjee S, Landi MT, Bosse Y, Joubert P, Zhu D, et al. Protein-altering germline mutations implicate novel genes related to lung cancer development. Nat Commun. 2020;11(1):2220.ADSPubMedPubMedCentralCrossRef
9.
go back to reference Gabriel AAG, Atkins JR, Penha RCC, Smith-Byrne K, Gaborieau V, Voegele C, et al. Genetic analysis of Lung Cancer and the germline impact on somatic mutation Burden. JNCI J Natl Cancer Inst. 2022;114(8):1159–66.PubMedCrossRef Gabriel AAG, Atkins JR, Penha RCC, Smith-Byrne K, Gaborieau V, Voegele C, et al. Genetic analysis of Lung Cancer and the germline impact on somatic mutation Burden. JNCI J Natl Cancer Inst. 2022;114(8):1159–66.PubMedCrossRef
10.
go back to reference Xing S, Hu K, Wang Y. Tumor Immune Microenvironment and Immunotherapy in Non-small Cell Lung Cancer: Update and New challenges. Aging Disease. 2022;13(6):1615–32.PubMedPubMedCentralCrossRef Xing S, Hu K, Wang Y. Tumor Immune Microenvironment and Immunotherapy in Non-small Cell Lung Cancer: Update and New challenges. Aging Disease. 2022;13(6):1615–32.PubMedPubMedCentralCrossRef
11.
go back to reference Cascone T, Fradette J, Pradhan M, Gibbons DL. Tumor Immunology and Immunotherapy of Non-small-cell Lung Cancer. Cold Spring Harbor Perspect Med. 2022;12(5):a037895.CrossRef Cascone T, Fradette J, Pradhan M, Gibbons DL. Tumor Immunology and Immunotherapy of Non-small-cell Lung Cancer. Cold Spring Harbor Perspect Med. 2022;12(5):a037895.CrossRef
12.
go back to reference Noonepalle Skumar, Karabon R, Chiappinelli L, Villagra KB. Editorial: genetic and epigenetic control of Immune responses. Front Immunol. 2021;12:775101.PubMedPubMedCentralCrossRef Noonepalle Skumar, Karabon R, Chiappinelli L, Villagra KB. Editorial: genetic and epigenetic control of Immune responses. Front Immunol. 2021;12:775101.PubMedPubMedCentralCrossRef
13.
15.
go back to reference Perfilyeva YV, Abdolla N, Ostapchuk YO, Tleulieva R, Krasnoshtanov VC, Perfilyeva AV, et al. Chronic inflammation contributes to Tumor Growth: possible role of L-Selectin-expressing myeloid-derived suppressor cells (MDSCs). Inflammation. 2019;42(1):276–89.PubMedCrossRef Perfilyeva YV, Abdolla N, Ostapchuk YO, Tleulieva R, Krasnoshtanov VC, Perfilyeva AV, et al. Chronic inflammation contributes to Tumor Growth: possible role of L-Selectin-expressing myeloid-derived suppressor cells (MDSCs). Inflammation. 2019;42(1):276–89.PubMedCrossRef
16.
go back to reference Karin M, Shalapour S. Regulation of antitumor immunity by inflammation-induced epigenetic alterations. Cell Mol Immunol. 2022;19(1):59–66.PubMedCrossRef Karin M, Shalapour S. Regulation of antitumor immunity by inflammation-induced epigenetic alterations. Cell Mol Immunol. 2022;19(1):59–66.PubMedCrossRef
17.
go back to reference Gonzalez H, Hagerling C, Werb Z. Roles of the immune system in cancer: from tumor initiation to metastatic progression. Genes Dev. 2018;32(19–20):1267–84.PubMedPubMedCentralCrossRef Gonzalez H, Hagerling C, Werb Z. Roles of the immune system in cancer: from tumor initiation to metastatic progression. Genes Dev. 2018;32(19–20):1267–84.PubMedPubMedCentralCrossRef
18.
go back to reference Zhao H, Wu L, Yan G, Chen Y, Zhou M, Wu Y, et al. Inflammation and tumor progression: signaling pathways and targeted intervention. Signal Transduct Target Therapy. 2021;6:263.CrossRef Zhao H, Wu L, Yan G, Chen Y, Zhou M, Wu Y, et al. Inflammation and tumor progression: signaling pathways and targeted intervention. Signal Transduct Target Therapy. 2021;6:263.CrossRef
19.
go back to reference Nigam M, Mishra AP, Deb VK, Dimri DB, Tiwari V, Bungau SG, et al. Evaluation of the association of chronic inflammation and cancer: insights and implications. Biomed Pharmacother. 2023;164:115015.PubMedCrossRef Nigam M, Mishra AP, Deb VK, Dimri DB, Tiwari V, Bungau SG, et al. Evaluation of the association of chronic inflammation and cancer: insights and implications. Biomed Pharmacother. 2023;164:115015.PubMedCrossRef
20.
go back to reference Marcos Rubio A, Everaert C, Van Damme E, De Preter K, Vermaelen K. Circulating immune cell dynamics as outcome predictors for immunotherapy in non-small cell lung cancer. J Immunother Cancer. 2023;11(8):e007023.PubMedPubMedCentralCrossRef Marcos Rubio A, Everaert C, Van Damme E, De Preter K, Vermaelen K. Circulating immune cell dynamics as outcome predictors for immunotherapy in non-small cell lung cancer. J Immunother Cancer. 2023;11(8):e007023.PubMedPubMedCentralCrossRef
21.
go back to reference Gaglia G, Burger ML, Ritch CC, Rammos D, Dai Y, Crossland GE, et al. Lymphocyte networks are dynamic cellular communities in the immunoregulatory landscape of lung adenocarcinoma. Cancer Cell. 2023;41(5):871–886e10.PubMedPubMedCentralCrossRef Gaglia G, Burger ML, Ritch CC, Rammos D, Dai Y, Crossland GE, et al. Lymphocyte networks are dynamic cellular communities in the immunoregulatory landscape of lung adenocarcinoma. Cancer Cell. 2023;41(5):871–886e10.PubMedPubMedCentralCrossRef
22.
go back to reference Sorin M, Karimi E, Rezanejad M, Yu MW, Desharnais L, McDowell SAC, et al. Single-cell spatial landscape of immunotherapy response reveals mechanisms of CXCL13 enhanced antitumor immunity. J Immunother Cancer. 2023;11(2):e005545.PubMedPubMedCentralCrossRef Sorin M, Karimi E, Rezanejad M, Yu MW, Desharnais L, McDowell SAC, et al. Single-cell spatial landscape of immunotherapy response reveals mechanisms of CXCL13 enhanced antitumor immunity. J Immunother Cancer. 2023;11(2):e005545.PubMedPubMedCentralCrossRef
23.
go back to reference Maffuid K, Cao Y. Decoding the complexity of Immune-Cancer cell interactions: empowering the future of Cancer Immunotherapy. Cancers. 2023;15(16):4188.PubMedPubMedCentralCrossRef Maffuid K, Cao Y. Decoding the complexity of Immune-Cancer cell interactions: empowering the future of Cancer Immunotherapy. Cancers. 2023;15(16):4188.PubMedPubMedCentralCrossRef
24.
go back to reference Wang S, Liu B, Huang J, He H, Li L, Tao A. Cell-in-cell promotes lung cancer malignancy by enhancing glucose metabolism through mitochondria transfer. Exp Cell Res. 2023;429(2):113665.PubMedCrossRef Wang S, Liu B, Huang J, He H, Li L, Tao A. Cell-in-cell promotes lung cancer malignancy by enhancing glucose metabolism through mitochondria transfer. Exp Cell Res. 2023;429(2):113665.PubMedCrossRef
25.
go back to reference Rochigneux P, Garcia AJ, Chanez B, Madroszyk A, Olive D, Garon EB. Medical Treatment of Lung Cancer: can Immune cells predict the response? A systematic review. Front Immunol. 2020;11:1036.PubMedPubMedCentralCrossRef Rochigneux P, Garcia AJ, Chanez B, Madroszyk A, Olive D, Garon EB. Medical Treatment of Lung Cancer: can Immune cells predict the response? A systematic review. Front Immunol. 2020;11:1036.PubMedPubMedCentralCrossRef
26.
27.
go back to reference Lim RJ, Liu B, Krysan K, Dubinett SM. Lung Cancer and immunity markers. Cancer epidemiology, biomarkers & Prevention: a publication of the American Association for Cancer Research. Cosponsored Am Soc Prev Oncol. 2020;29(12):2423–30. Lim RJ, Liu B, Krysan K, Dubinett SM. Lung Cancer and immunity markers. Cancer epidemiology, biomarkers & Prevention: a publication of the American Association for Cancer Research. Cosponsored Am Soc Prev Oncol. 2020;29(12):2423–30.
28.
go back to reference Ugel S, Canè S, De Sanctis F, Bronte V. Monocytes in the Tumor Microenvironment. Annu Rev Pathol. 2021;16:93–122.PubMedCrossRef Ugel S, Canè S, De Sanctis F, Bronte V. Monocytes in the Tumor Microenvironment. Annu Rev Pathol. 2021;16:93–122.PubMedCrossRef
29.
go back to reference Kwiecień I, Rutkowska E, Polubiec-Kownacka M, Raniszewska A, Rzepecki P, Domagała-Kulawik J. Blood monocyte subsets with activation markers in relation with macrophages in Non-small Cell Lung Cancer. Cancers. 2020;12(9):2513.PubMedPubMedCentralCrossRef Kwiecień I, Rutkowska E, Polubiec-Kownacka M, Raniszewska A, Rzepecki P, Domagała-Kulawik J. Blood monocyte subsets with activation markers in relation with macrophages in Non-small Cell Lung Cancer. Cancers. 2020;12(9):2513.PubMedPubMedCentralCrossRef
30.
go back to reference Orrù V, Steri M, Sidore C, Marongiu M, Serra V, Olla S, et al. Complex genetic signatures in immune cells underlie autoimmunity and inform therapy. Nat Genet. 2020;52(10):1036–45.PubMedPubMedCentralCrossRef Orrù V, Steri M, Sidore C, Marongiu M, Serra V, Olla S, et al. Complex genetic signatures in immune cells underlie autoimmunity and inform therapy. Nat Genet. 2020;52(10):1036–45.PubMedPubMedCentralCrossRef
31.
go back to reference Bentham J, Morris DL, Graham DSC, Pinder CL, Tombleson P, Behrens TW, et al. Genetic association analyses implicate aberrant regulation of innate and adaptive immunity genes in the pathogenesis of systemic lupus erythematosus. Nat Genet. 2015;47(12):1457–64.PubMedPubMedCentralCrossRef Bentham J, Morris DL, Graham DSC, Pinder CL, Tombleson P, Behrens TW, et al. Genetic association analyses implicate aberrant regulation of innate and adaptive immunity genes in the pathogenesis of systemic lupus erythematosus. Nat Genet. 2015;47(12):1457–64.PubMedPubMedCentralCrossRef
32.
go back to reference Zhou W, Liu G, Hung RJ, Haycock PC, Aldrich MC, Andrew AS, et al. Causal relationships between body mass index, smoking and lung cancer: Univariable and multivariable mendelian randomization. Int J Cancer. 2021;148(5):1077–86.PubMedCrossRef Zhou W, Liu G, Hung RJ, Haycock PC, Aldrich MC, Andrew AS, et al. Causal relationships between body mass index, smoking and lung cancer: Univariable and multivariable mendelian randomization. Int J Cancer. 2021;148(5):1077–86.PubMedCrossRef
33.
go back to reference Zhou H, Zhang Y, Liu J, Yang Y, Fang W, Hong S, et al. Education and lung cancer: a mendelian randomization study. Int J Epidemiol. 2019;48(3):743–50.PubMedCrossRef Zhou H, Zhang Y, Liu J, Yang Y, Fang W, Hong S, et al. Education and lung cancer: a mendelian randomization study. Int J Epidemiol. 2019;48(3):743–50.PubMedCrossRef
34.
go back to reference Li Y, Sundquist K, Zhang N, Wang X, Sundquist J, Memon AA. Mitochondrial related genome-wide mendelian randomization identifies putatively causal genes for multiple cancer types. EBioMedicine. 2023;88:104432.PubMedPubMedCentralCrossRef Li Y, Sundquist K, Zhang N, Wang X, Sundquist J, Memon AA. Mitochondrial related genome-wide mendelian randomization identifies putatively causal genes for multiple cancer types. EBioMedicine. 2023;88:104432.PubMedPubMedCentralCrossRef
35.
go back to reference McKay JD, Hung RJ, Han Y, Zong X, Carreras-Torres R, Christiani DC, et al. Large-scale association analysis identifies new lung cancer susceptibility loci and heterogeneity in genetic susceptibility across histological subtypes. Nat Genet. 2017;49(7):1126–32.PubMedPubMedCentralCrossRef McKay JD, Hung RJ, Han Y, Zong X, Carreras-Torres R, Christiani DC, et al. Large-scale association analysis identifies new lung cancer susceptibility loci and heterogeneity in genetic susceptibility across histological subtypes. Nat Genet. 2017;49(7):1126–32.PubMedPubMedCentralCrossRef
36.
go back to reference Cao RR, Yu XH, Xiong MF, Li XT, Deng FY, Lei SF. The immune factors have complex causal regulation effects on bone mineral density. Front Immunol. 2022;13:959417.PubMedPubMedCentralCrossRef Cao RR, Yu XH, Xiong MF, Li XT, Deng FY, Lei SF. The immune factors have complex causal regulation effects on bone mineral density. Front Immunol. 2022;13:959417.PubMedPubMedCentralCrossRef
37.
go back to reference Gu J, Yan GM, Kong XL, Zhang YY, Huang LH, Lu HM. Assessing the causal relationship between immune traits and systemic lupus erythematosus by bi-directional mendelian randomization analysis. Molecular genetics and genomics: MGG; 2023.CrossRef Gu J, Yan GM, Kong XL, Zhang YY, Huang LH, Lu HM. Assessing the causal relationship between immune traits and systemic lupus erythematosus by bi-directional mendelian randomization analysis. Molecular genetics and genomics: MGG; 2023.CrossRef
38.
go back to reference Wang C, Zhu D, Zhang D, Zuo X, Yao L, Liu T, et al. Causal role of immune cells in schizophrenia: mendelian randomization (MR) study. BMC Psychiatry. 2023;23(1):590.PubMedPubMedCentralCrossRef Wang C, Zhu D, Zhang D, Zuo X, Yao L, Liu T, et al. Causal role of immune cells in schizophrenia: mendelian randomization (MR) study. BMC Psychiatry. 2023;23(1):590.PubMedPubMedCentralCrossRef
39.
go back to reference Pierce BL, Ahsan H, Vanderweele TJ. Power and instrument strength requirements for mendelian randomization studies using multiple genetic variants. Int J Epidemiol. 2011;40(3):740–52.PubMedCrossRef Pierce BL, Ahsan H, Vanderweele TJ. Power and instrument strength requirements for mendelian randomization studies using multiple genetic variants. Int J Epidemiol. 2011;40(3):740–52.PubMedCrossRef
40.
go back to reference Kamat MA, Blackshaw JA, Young R, Surendran P, Burgess S, Danesh J, et al. PhenoScanner V2: an expanded tool for searching human genotype-phenotype associations. Bioinf (Oxford England). 2019;35(22):4851–3. Kamat MA, Blackshaw JA, Young R, Surendran P, Burgess S, Danesh J, et al. PhenoScanner V2: an expanded tool for searching human genotype-phenotype associations. Bioinf (Oxford England). 2019;35(22):4851–3.
41.
go back to reference Hemani G, Zheng J, Elsworth B, Wade KH, Haberland V, Baird D, et al. The MR-Base platform supports systematic causal inference across the human phenome. eLife. 2018;7:e34408.PubMedPubMedCentralCrossRef Hemani G, Zheng J, Elsworth B, Wade KH, Haberland V, Baird D, et al. The MR-Base platform supports systematic causal inference across the human phenome. eLife. 2018;7:e34408.PubMedPubMedCentralCrossRef
42.
go back to reference Sekula P, Del Greco MF, Pattaro C, Köttgen A. Mendelian randomization as an Approach to assess causality using Observational Data. J Am Soc Nephrology: JASN. 2016;27(11):3253–65.PubMedPubMedCentralCrossRef Sekula P, Del Greco MF, Pattaro C, Köttgen A. Mendelian randomization as an Approach to assess causality using Observational Data. J Am Soc Nephrology: JASN. 2016;27(11):3253–65.PubMedPubMedCentralCrossRef
43.
go back to reference Sanderson E. Multivariable mendelian randomization and mediation. Cold Spring Harbor Perspect Med. 2021;11(2):a038984.CrossRef Sanderson E. Multivariable mendelian randomization and mediation. Cold Spring Harbor Perspect Med. 2021;11(2):a038984.CrossRef
44.
go back to reference Bowden J, Davey Smith G, Haycock PC, Burgess S. Consistent estimation in mendelian randomization with some Invalid instruments using a weighted median estimator. Genet Epidemiol. 2016;40(4):304–14.PubMedPubMedCentralCrossRef Bowden J, Davey Smith G, Haycock PC, Burgess S. Consistent estimation in mendelian randomization with some Invalid instruments using a weighted median estimator. Genet Epidemiol. 2016;40(4):304–14.PubMedPubMedCentralCrossRef
45.
go back to reference Verbanck M, Chen CY, Neale B, Do R. Detection of widespread horizontal pleiotropy in causal relationships inferred from mendelian randomization between complex traits and diseases. Nat Genet. 2018;50(5):693–8.PubMedPubMedCentralCrossRef Verbanck M, Chen CY, Neale B, Do R. Detection of widespread horizontal pleiotropy in causal relationships inferred from mendelian randomization between complex traits and diseases. Nat Genet. 2018;50(5):693–8.PubMedPubMedCentralCrossRef
46.
go back to reference Burgess S, Bowden J, Fall T, Ingelsson E, Thompson SG. Sensitivity analyses for robust causal inference from mendelian randomization analyses with multiple genetic variants. Epidemiol (Cambridge Mass). 2017;28(1):30–42.CrossRef Burgess S, Bowden J, Fall T, Ingelsson E, Thompson SG. Sensitivity analyses for robust causal inference from mendelian randomization analyses with multiple genetic variants. Epidemiol (Cambridge Mass). 2017;28(1):30–42.CrossRef
47.
48.
go back to reference Narasimhan PB, Marcovecchio P, Hamers AAJ, Hedrick CC. Nonclassical monocytes in Health and Disease. Annu Rev Immunol. 2019;37:439–56.PubMedCrossRef Narasimhan PB, Marcovecchio P, Hamers AAJ, Hedrick CC. Nonclassical monocytes in Health and Disease. Annu Rev Immunol. 2019;37:439–56.PubMedCrossRef
50.
go back to reference Zhang C, Li T, Yin S, Gao M, He H, Li Y, et al. Monocytes deposit migrasomes to promote embryonic angiogenesis. Nat Cell Biol. 2022;24(12):1726–38.PubMedCrossRef Zhang C, Li T, Yin S, Gao M, He H, Li Y, et al. Monocytes deposit migrasomes to promote embryonic angiogenesis. Nat Cell Biol. 2022;24(12):1726–38.PubMedCrossRef
51.
go back to reference Hanna RN, Cekic C, Sag D, Tacke R, Thomas GD, Nowyhed H, et al. Patrolling monocytes control tumor metastasis to the lung. Volume 350. New York, NY): Science; 2015. pp. 985–90. 6263. Hanna RN, Cekic C, Sag D, Tacke R, Thomas GD, Nowyhed H, et al. Patrolling monocytes control tumor metastasis to the lung. Volume 350. New York, NY): Science; 2015. pp. 985–90. 6263.
53.
go back to reference Riemann D, Turzer S, Ganchev G, Schütte W, Seliger B, Möller M. Monitoring blood Immune cells in patients with Advanced Small Cell Lung Cancer undergoing a combined Immune Checkpoint Inhibitor/Chemotherapy. Biomolecules. 2023;13(2):190.PubMedPubMedCentralCrossRef Riemann D, Turzer S, Ganchev G, Schütte W, Seliger B, Möller M. Monitoring blood Immune cells in patients with Advanced Small Cell Lung Cancer undergoing a combined Immune Checkpoint Inhibitor/Chemotherapy. Biomolecules. 2023;13(2):190.PubMedPubMedCentralCrossRef
54.
go back to reference Finotti G, Pietronigro E, Balanzin C, Lonardi S, Constantin G, Chao MP, et al. Slan + monocytes kill Cancer cells coated in therapeutic antibody by Trogoptosis. Cancer Immunol Res. 2023;11(11):1538–52.PubMedCrossRef Finotti G, Pietronigro E, Balanzin C, Lonardi S, Constantin G, Chao MP, et al. Slan + monocytes kill Cancer cells coated in therapeutic antibody by Trogoptosis. Cancer Immunol Res. 2023;11(11):1538–52.PubMedCrossRef
55.
go back to reference Vermi W, Micheletti A, Finotti G, Tecchio C, Calzetti F, Costa S, et al. Slan + monocytes and macrophages Mediate CD20-Dependent B-cell lymphoma elimination via ADCC and ADCP. Cancer Res. 2018;78(13):3544–59.PubMedCrossRef Vermi W, Micheletti A, Finotti G, Tecchio C, Calzetti F, Costa S, et al. Slan + monocytes and macrophages Mediate CD20-Dependent B-cell lymphoma elimination via ADCC and ADCP. Cancer Res. 2018;78(13):3544–59.PubMedCrossRef
56.
go back to reference Zhou J, Min Z, Zhang D, Wang W, Marincola F, Wang X. Enhanced frequency and potential mechanism of B regulatory cells in patients with lung cancer. J Transl Med. 2014;12:304.PubMedPubMedCentralCrossRef Zhou J, Min Z, Zhang D, Wang W, Marincola F, Wang X. Enhanced frequency and potential mechanism of B regulatory cells in patients with lung cancer. J Transl Med. 2014;12:304.PubMedPubMedCentralCrossRef
57.
go back to reference Hasan MM, Thompson-Snipes L, Klintmalm G, Demetris AJ, O’Leary J, Oh S et al. CD24hiCD38hi and CD24hiCD27 + Human Regulatory B Cells Display Common and Distinct Functional Characteristics. Journal of Immunology (Baltimore, Md: 1950). 2019;203(8):2110–20. Hasan MM, Thompson-Snipes L, Klintmalm G, Demetris AJ, O’Leary J, Oh S et al. CD24hiCD38hi and CD24hiCD27 + Human Regulatory B Cells Display Common and Distinct Functional Characteristics. Journal of Immunology (Baltimore, Md: 1950). 2019;203(8):2110–20.
58.
go back to reference Richardson JR, Schöllhorn A, Gouttefangeas C, Schuhmacher J. CD4 + T cells: Multitasking cells in the duty of Cancer Immunotherapy. Cancers. 2021;13(4):596.PubMedPubMedCentralCrossRef Richardson JR, Schöllhorn A, Gouttefangeas C, Schuhmacher J. CD4 + T cells: Multitasking cells in the duty of Cancer Immunotherapy. Cancers. 2021;13(4):596.PubMedPubMedCentralCrossRef
59.
go back to reference Tay RE, Richardson EK, Toh HC. Revisiting the role of CD4 + T cells in cancer immunotherapy-new insights into old paradigms. Cancer Gene Ther. 2021;28(1–2):5–17.PubMedCrossRef Tay RE, Richardson EK, Toh HC. Revisiting the role of CD4 + T cells in cancer immunotherapy-new insights into old paradigms. Cancer Gene Ther. 2021;28(1–2):5–17.PubMedCrossRef
60.
go back to reference Speiser DE, Chijioke O, Schaeuble K, Münz C. CD4 + T cells in cancer. Nat Cancer. 2023;4(3):317–29.PubMedCrossRef Speiser DE, Chijioke O, Schaeuble K, Münz C. CD4 + T cells in cancer. Nat Cancer. 2023;4(3):317–29.PubMedCrossRef
61.
go back to reference Kagamu H, Kitano S, Yamaguchi O, Yoshimura K, Horimoto K, Kitazawa M, et al. CD4 + T-cell immunity in the peripheral blood correlates with response to Anti-PD-1 therapy. Cancer Immunol Res. 2020;8(3):334–44.PubMedCrossRef Kagamu H, Kitano S, Yamaguchi O, Yoshimura K, Horimoto K, Kitazawa M, et al. CD4 + T-cell immunity in the peripheral blood correlates with response to Anti-PD-1 therapy. Cancer Immunol Res. 2020;8(3):334–44.PubMedCrossRef
63.
go back to reference Gao Y, Yang J, Cai Y, Fu S, Zhang N, Fu X, et al. IFN-γ-mediated inhibition of lung cancer correlates with PD-L1 expression and is regulated by PI3K-AKT signaling. Int J Cancer. 2018;143(4):931–43.PubMedCrossRef Gao Y, Yang J, Cai Y, Fu S, Zhang N, Fu X, et al. IFN-γ-mediated inhibition of lung cancer correlates with PD-L1 expression and is regulated by PI3K-AKT signaling. Int J Cancer. 2018;143(4):931–43.PubMedCrossRef
64.
go back to reference Aihara F, Wang Y, Belkina AC, Fearns R, Mizgerd JP, Feng F et al. Diversity of B Cell Populations and Ig Repertoire in Human Lungs. Journal of Immunology (Baltimore, Md: 1950). 2023;211(3):486–96. Aihara F, Wang Y, Belkina AC, Fearns R, Mizgerd JP, Feng F et al. Diversity of B Cell Populations and Ig Repertoire in Human Lungs. Journal of Immunology (Baltimore, Md: 1950). 2023;211(3):486–96.
65.
go back to reference Weller S, Descatoire M. [IgM + IgD + CD27 + B cells in human: an essential role in the protection against encapsulated bacteria]. Med Sciences: M/S. 2015;31(6–7):647–53. Weller S, Descatoire M. [IgM + IgD + CD27 + B cells in human: an essential role in the protection against encapsulated bacteria]. Med Sciences: M/S. 2015;31(6–7):647–53.
Metadata
Title
Assessing the causal relationship between 731 immunophenotypes and the risk of lung cancer: a bidirectional mendelian randomization study
Authors
Ming Xu
Chengkai Li
Liyan Xiang
Siyue Chen
Lin Chen
Gongxia Ling
Yanqing Hu
Lan Yang
Xiang Yuan
Xiaodong Xia
Hailin Zhang
Publication date
01-12-2024
Publisher
BioMed Central
Published in
BMC Cancer / Issue 1/2024
Electronic ISSN: 1471-2407
DOI
https://doi.org/10.1186/s12885-024-12014-1

Other articles of this Issue 1/2024

BMC Cancer 1/2024 Go to the issue
Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine