Skip to main content
Top
Published in: Journal of Thrombosis and Thrombolysis 4/2021

01-05-2021 | Cytostatic Therapy

Mitochondria and chronic effects of cancer therapeutics: The clinical implications

Authors: Abishai Dominic, Dale Hamilton, Jun-ichi Abe

Published in: Journal of Thrombosis and Thrombolysis | Issue 4/2021

Login to get access

Abstract

One of the major mechanisms of action of chemo-radiation is to induce cellular senescence, which exerts crucial roles in age-related pathology. The concept of senescence is evolved, and the novel understanding of senescence-associated reprogramming/stemness has emerged. This new concept emphasizes senescence as not only cell cycle arrest but describes that subsets of senescent cells induced by chemotherapy can re-enter cell cycles, proliferate rapidly, and acquire “stemness” status. Cancer therapeutics, including chemo-radiation triggers toxicity effects through damaging mitochondria, primarily through the upregulation of mtROS production leading to subsequent mtDNA and telomeric DNA damage elicitng DNA damage responses (DDR). The ultimate goal of this review is to highlight the new concept of senescence-associated stemness that is induced by cancer treatment and its adverse effects on the vascular system. We will describe how chemo-radiation exerts toxicity effects by simultaneously producing reactive oxygen species in mitochondria and promoting DDR in the nucleus. We discuss the potential of clinical targeting poly (ADP-ribose) polymerase which might prevent downstream mitochondrial dysfunction and confer protection to cancer survivors. Overall we emphasize the importance of recognizing the consequences of cardio-toxic effects of several cancer treatments and therefore developing personalized therapeutic approaches to screen for inflammatory and cardiac testing for better patient survival.
Literature
1.
go back to reference Perez IE, Taveras Alam S, Hernandez GA, Sancassani R (2019) Cancer therapy-related cardiac dysfunction: an overview for the clinician. Clin Med Insights Cardiol 13:1179546819866445PubMedPubMedCentralCrossRef Perez IE, Taveras Alam S, Hernandez GA, Sancassani R (2019) Cancer therapy-related cardiac dysfunction: an overview for the clinician. Clin Med Insights Cardiol 13:1179546819866445PubMedPubMedCentralCrossRef
2.
go back to reference Sturgeon KM, Deng L, Bluethmann SM, Zhou S, Trifiletti DM, Jiang C, Kelly SP, Zaorsky NG (2019) A population-based study of cardiovascular disease mortality risk in US cancer patients. Eur Heart J 40:3889–3897PubMedPubMedCentralCrossRef Sturgeon KM, Deng L, Bluethmann SM, Zhou S, Trifiletti DM, Jiang C, Kelly SP, Zaorsky NG (2019) A population-based study of cardiovascular disease mortality risk in US cancer patients. Eur Heart J 40:3889–3897PubMedPubMedCentralCrossRef
3.
go back to reference Yeh ET, Tong AT, Lenihan DJ, Yusuf SW, Swafford J, Champion C, Durand JB, Gibbs H, Zafarmand AA, Ewer MS (2004) Cardiovascular complications of cancer therapy: diagnosis, pathogenesis, and management. Circulation 109:3122–3131PubMedCrossRef Yeh ET, Tong AT, Lenihan DJ, Yusuf SW, Swafford J, Champion C, Durand JB, Gibbs H, Zafarmand AA, Ewer MS (2004) Cardiovascular complications of cancer therapy: diagnosis, pathogenesis, and management. Circulation 109:3122–3131PubMedCrossRef
4.
go back to reference Lipshultz SE, Landy DC, Lopez-Mitnik G, Lipsitz SR, Hinkle AS, Constine LS, French CA, Rovitelli AM, Proukou C, Adams MJ, Miller TL (2012) Cardiovascular status of childhood cancer survivors exposed and unexposed to cardiotoxic therapy. J Clin Oncol 30:1050–1057PubMedPubMedCentralCrossRef Lipshultz SE, Landy DC, Lopez-Mitnik G, Lipsitz SR, Hinkle AS, Constine LS, French CA, Rovitelli AM, Proukou C, Adams MJ, Miller TL (2012) Cardiovascular status of childhood cancer survivors exposed and unexposed to cardiotoxic therapy. J Clin Oncol 30:1050–1057PubMedPubMedCentralCrossRef
6.
go back to reference Dominic A, Banerjee P, Hamilton DJ, Le NT, Abe JI (2020) Time-dependent replicative senescence vs. disturbed flow-induced pre-mature aging in atherosclerosis. Redox Biol 101614 Dominic A, Banerjee P, Hamilton DJ, Le NT, Abe JI (2020) Time-dependent replicative senescence vs. disturbed flow-induced pre-mature aging in atherosclerosis. Redox Biol 101614
7.
go back to reference Ness KK, Krull KR, Jones KE, Mulrooney DA, Armstrong GT, Green DM, Chemaitilly W, Smith WA, Wilson CL, Sklar CA, Shelton K, Srivastava DK, Ali S, Robison LL, Hudson MM (2013) Physiologic frailty as a sign of accelerated aging among adult survivors of childhood cancer: a report from the St Jude Lifetime cohort study. J Clin Oncol 31:4496–4503PubMedPubMedCentralCrossRef Ness KK, Krull KR, Jones KE, Mulrooney DA, Armstrong GT, Green DM, Chemaitilly W, Smith WA, Wilson CL, Sklar CA, Shelton K, Srivastava DK, Ali S, Robison LL, Hudson MM (2013) Physiologic frailty as a sign of accelerated aging among adult survivors of childhood cancer: a report from the St Jude Lifetime cohort study. J Clin Oncol 31:4496–4503PubMedPubMedCentralCrossRef
8.
go back to reference Buttiglieri S, Ruella M, Risso A, Spatola T, Silengo L, Avvedimento EV, Tarella C (2011) The aging effect of chemotherapy on cultured human mesenchymal stem cells. Exp Hematol 39:1171–1181PubMedCrossRef Buttiglieri S, Ruella M, Risso A, Spatola T, Silengo L, Avvedimento EV, Tarella C (2011) The aging effect of chemotherapy on cultured human mesenchymal stem cells. Exp Hematol 39:1171–1181PubMedCrossRef
9.
go back to reference Diker-Cohen T, Uziel O, Szyper-Kravitz M, Shapira H, Natur A, Lahav M (2013) The effect of chemotherapy on telomere dynamics: clinical results and possible mechanisms. Leuk Lymphoma 54:2023–2029PubMedCrossRef Diker-Cohen T, Uziel O, Szyper-Kravitz M, Shapira H, Natur A, Lahav M (2013) The effect of chemotherapy on telomere dynamics: clinical results and possible mechanisms. Leuk Lymphoma 54:2023–2029PubMedCrossRef
10.
go back to reference Sanoff HK, Deal AM, Krishnamurthy J, Torrice C, Dillon P, Sorrentino J, Ibrahim JG, Jolly TA, Williams G, Carey LA, Drobish A, Gordon BB, Alston S, Hurria A, Kleinhans K, Rudolph KL, Sharpless NE, Muss HB (2014) Effect of cytotoxic chemotherapy on markers of molecular age in patients with breast cancer. J Natl Cancer Inst 106:dju057PubMedPubMedCentralCrossRef Sanoff HK, Deal AM, Krishnamurthy J, Torrice C, Dillon P, Sorrentino J, Ibrahim JG, Jolly TA, Williams G, Carey LA, Drobish A, Gordon BB, Alston S, Hurria A, Kleinhans K, Rudolph KL, Sharpless NE, Muss HB (2014) Effect of cytotoxic chemotherapy on markers of molecular age in patients with breast cancer. J Natl Cancer Inst 106:dju057PubMedPubMedCentralCrossRef
11.
go back to reference Hurria A, Jones L, Muss HB (2016) Cancer treatment as an accelerated aging process: assessment, biomarkers, and interventions. Am Soc Clin Oncol Educ Book 35:e516–e522PubMedCrossRef Hurria A, Jones L, Muss HB (2016) Cancer treatment as an accelerated aging process: assessment, biomarkers, and interventions. Am Soc Clin Oncol Educ Book 35:e516–e522PubMedCrossRef
12.
go back to reference Mikula-Pietrasik J, Niklas A, Uruski P, Tykarski A, Ksiazek K (2020) Mechanisms and significance of therapy-induced and spontaneous senescence of cancer cells. Cell Mol Life Sci 77:213–229PubMedCrossRef Mikula-Pietrasik J, Niklas A, Uruski P, Tykarski A, Ksiazek K (2020) Mechanisms and significance of therapy-induced and spontaneous senescence of cancer cells. Cell Mol Life Sci 77:213–229PubMedCrossRef
13.
go back to reference Hewitt G, Jurk D, Marques FD, Correia-Melo C, Hardy T, Gackowska A, Anderson R, Taschuk M, Mann J, Passos JF (2012) Telomeres are favoured targets of a persistent DNA damage response in ageing and stress-induced senescence. Nat Commun 3:708PubMedCrossRef Hewitt G, Jurk D, Marques FD, Correia-Melo C, Hardy T, Gackowska A, Anderson R, Taschuk M, Mann J, Passos JF (2012) Telomeres are favoured targets of a persistent DNA damage response in ageing and stress-induced senescence. Nat Commun 3:708PubMedCrossRef
14.
go back to reference Toussaint EEMO, von Zglinickic T (2000) Cellular and molecular mechanisms of stress-induced premature senescence (SIPS) of human diploid fibroblasts and melanocytes. Exp Gerontol 35:927–945PubMedCrossRef Toussaint EEMO, von Zglinickic T (2000) Cellular and molecular mechanisms of stress-induced premature senescence (SIPS) of human diploid fibroblasts and melanocytes. Exp Gerontol 35:927–945PubMedCrossRef
15.
go back to reference Milanovic M, Fan DNY, Belenki D, Dabritz JHM, Zhao Z, Yu Y, Dorr JR, Dimitrova L, Lenze D, Monteiro Barbosa IA, Mendoza-Parra MA, Kanashova T, Metzner M, Pardon K, Reimann M, Trumpp A, Dorken B, Zuber J, Gronemeyer H, Hummel M, Dittmar G, Lee S, Schmitt CA (2018) Senescence-associated reprogramming promotes cancer stemness. Nature 553:96–100PubMedCrossRef Milanovic M, Fan DNY, Belenki D, Dabritz JHM, Zhao Z, Yu Y, Dorr JR, Dimitrova L, Lenze D, Monteiro Barbosa IA, Mendoza-Parra MA, Kanashova T, Metzner M, Pardon K, Reimann M, Trumpp A, Dorken B, Zuber J, Gronemeyer H, Hummel M, Dittmar G, Lee S, Schmitt CA (2018) Senescence-associated reprogramming promotes cancer stemness. Nature 553:96–100PubMedCrossRef
16.
go back to reference Coppe JP, Desprez PY, Krtolica A, Campisi J (2010) The senescence-associated secretory phenotype: the dark side of tumor suppression. Annu Rev Pathol 5:99–118PubMedPubMedCentralCrossRef Coppe JP, Desprez PY, Krtolica A, Campisi J (2010) The senescence-associated secretory phenotype: the dark side of tumor suppression. Annu Rev Pathol 5:99–118PubMedPubMedCentralCrossRef
17.
go back to reference Watanabe S, Kawamoto S, Ohtani N, Hara E (2017) Impact of senescence-associated secretory phenotype and its potential as a therapeutic target for senescence-associated diseases. Cancer Sci 108:563–569PubMedPubMedCentralCrossRef Watanabe S, Kawamoto S, Ohtani N, Hara E (2017) Impact of senescence-associated secretory phenotype and its potential as a therapeutic target for senescence-associated diseases. Cancer Sci 108:563–569PubMedPubMedCentralCrossRef
18.
19.
go back to reference Gorini S, De Angelis A, Berrino L, Malara N, Rosano G, Ferraro E (2018) Chemotherapeutic drugs and mitochondrial dysfunction: focus on doxorubicin, trastuzumab, and sunitinib. Oxid Med Cell Longev 2018:7582730PubMedPubMedCentralCrossRef Gorini S, De Angelis A, Berrino L, Malara N, Rosano G, Ferraro E (2018) Chemotherapeutic drugs and mitochondrial dysfunction: focus on doxorubicin, trastuzumab, and sunitinib. Oxid Med Cell Longev 2018:7582730PubMedPubMedCentralCrossRef
20.
go back to reference Scialo F, Mallikarjun V, Stefanatos R, Sanz A (2013) Regulation of lifespan by the mitochondrial electron transport chain: reactive oxygen species-dependent and reactive oxygen species-independent mechanisms. Antioxid Redox Signal 19:1953–1969PubMedCrossRef Scialo F, Mallikarjun V, Stefanatos R, Sanz A (2013) Regulation of lifespan by the mitochondrial electron transport chain: reactive oxygen species-dependent and reactive oxygen species-independent mechanisms. Antioxid Redox Signal 19:1953–1969PubMedCrossRef
21.
go back to reference Barja G (2013) Updating the mitochondrial free radical theory of aging: an integrated view, key aspects, and confounding concepts. Antioxid Redox Signal 19:1420–1445PubMedPubMedCentralCrossRef Barja G (2013) Updating the mitochondrial free radical theory of aging: an integrated view, key aspects, and confounding concepts. Antioxid Redox Signal 19:1420–1445PubMedPubMedCentralCrossRef
22.
go back to reference Henle ES, Han Z, Tang N, Rai P, Luo Y, Linn S (1999) Sequence-specific DNA cleavage by Fe2+-mediated fenton reactions has possible biological implications. J Biol Chem 274:962–971PubMedCrossRef Henle ES, Han Z, Tang N, Rai P, Luo Y, Linn S (1999) Sequence-specific DNA cleavage by Fe2+-mediated fenton reactions has possible biological implications. J Biol Chem 274:962–971PubMedCrossRef
23.
go back to reference Ren JG, Xia HL, Just T, Dai YR (2001) Hydroxyl radical-induced apoptosis in human tumor cells is associated with telomere shortening but not telomerase inhibition and caspase activation. FEBS Lett 488:123–132PubMedCrossRef Ren JG, Xia HL, Just T, Dai YR (2001) Hydroxyl radical-induced apoptosis in human tumor cells is associated with telomere shortening but not telomerase inhibition and caspase activation. FEBS Lett 488:123–132PubMedCrossRef
24.
go back to reference Garcia-Prat L, Martinez-Vicente M, Perdiguero E, Ortet L, Rodriguez-Ubreva J, Rebollo E, Ruiz-Bonilla V, Gutarra S, Ballestar E, Serrano AL, Sandri M, Munoz-Canoves P (2016) Autophagy maintains stemness by preventing senescence. Nature 529:37–42PubMedCrossRef Garcia-Prat L, Martinez-Vicente M, Perdiguero E, Ortet L, Rodriguez-Ubreva J, Rebollo E, Ruiz-Bonilla V, Gutarra S, Ballestar E, Serrano AL, Sandri M, Munoz-Canoves P (2016) Autophagy maintains stemness by preventing senescence. Nature 529:37–42PubMedCrossRef
25.
go back to reference Zhang S, Yang C, Yang Z, Zhang D, Ma X, Mills G, Liu Z (2015) Homeostasis of redox status derived from glucose metabolic pathway could be the key to understanding the Warburg effect. Am J Cancer Res 5:1265–1280PubMedPubMedCentral Zhang S, Yang C, Yang Z, Zhang D, Ma X, Mills G, Liu Z (2015) Homeostasis of redox status derived from glucose metabolic pathway could be the key to understanding the Warburg effect. Am J Cancer Res 5:1265–1280PubMedPubMedCentral
26.
go back to reference Sarvazyan N (1996) Visualization of doxorubicin-induced oxidative stress in isolated cardiac myocytes. Am J Physiol 271:H2079–H2085PubMed Sarvazyan N (1996) Visualization of doxorubicin-induced oxidative stress in isolated cardiac myocytes. Am J Physiol 271:H2079–H2085PubMed
27.
go back to reference Xiong Y, Liu X, Lee CP, Chua BH, Ho YS (2006) Attenuation of doxorubicin-induced contractile and mitochondrial dysfunction in mouse heart by cellular glutathione peroxidase. Free Radic Biol Med 41:46–55PubMedCrossRef Xiong Y, Liu X, Lee CP, Chua BH, Ho YS (2006) Attenuation of doxorubicin-induced contractile and mitochondrial dysfunction in mouse heart by cellular glutathione peroxidase. Free Radic Biol Med 41:46–55PubMedCrossRef
28.
go back to reference Perillo B, Di Donato M, Pezone A, Di Zazzo E, Giovannelli P, Galasso G, Castoria G, Migliaccio A (2020) ROS in cancer therapy: the bright side of the moon. Exp Mol Med 52:192–203PubMedPubMedCentralCrossRef Perillo B, Di Donato M, Pezone A, Di Zazzo E, Giovannelli P, Galasso G, Castoria G, Migliaccio A (2020) ROS in cancer therapy: the bright side of the moon. Exp Mol Med 52:192–203PubMedPubMedCentralCrossRef
29.
go back to reference Teppo HR, Soini Y, Karihtala P (2017) Reactive oxygen species-mediated mechanisms of action of targeted cancer therapy. Oxid Med Cell Longev 2017:1485283PubMedPubMedCentralCrossRef Teppo HR, Soini Y, Karihtala P (2017) Reactive oxygen species-mediated mechanisms of action of targeted cancer therapy. Oxid Med Cell Longev 2017:1485283PubMedPubMedCentralCrossRef
30.
go back to reference Waseem M, Parvez S (2013) Mitochondrial dysfunction mediated cisplatin induced toxicity: modulatory role of curcumin. Food Chem Toxicol 53:334–342PubMedCrossRef Waseem M, Parvez S (2013) Mitochondrial dysfunction mediated cisplatin induced toxicity: modulatory role of curcumin. Food Chem Toxicol 53:334–342PubMedCrossRef
31.
go back to reference Szczesny B, Brunyanszki A, Olah G, Mitra S, Szabo C (2014) Opposing roles of mitochondrial and nuclear PARP1 in the regulation of mitochondrial and nuclear DNA integrity: implications for the regulation of mitochondrial function. Nucleic Acids Res 42:13161–13173PubMedPubMedCentralCrossRef Szczesny B, Brunyanszki A, Olah G, Mitra S, Szabo C (2014) Opposing roles of mitochondrial and nuclear PARP1 in the regulation of mitochondrial and nuclear DNA integrity: implications for the regulation of mitochondrial function. Nucleic Acids Res 42:13161–13173PubMedPubMedCentralCrossRef
32.
33.
go back to reference Cesaire M, Thariat J, Candeias SM, Stefan D, Saintigny Y, Chevalier F (2018) Combining PARP inhibition, radiation, and immunotherapy: a possible strategy to improve the treatment of cancer? Int J Mol Sci 19:3793PubMedCentralCrossRef Cesaire M, Thariat J, Candeias SM, Stefan D, Saintigny Y, Chevalier F (2018) Combining PARP inhibition, radiation, and immunotherapy: a possible strategy to improve the treatment of cancer? Int J Mol Sci 19:3793PubMedCentralCrossRef
34.
go back to reference Murata MM, Kong X, Moncada E, Chen Y, Imamura H, Wang P, Berns MW, Yokomori K, Digman MA (2019) NAD + consumption by PARP1 in response to DNA damage triggers metabolic shift critical for damaged cell survival. Mol Biol Cell 30:2584–2597PubMedPubMedCentralCrossRef Murata MM, Kong X, Moncada E, Chen Y, Imamura H, Wang P, Berns MW, Yokomori K, Digman MA (2019) NAD + consumption by PARP1 in response to DNA damage triggers metabolic shift critical for damaged cell survival. Mol Biol Cell 30:2584–2597PubMedPubMedCentralCrossRef
35.
go back to reference Davila A, Liu L, Chellappa K, Redpath P, Nakamaru-Ogiso E, Paolella LM, Zhang Z, Migaud ME, Rabinowitz JD, Baur JA (2018) Nicotinamide adenine dinucleotide is transported into mammalian mitochondria. Elife 7:e33246PubMedPubMedCentralCrossRef Davila A, Liu L, Chellappa K, Redpath P, Nakamaru-Ogiso E, Paolella LM, Zhang Z, Migaud ME, Rabinowitz JD, Baur JA (2018) Nicotinamide adenine dinucleotide is transported into mammalian mitochondria. Elife 7:e33246PubMedPubMedCentralCrossRef
37.
go back to reference Mendelsohn AR, Larrick JW (2014) Partial reversal of skeletal muscle aging by restoration of normal NAD(+) levels. Rejuvenation Res 17:62–69PubMedCrossRef Mendelsohn AR, Larrick JW (2014) Partial reversal of skeletal muscle aging by restoration of normal NAD(+) levels. Rejuvenation Res 17:62–69PubMedCrossRef
38.
go back to reference Gomes AP, Price NL, Ling AJ, Moslehi JJ, Montgomery MK, Rajman L, White JP, Teodoro JS, Wrann CD, Hubbard BP, Mercken EM, Palmeira CM, de Cabo R, Rolo AP, Turner N, Bell EL, Sinclair DA (2013) Declining NAD(+) induces a pseudohypoxic state disrupting nuclear-mitochondrial communication during aging. Cell 155:1624–1638PubMedPubMedCentralCrossRef Gomes AP, Price NL, Ling AJ, Moslehi JJ, Montgomery MK, Rajman L, White JP, Teodoro JS, Wrann CD, Hubbard BP, Mercken EM, Palmeira CM, de Cabo R, Rolo AP, Turner N, Bell EL, Sinclair DA (2013) Declining NAD(+) induces a pseudohypoxic state disrupting nuclear-mitochondrial communication during aging. Cell 155:1624–1638PubMedPubMedCentralCrossRef
39.
go back to reference Rodgers JT, Lerin C, Haas W, Gygi SP, Spiegelman BM, Puigserver P (2005) Nutrient control of glucose homeostasis through a complex of PGC-1alpha and SIRT1. Nature 434:113–118PubMedCrossRef Rodgers JT, Lerin C, Haas W, Gygi SP, Spiegelman BM, Puigserver P (2005) Nutrient control of glucose homeostasis through a complex of PGC-1alpha and SIRT1. Nature 434:113–118PubMedCrossRef
40.
go back to reference Intihar TA, Martinez EA, Gomez-Pastor R (2019) Mitochondrial dysfunction in Huntington’s disease; interplay between HSF1, p53 and PGC-1alpha transcription factors. Front Cell Neurosci 13:103PubMedPubMedCentralCrossRef Intihar TA, Martinez EA, Gomez-Pastor R (2019) Mitochondrial dysfunction in Huntington’s disease; interplay between HSF1, p53 and PGC-1alpha transcription factors. Front Cell Neurosci 13:103PubMedPubMedCentralCrossRef
41.
go back to reference Fang EF, Scheibye-Knudsen M, Brace LE, Kassahun H, SenGupta T, Nilsen H, Mitchell JR, Croteau DL, Bohr VA (2014) Defective mitophagy in XPA via PARP-1 hyperactivation and NAD(+)/SIRT1 reduction. Cell 157:882–896PubMedPubMedCentralCrossRef Fang EF, Scheibye-Knudsen M, Brace LE, Kassahun H, SenGupta T, Nilsen H, Mitchell JR, Croteau DL, Bohr VA (2014) Defective mitophagy in XPA via PARP-1 hyperactivation and NAD(+)/SIRT1 reduction. Cell 157:882–896PubMedPubMedCentralCrossRef
42.
43.
go back to reference Qian W, Kumar N, Roginskaya V, Fouquerel E, Opresko PL, Shiva S, Watkins SC, Kolodieznyi D, Bruchez MP, Van Houten B (2019) Chemoptogenetic damage to mitochondria causes rapid telomere dysfunction. Proc Natl Acad Sci USA 116:18435–18444PubMedCrossRefPubMedCentral Qian W, Kumar N, Roginskaya V, Fouquerel E, Opresko PL, Shiva S, Watkins SC, Kolodieznyi D, Bruchez MP, Van Houten B (2019) Chemoptogenetic damage to mitochondria causes rapid telomere dysfunction. Proc Natl Acad Sci USA 116:18435–18444PubMedCrossRefPubMedCentral
Metadata
Title
Mitochondria and chronic effects of cancer therapeutics: The clinical implications
Authors
Abishai Dominic
Dale Hamilton
Jun-ichi Abe
Publication date
01-05-2021
Publisher
Springer US
Published in
Journal of Thrombosis and Thrombolysis / Issue 4/2021
Print ISSN: 0929-5305
Electronic ISSN: 1573-742X
DOI
https://doi.org/10.1007/s11239-020-02313-2

Other articles of this Issue 4/2021

Journal of Thrombosis and Thrombolysis 4/2021 Go to the issue
Live Webinar | 27-06-2024 | 18:00 (CEST)

Keynote webinar | Spotlight on medication adherence

Live: Thursday 27th June 2024, 18:00-19:30 (CEST)

WHO estimates that half of all patients worldwide are non-adherent to their prescribed medication. The consequences of poor adherence can be catastrophic, on both the individual and population level.

Join our expert panel to discover why you need to understand the drivers of non-adherence in your patients, and how you can optimize medication adherence in your clinics to drastically improve patient outcomes.

Prof. Kevin Dolgin
Prof. Florian Limbourg
Prof. Anoop Chauhan
Developed by: Springer Medicine
Obesity Clinical Trial Summary

At a glance: The STEP trials

A round-up of the STEP phase 3 clinical trials evaluating semaglutide for weight loss in people with overweight or obesity.

Developed by: Springer Medicine