Skip to main content
Top
Published in: Cancer and Metastasis Reviews 3/2023

Open Access 02-06-2023 | Non-Thematic Review

Current state-of-the-art on ganglioside-mediated immune modulation in the tumor microenvironment

Authors: Irene van der Haar Àvila, Britt Windhouwer, Sandra J. van Vliet

Published in: Cancer and Metastasis Reviews | Issue 3/2023

Login to get access

Abstract

Gangliosides are sialylated glycolipids, mainly present at the cell surface membrane, involved in a variety of cellular signaling events. During malignant transformation, the composition of these glycosphingolipids is altered, leading to structural and functional changes, which are often negatively correlated to patient survival. Cancer cells have the ability to shed gangliosides into the tumor microenvironment, where they have a strong impact on anti-tumor immunity and promote tumor progression. Since most ganglioside species show prominent immunosuppressive activities, they might be considered checkpoint molecules released to counteract ongoing immunosurveillance. In this review, we highlight the current state-of-the-art on the ganglioside-mediated immunomodulation, specified for the different immune cells and individual gangliosides. In addition, we address the dual role that certain gangliosides play in the tumor microenvironment. Even though some ganglioside species have been more extensively studied than others, they are proven to contribute to the defense mechanisms of the tumor and should be regarded as promising therapeutic targets for inclusion in future immunotherapy regimens.
Literature
6.
go back to reference Nguyen, L., McCord, K. A., Bui, D. T., Bouwman, K. M., Kitova, E. N., Elaish, M., Kumawat, D., Daskhan, G. C., Tomris, I., Han, L., Chopra, P., Yang, T. J., Willows, S. D., Mason, A. L., Mahal, L. K., Lowary, T. L., West, L. J., Hsu, S. D., Hobman, T., & Klassen, J. S. (2022). Sialic acid-containing glycolipids mediate binding and viral entry of SARS-CoV-2. Nature Chemical Biology, 18(1), 81–90. https://doi.org/10.1038/s41589-021-00924-1CrossRefPubMed Nguyen, L., McCord, K. A., Bui, D. T., Bouwman, K. M., Kitova, E. N., Elaish, M., Kumawat, D., Daskhan, G. C., Tomris, I., Han, L., Chopra, P., Yang, T. J., Willows, S. D., Mason, A. L., Mahal, L. K., Lowary, T. L., West, L. J., Hsu, S. D., Hobman, T., & Klassen, J. S. (2022). Sialic acid-containing glycolipids mediate binding and viral entry of SARS-CoV-2. Nature Chemical Biology, 18(1), 81–90. https://​doi.​org/​10.​1038/​s41589-021-00924-1CrossRefPubMed
12.
go back to reference Ladisch, S., Gillard, B., Wong, C., & Ulsh, L. (1983). Shedding and immunoregulatory activity of YAC-1 lymphoma cell gangliosides. Cancer Res, 43(8), 3808–3813.PubMed Ladisch, S., Gillard, B., Wong, C., & Ulsh, L. (1983). Shedding and immunoregulatory activity of YAC-1 lymphoma cell gangliosides. Cancer Res, 43(8), 3808–3813.PubMed
17.
go back to reference Potapenko, M., Shurin, G. V., & de León, J. (2007). Gangliosides as immunomodulators. Advances in Experimental Medicine and Biology. Potapenko, M., Shurin, G. V., & de León, J. (2007). Gangliosides as immunomodulators. Advances in Experimental Medicine and Biology.
18.
go back to reference Schnaar, R. L., Sandhoff, R., Tiemeyer, M., & Kinoshita, T. (2022). Glycosphingolipids. In th, A. Varki, R. D. Cummings, J. D. Esko, P. Stanley, G. W. Hart, M. Aebi, D. Mohnen, T. Kinoshita, N. H. Packer, J. H. Prestegard, R. L. Schnaar, & P. H. Seeberger (Eds.), Essentials of Glycobiology (pp. 129-140). https://doi.org/10.1101/glycobiology.4e.11 Schnaar, R. L., Sandhoff, R., Tiemeyer, M., & Kinoshita, T. (2022). Glycosphingolipids. In th, A. Varki, R. D. Cummings, J. D. Esko, P. Stanley, G. W. Hart, M. Aebi, D. Mohnen, T. Kinoshita, N. H. Packer, J. H. Prestegard, R. L. Schnaar, & P. H. Seeberger (Eds.), Essentials of Glycobiology (pp. 129-140). https://​doi.​org/​10.​1101/​glycobiology.​4e.​11
19.
go back to reference Inokuchi, J.-i., & Uemura, S. (2014). ST3 Beta-Galactoside Alpha-2,3-Sialyltransferase 5 (ST3GAL5). In N. Taniguchi, K. Honke, M. Fukuda, H. Narimatsu, Y. Yamaguchi, & T. Angata (Eds.), Handbook of glycosyltransferases and related genes (pp. 675-686)Springer . https://doi.org/10.1007/978-4-431-54240-7_61 Inokuchi, J.-i., & Uemura, S. (2014). ST3 Beta-Galactoside Alpha-2,3-Sialyltransferase 5 (ST3GAL5). In N. Taniguchi, K. Honke, M. Fukuda, H. Narimatsu, Y. Yamaguchi, & T. Angata (Eds.), Handbook of glycosyltransferases and related genes (pp. 675-686)Springer . https://​doi.​org/​10.​1007/​978-4-431-54240-7_​61
20.
go back to reference Varki, A., Cummings, R., & Esko, J. (2009). Essentials of glycobiology (Vol. 44, 2nd ed.). Cold Spring Harbor Laboratory Press. Varki, A., Cummings, R., & Esko, J. (2009). Essentials of glycobiology (Vol. 44, 2nd ed.). Cold Spring Harbor Laboratory Press.
21.
go back to reference Simpson, M. A., Cross, H., Proukakis, C., Priestman, D. A., Neville, D. C. A., Reinkensmeier, G., Wang, H., Wiznitzer, M., Gurtz, K., Verganelaki, A., Pryde, A., Patton, M. A., Dwek, R. A., Butters, T. D., Platt, F. M., & Crosby, A. H. (2004). Infantile-onset symptomatic epilepsy syndrome caused by a homozygous loss-of-function mutation of GM3 synthase. Nature Genetics, 36(11), 1225–1229. https://doi.org/10.1038/ng1460CrossRefPubMed Simpson, M. A., Cross, H., Proukakis, C., Priestman, D. A., Neville, D. C. A., Reinkensmeier, G., Wang, H., Wiznitzer, M., Gurtz, K., Verganelaki, A., Pryde, A., Patton, M. A., Dwek, R. A., Butters, T. D., Platt, F. M., & Crosby, A. H. (2004). Infantile-onset symptomatic epilepsy syndrome caused by a homozygous loss-of-function mutation of GM3 synthase. Nature Genetics, 36(11), 1225–1229. https://​doi.​org/​10.​1038/​ng1460CrossRefPubMed
40.
go back to reference Chiricozzi, E., Biase, E. D., Maggioni, M., Lunghi, G., Fazzari, M., Pomè, D. Y., Casellato, R., Loberto, N., Mauri, L., & Sonnino, S. (2019). GM1 promotes TrkA-mediated neuroblastoma cell differentiation by occupying a plasma membrane domain different from TrkA. Journal of Neurochemistry, 149(2), 231–241. https://doi.org/10.1111/jnc.14685CrossRefPubMed Chiricozzi, E., Biase, E. D., Maggioni, M., Lunghi, G., Fazzari, M., Pomè, D. Y., Casellato, R., Loberto, N., Mauri, L., & Sonnino, S. (2019). GM1 promotes TrkA-mediated neuroblastoma cell differentiation by occupying a plasma membrane domain different from TrkA. Journal of Neurochemistry, 149(2), 231–241. https://​doi.​org/​10.​1111/​jnc.​14685CrossRefPubMed
42.
go back to reference Gabri, M. R., Otero, L. L., Gomez, D. E., & Alonso, D. F. (2009). Exogenous incorporation of neugc-rich mucin augments n-glycolyl sialic acid content and promotes malignant phenotype in mouse tumor cell lines. Journal of Experimental & Clinical Cancer Research, 28(1), 146. https://doi.org/10.1186/1756-9966-28-146CrossRef Gabri, M. R., Otero, L. L., Gomez, D. E., & Alonso, D. F. (2009). Exogenous incorporation of neugc-rich mucin augments n-glycolyl sialic acid content and promotes malignant phenotype in mouse tumor cell lines. Journal of Experimental & Clinical Cancer Research, 28(1), 146. https://​doi.​org/​10.​1186/​1756-9966-28-146CrossRef
44.
go back to reference Dong, Y., Ikeda, K., Hamamura, K., Zhang, Q., Kondo, Y., Matsumoto, Y., Ohmi, Y., Yamauchi, Y., Furukawa, K., Taguchi, R., & Furukawa, K. (2010). GM1/GD1b / GA1 synthase expression results in the reduced cancer phenotypes with modulation of composition and raft-localization of gangliosides in a melanoma cell line. Cancer Science, 101(9), 2039–2047. https://doi.org/10.1111/j.1349-7006.2010.01613.xCrossRefPubMed Dong, Y., Ikeda, K., Hamamura, K., Zhang, Q., Kondo, Y., Matsumoto, Y., Ohmi, Y., Yamauchi, Y., Furukawa, K., Taguchi, R., & Furukawa, K. (2010). GM1/GD1b / GA1 synthase expression results in the reduced cancer phenotypes with modulation of composition and raft-localization of gangliosides in a melanoma cell line. Cancer Science, 101(9), 2039–2047. https://​doi.​org/​10.​1111/​j.​1349-7006.​2010.​01613.​xCrossRefPubMed
45.
go back to reference Marquina, G., Waki, H., Fernandez, L. E., Kon, K., Carr, A., Valiente, O., Perez, R., & Ando, S. (1996). Gangliosides expressed in human breast cancer. Cancer Research, 56(22), 5165–5171.PubMed Marquina, G., Waki, H., Fernandez, L. E., Kon, K., Carr, A., Valiente, O., Perez, R., & Ando, S. (1996). Gangliosides expressed in human breast cancer. Cancer Research, 56(22), 5165–5171.PubMed
47.
go back to reference Battula, V. L., Shi, Y., Evans, K. W., Wang, R. Y., Spaeth, E. L., Jacamo, R. O., Guerra, R., Sahin, A. A., Marini, F. C., Hortobagyi, G., Mani, S. A., & Andreeff, M. (2012). Ganglioside GD2 identifies breast cancer stem cells and promotes tumorigenesis. Journal of Clinical Investigation, 122(6), 2066–2078. https://doi.org/10.1172/JCI59735CrossRefPubMedPubMedCentral Battula, V. L., Shi, Y., Evans, K. W., Wang, R. Y., Spaeth, E. L., Jacamo, R. O., Guerra, R., Sahin, A. A., Marini, F. C., Hortobagyi, G., Mani, S. A., & Andreeff, M. (2012). Ganglioside GD2 identifies breast cancer stem cells and promotes tumorigenesis. Journal of Clinical Investigation, 122(6), 2066–2078. https://​doi.​org/​10.​1172/​JCI59735CrossRefPubMedPubMedCentral
48.
go back to reference van Cruijsen, H., Ruiz, M. G., van der Valk, P., de Gruijl, T. D., & Giaccone, G. (2009). Tissue micro array analysis of ganglioside N-glycolyl GM3 expression and signal transducer and activator of transcription (STAT)-3 activation in relation to dendritic cell infiltration and microvessel density in non-small cell lung cancer. BMC Cancer, 9, 180. https://doi.org/10.1186/1471-2407-9-180CrossRefPubMedPubMedCentral van Cruijsen, H., Ruiz, M. G., van der Valk, P., de Gruijl, T. D., & Giaccone, G. (2009). Tissue micro array analysis of ganglioside N-glycolyl GM3 expression and signal transducer and activator of transcription (STAT)-3 activation in relation to dendritic cell infiltration and microvessel density in non-small cell lung cancer. BMC Cancer, 9, 180. https://​doi.​org/​10.​1186/​1471-2407-9-180CrossRefPubMedPubMedCentral
50.
go back to reference Hayashi, N., Chiba, H., Kuronuma, K., Go, S., Hasegawa, Y., Takahashi, M., Gasa, S., Watanabe, A., Hasegawa, T., Kuroki, Y., Inokuchi, J., & Takahashi, H. (2013). Detection of N-glycolyated gangliosides in non-small-cell lung cancer using GMR8 monoclonal antibody. Cancer Science, 104(1), 43–47. https://doi.org/10.1111/cas.12027CrossRefPubMed Hayashi, N., Chiba, H., Kuronuma, K., Go, S., Hasegawa, Y., Takahashi, M., Gasa, S., Watanabe, A., Hasegawa, T., Kuroki, Y., Inokuchi, J., & Takahashi, H. (2013). Detection of N-glycolyated gangliosides in non-small-cell lung cancer using GMR8 monoclonal antibody. Cancer Science, 104(1), 43–47. https://​doi.​org/​10.​1111/​cas.​12027CrossRefPubMed
51.
go back to reference Yoshida, S., Fukumoto, S., Kawaguchi, H., Sato, S., Ueda, R., & Furukawa, K. (2001). Ganglioside GD2 in small cell lung cancer cell lines: Enhancement of cell proliferation and mediation of apoptosis. Cancer Research, 61(10), 4244–4252.PubMed Yoshida, S., Fukumoto, S., Kawaguchi, H., Sato, S., Ueda, R., & Furukawa, K. (2001). Ganglioside GD2 in small cell lung cancer cell lines: Enhancement of cell proliferation and mediation of apoptosis. Cancer Research, 61(10), 4244–4252.PubMed
53.
go back to reference Ravindranath, M. H., Muthugounder, S., Presser, N., Santin, A. D., Selvan, S. R., & Morton, D. L. (2005). Ganglioside GD1a, present in ovarian cancer cells, ascites and sera of patients elicits endogenous IgM response. Cancer Research, 65(9), 1216–1216. Ravindranath, M. H., Muthugounder, S., Presser, N., Santin, A. D., Selvan, S. R., & Morton, D. L. (2005). Ganglioside GD1a, present in ovarian cancer cells, ascites and sera of patients elicits endogenous IgM response. Cancer Research, 65(9), 1216–1216.
54.
55.
go back to reference Kudo, D., Rayman, P., Horton, C., Cathcart, M. K., Bukowski, R. M., Thornton, M., Tannenbaum, C., & Finke, J. H. (2003). Gangliosides expressed by the renal cell carcinoma cell line SK-RC-45 are involved in tumor-induced apoptosis of T cells. Cancer Research, 63(7), 1676–1683.PubMed Kudo, D., Rayman, P., Horton, C., Cathcart, M. K., Bukowski, R. M., Thornton, M., Tannenbaum, C., & Finke, J. H. (2003). Gangliosides expressed by the renal cell carcinoma cell line SK-RC-45 are involved in tumor-induced apoptosis of T cells. Cancer Research, 63(7), 1676–1683.PubMed
57.
go back to reference Kwak, D. H., Ryu, J. S., Kim, C. H., Ko, K., Ma, J. Y., Hwang, K. A., & Choo, Y. K. (2011). Relationship between ganglioside expression and anti-cancer effects of the monoclonal antibody against epithelial cell adhesion molecule in colon cancer. Experimental & Molecular Medicine, 43(12), 693–701. https://doi.org/10.3858/emm.2011.43.12.080CrossRef Kwak, D. H., Ryu, J. S., Kim, C. H., Ko, K., Ma, J. Y., Hwang, K. A., & Choo, Y. K. (2011). Relationship between ganglioside expression and anti-cancer effects of the monoclonal antibody against epithelial cell adhesion molecule in colon cancer. Experimental & Molecular Medicine, 43(12), 693–701. https://​doi.​org/​10.​3858/​emm.​2011.​43.​12.​080CrossRef
62.
go back to reference Li, Y., Huang, X., Zhong, W., Zhang, J., & Ma, K. (2013). Ganglioside GM3 promotes HGF-stimulated motility of murine hepatoma cell through enhanced phosphorylation of cMet at specific tyrosine sites and PI3K/Akt-mediated migration signaling. Molecular and Cellular Biochemistry, 382(1-2), 83–92. https://doi.org/10.1007/s11010-013-1720-9CrossRefPubMed Li, Y., Huang, X., Zhong, W., Zhang, J., & Ma, K. (2013). Ganglioside GM3 promotes HGF-stimulated motility of murine hepatoma cell through enhanced phosphorylation of cMet at specific tyrosine sites and PI3K/Akt-mediated migration signaling. Molecular and Cellular Biochemistry, 382(1-2), 83–92. https://​doi.​org/​10.​1007/​s11010-013-1720-9CrossRefPubMed
69.
go back to reference Cazet, A., Lefebvre, J., Adriaenssens, E., Julien, S., Bobowski, M., Grigoriadis, A., Tutt, A., Tulasne, D., Le Bourhis, X., & Delannoy, P. (2010). GD3 synthase expression enhances proliferation and tumor growth of MDA-MB-231 breast cancer cells through c-Met activation. Molecular Cancer Research, 8(11), 1526–1535. https://doi.org/10.1158/1541-7786.Mcr-10-0302CrossRefPubMed Cazet, A., Lefebvre, J., Adriaenssens, E., Julien, S., Bobowski, M., Grigoriadis, A., Tutt, A., Tulasne, D., Le Bourhis, X., & Delannoy, P. (2010). GD3 synthase expression enhances proliferation and tumor growth of MDA-MB-231 breast cancer cells through c-Met activation. Molecular Cancer Research, 8(11), 1526–1535. https://​doi.​org/​10.​1158/​1541-7786.​Mcr-10-0302CrossRefPubMed
72.
go back to reference Ruan, S., & Lloyd, K. O. (1992). Glycosylation pathways in the biosynthesis of gangliosides in melanoma and neuroblastoma cells: Relative glycosyltransferase levels determine ganglioside patterns. Cancer Research, 52(20), 5725–5731.PubMed Ruan, S., & Lloyd, K. O. (1992). Glycosylation pathways in the biosynthesis of gangliosides in melanoma and neuroblastoma cells: Relative glycosyltransferase levels determine ganglioside patterns. Cancer Research, 52(20), 5725–5731.PubMed
73.
go back to reference Thampoe, I. J., Furukawa, K., Vellvé, E., & Lloyd, K. O. (1989). Sialyltransferase levels and ganglioside expression in melanoma and other cultured human cancer cells. Cancer Research, 49(22), 6258–6264.PubMed Thampoe, I. J., Furukawa, K., Vellvé, E., & Lloyd, K. O. (1989). Sialyltransferase levels and ganglioside expression in melanoma and other cultured human cancer cells. Cancer Research, 49(22), 6258–6264.PubMed
74.
go back to reference Ruckhäberle, E., Karn, T., Rody, A., Hanker, L., Gätje, R., Metzler, D., Holtrich, U., & Kaufmann, M. (2009). Gene expression of ceramide kinase, galactosyl ceramide synthase and ganglioside GD3 synthase is associated with prognosis in breast cancer. Journal of Cancer Research and Clinical Oncology, 135(8), 1005–1013. https://doi.org/10.1007/s00432-008-0536-6CrossRefPubMed Ruckhäberle, E., Karn, T., Rody, A., Hanker, L., Gätje, R., Metzler, D., Holtrich, U., & Kaufmann, M. (2009). Gene expression of ceramide kinase, galactosyl ceramide synthase and ganglioside GD3 synthase is associated with prognosis in breast cancer. Journal of Cancer Research and Clinical Oncology, 135(8), 1005–1013. https://​doi.​org/​10.​1007/​s00432-008-0536-6CrossRefPubMed
75.
go back to reference Zeng, G., Gao, L., Birklé, S., & p., & Yu, R. K. (2000). Suppression of ganglioside GD3 expression in a Rat F-11 tumor cell line reduces tumor growth, angiogenesis, and vascular endothelial growth factor production. Cancer Research, 60(23), 6670–6676.PubMed Zeng, G., Gao, L., Birklé, S., & p., & Yu, R. K. (2000). Suppression of ganglioside GD3 expression in a Rat F-11 tumor cell line reduces tumor growth, angiogenesis, and vascular endothelial growth factor production. Cancer Research, 60(23), 6670–6676.PubMed
76.
go back to reference Ladisch, S. (1996). Biological significance of tumor gangliosides: Shedding, transfer, and immunosuppression. In J. Y. Vanderhoek (Ed.), Frontiers in bioactive lipids (pp. 215–221). Springer.CrossRef Ladisch, S. (1996). Biological significance of tumor gangliosides: Shedding, transfer, and immunosuppression. In J. Y. Vanderhoek (Ed.), Frontiers in bioactive lipids (pp. 215–221). Springer.CrossRef
83.
go back to reference Chu, J. W., & Sharom, F. J. (1993). Gangliosides inhibit T-lymphocyte proliferation by preventing the interaction of interleukin-2 with its cell surface receptors. Immunology, 79(1), 10–17.PubMedPubMedCentral Chu, J. W., & Sharom, F. J. (1993). Gangliosides inhibit T-lymphocyte proliferation by preventing the interaction of interleukin-2 with its cell surface receptors. Immunology, 79(1), 10–17.PubMedPubMedCentral
87.
go back to reference Finke, J. H., Rayman, P., George, R., Tannenbaum, C. S., Kolenko, V., Uzzo, R., Novick, A. C., & Bukowski, R. M. (2001). Tumor-induced sensitivity to apoptosis in T cells from patients with renal cell carcinoma: Role of nuclear factor-κB suppression. Clinical Cancer Research, 7(3), 940s–946s.PubMed Finke, J. H., Rayman, P., George, R., Tannenbaum, C. S., Kolenko, V., Uzzo, R., Novick, A. C., & Bukowski, R. M. (2001). Tumor-induced sensitivity to apoptosis in T cells from patients with renal cell carcinoma: Role of nuclear factor-κB suppression. Clinical Cancer Research, 7(3), 940s–946s.PubMed
88.
go back to reference Offner, H., Thieme, T., & Vandenbark, A. A. (1987). Gangliosides induce selective modulation of CD4 from helper T lymphocytes. The Journal of Immunology, 139(10), 3295–3305.CrossRefPubMed Offner, H., Thieme, T., & Vandenbark, A. A. (1987). Gangliosides induce selective modulation of CD4 from helper T lymphocytes. The Journal of Immunology, 139(10), 3295–3305.CrossRefPubMed
91.
92.
go back to reference Kume, M., Kiyohara, E., Matsumura, Y., Koguchi-Yoshioka, H., Tanemura, A., Hanaoka, Y., Taminato, M., Tashima, H., Tomita, K., Kubo, T., Watanabe, R., & Fujimoto, M. (2021). Ganglioside GD3 may suppress the functional activities of benign skin T cells in cutaneous T-cell lymphoma. Frontiers in Immunology, 12, 651048. https://doi.org/10.3389/fimmu.2021.651048 Kume, M., Kiyohara, E., Matsumura, Y., Koguchi-Yoshioka, H., Tanemura, A., Hanaoka, Y., Taminato, M., Tashima, H., Tomita, K., Kubo, T., Watanabe, R., & Fujimoto, M. (2021). Ganglioside GD3 may suppress the functional activities of benign skin T cells in cutaneous T-cell lymphoma. Frontiers in Immunology, 12, 651048. https://​doi.​org/​10.​3389/​fimmu.​2021.​651048
103.
go back to reference Bergelson, L. D., Dyatlovitskaya, E. V., Klyuchareva, T. E., Kryukova, E. V., Lemenovskaya, A. F., Matveeva, V. A., & Sinitsyna, E. V. (1989). The role of glycosphingolipids in natural immunity. gangliosides modulate the cytotoxicity of natural killer cells. European Journal of Immunology, 19(11), 1979–1983. https://doi.org/10.1002/eji.1830191102CrossRefPubMed Bergelson, L. D., Dyatlovitskaya, E. V., Klyuchareva, T. E., Kryukova, E. V., Lemenovskaya, A. F., Matveeva, V. A., & Sinitsyna, E. V. (1989). The role of glycosphingolipids in natural immunity. gangliosides modulate the cytotoxicity of natural killer cells. European Journal of Immunology, 19(11), 1979–1983. https://​doi.​org/​10.​1002/​eji.​1830191102CrossRefPubMed
107.
go back to reference Iltis, C., Seguin, L., Cervera, L., Duret, L., Hamidouche, T., Kunz, S., Croce, O., Delannoy, C., Gueŕardel, Y., Allain, F., Moudombi, L., Hofman, P., Cosson, E., Guglielmi, J., Pourcher, T., Braud, V. M., Shkreli, M., Michallet, M.-C., Feral, C. C., Cherfils-Vicini, J. (2021). A ganglioside-based senescence-associated immune checkpoint. bioRxiv, 2021.2004.2023.440408. https://doi.org/10.1101/2021.04.23.440408 Iltis, C., Seguin, L., Cervera, L., Duret, L., Hamidouche, T., Kunz, S., Croce, O., Delannoy, C., Gueŕardel, Y., Allain, F., Moudombi, L., Hofman, P., Cosson, E., Guglielmi, J., Pourcher, T., Braud, V. M., Shkreli, M., Michallet, M.-C., Feral, C. C., Cherfils-Vicini, J. (2021). A ganglioside-based senescence-associated immune checkpoint. bioRxiv, 2021.2004.2023.440408. https://​doi.​org/​10.​1101/​2021.​04.​23.​440408
111.
114.
go back to reference Shurin, G. V., Shurin, M. R., Bykovskaia, S., Shogan, J., Lotze, M. T., & Barksdale, E. M. (2001). Neuroblastoma-derived gangliosides inhibit dendritic cell generation and function. Cancer Research, 61(1), 363–369.PubMed Shurin, G. V., Shurin, M. R., Bykovskaia, S., Shogan, J., Lotze, M. T., & Barksdale, E. M. (2001). Neuroblastoma-derived gangliosides inhibit dendritic cell generation and function. Cancer Research, 61(1), 363–369.PubMed
118.
go back to reference Park, J., Kwak, C. H., Ha, S. H., Kwon, K. M., Abekura, F., Cho, S. H., Chang, Y. C., Lee, Y. C., Ha, K. T., Chung, T. W., & Kim, C. H. (2018). Ganglioside GM3 suppresses lipopolysaccharide-induced inflammatory responses in rAW 264.7 macrophage cells through NF-kappaB, AP-1, and MAPKs signaling. Journal of Cellular Biochemistry, 119(1), 1173–1182. https://doi.org/10.1002/jcb.26287CrossRefPubMed Park, J., Kwak, C. H., Ha, S. H., Kwon, K. M., Abekura, F., Cho, S. H., Chang, Y. C., Lee, Y. C., Ha, K. T., Chung, T. W., & Kim, C. H. (2018). Ganglioside GM3 suppresses lipopolysaccharide-induced inflammatory responses in rAW 264.7 macrophage cells through NF-kappaB, AP-1, and MAPKs signaling. Journal of Cellular Biochemistry, 119(1), 1173–1182. https://​doi.​org/​10.​1002/​jcb.​26287CrossRefPubMed
119.
120.
go back to reference Ziegler-Heitbrock, H. W., Käfferlein, E., Haas, J. G., Meyer, N., Ströbel, M., Weber, C., & Flieger, D. (1992). Gangliosides suppress tumor necrosis factor production in human monocytes. The Journal of Immunology, 148(6), 1753–1758.CrossRefPubMed Ziegler-Heitbrock, H. W., Käfferlein, E., Haas, J. G., Meyer, N., Ströbel, M., Weber, C., & Flieger, D. (1992). Gangliosides suppress tumor necrosis factor production in human monocytes. The Journal of Immunology, 148(6), 1753–1758.CrossRefPubMed
126.
go back to reference Lu, P., & Sharom, F. J. (1995). Gangliosides are potent immunosuppressors of IL-2-mediated T-cell proliferation in a low protein environment. Immunology, 86(3), 356–363.PubMedPubMedCentral Lu, P., & Sharom, F. J. (1995). Gangliosides are potent immunosuppressors of IL-2-mediated T-cell proliferation in a low protein environment. Immunology, 86(3), 356–363.PubMedPubMedCentral
133.
go back to reference Garofalo, T., Sorice, M., Misasi, R., Cinque, B., & Giammatteo, M. (1998). A novel mechanism of CD4 down-modulation induced by monosialoganglioside GM3. Journal of Biological Chemistry, 273, 35153–35160.CrossRefPubMed Garofalo, T., Sorice, M., Misasi, R., Cinque, B., & Giammatteo, M. (1998). A novel mechanism of CD4 down-modulation induced by monosialoganglioside GM3. Journal of Biological Chemistry, 273, 35153–35160.CrossRefPubMed
134.
go back to reference Irani, D. N., Lin, K. I., & Griffin, D. E. (1996). Brain-derived gangliosides regulate the cytokine production and proliferation of activated T cells. Journal of Immunology (Baltimore, Md.: 1950), 157(10), 4333–4340.CrossRefPubMed Irani, D. N., Lin, K. I., & Griffin, D. E. (1996). Brain-derived gangliosides regulate the cytokine production and proliferation of activated T cells. Journal of Immunology (Baltimore, Md.: 1950), 157(10), 4333–4340.CrossRefPubMed
138.
go back to reference Theruvath, J., Menard, M., Smith, B. A. H., Linde, M. H., Coles, G. L., Dalton, G. N., Wu, W., Kiru, L., Delaidelli, A., Sotillo, E., Silberstein, J. L., Geraghty, A. C., Banuelos, A., Radosevich, M. T., Dhingra, S., Heitzeneder, S., Tousley, A., Lattin, J., Xu, P., & Majzner, R. G. (2022). Anti-GD2 synergizes with CD47 blockade to mediate tumor eradication. Nature Medicine, 28(2), 333–344. https://doi.org/10.1038/s41591-021-01625-xCrossRefPubMedPubMedCentral Theruvath, J., Menard, M., Smith, B. A. H., Linde, M. H., Coles, G. L., Dalton, G. N., Wu, W., Kiru, L., Delaidelli, A., Sotillo, E., Silberstein, J. L., Geraghty, A. C., Banuelos, A., Radosevich, M. T., Dhingra, S., Heitzeneder, S., Tousley, A., Lattin, J., Xu, P., & Majzner, R. G. (2022). Anti-GD2 synergizes with CD47 blockade to mediate tumor eradication. Nature Medicine, 28(2), 333–344. https://​doi.​org/​10.​1038/​s41591-021-01625-xCrossRefPubMedPubMedCentral
145.
go back to reference Park, J., Kwak, C.-H., Ha, S.-H., Kwon, K.-M., Abekura, F., Cho, S.-H., Chang, Y.-C., Lee, Y.-C., Ha, K.-T., Chung, T.-W., & Kim, C.-H. (2018). Ganglioside GM3 suppresses lipopolysaccharide-induced inflammatory responses in rAW 264.7 macrophage cells through NF-κB, AP-1, and MAPKs signaling. Journal of Cellular Biochemistry, 119(1), 1173–1182. https://doi.org/10.1002/jcb.26287CrossRefPubMed Park, J., Kwak, C.-H., Ha, S.-H., Kwon, K.-M., Abekura, F., Cho, S.-H., Chang, Y.-C., Lee, Y.-C., Ha, K.-T., Chung, T.-W., & Kim, C.-H. (2018). Ganglioside GM3 suppresses lipopolysaccharide-induced inflammatory responses in rAW 264.7 macrophage cells through NF-κB, AP-1, and MAPKs signaling. Journal of Cellular Biochemistry, 119(1), 1173–1182. https://​doi.​org/​10.​1002/​jcb.​26287CrossRefPubMed
153.
go back to reference Tong, W., Maira, M., Roychoudhury, R., Galan, A., Brahimi, F., Gilbert, M., Cunningham, A. M., Josephy, S., Pirvulescu, I., Moffett, S., & Saragovi, H. U. (2019). Vaccination with tumor-ganglioside glycomimetics activates a selective immunity that affords cancer therapy. Cell Chemical Biology, 26(7), 1013-1026 e1014. https://doi.org/10.1016/j.chembiol.2019.03.018 Tong, W., Maira, M., Roychoudhury, R., Galan, A., Brahimi, F., Gilbert, M., Cunningham, A. M., Josephy, S., Pirvulescu, I., Moffett, S., & Saragovi, H. U. (2019). Vaccination with tumor-ganglioside glycomimetics activates a selective immunity that affords cancer therapy. Cell Chemical Biology, 26(7), 1013-1026 e1014. https://​doi.​org/​10.​1016/​j.​chembiol.​2019.​03.​018
156.
go back to reference Heczey, A., Courtney, A. N., Montalbano, A., Robinson, S., Liu, K., Li, M., Ghatwai, N., Dakhova, O., Liu, B., Raveh-Sadka, T., Chauvin-Fleurence, C. N., Xu, X., Ngai, H., Di Pierro, E. J., Savoldo, B., Dotti, G., & Metelitsa, L. S. (2020). Anti-GD2 CAR-NKT cells in patients with relapsed or refractory neuroblastoma: An interim analysis. Nature Medicine, 26(11), 1686–1690. https://doi.org/10.1038/s41591-020-1074-2CrossRefPubMed Heczey, A., Courtney, A. N., Montalbano, A., Robinson, S., Liu, K., Li, M., Ghatwai, N., Dakhova, O., Liu, B., Raveh-Sadka, T., Chauvin-Fleurence, C. N., Xu, X., Ngai, H., Di Pierro, E. J., Savoldo, B., Dotti, G., & Metelitsa, L. S. (2020). Anti-GD2 CAR-NKT cells in patients with relapsed or refractory neuroblastoma: An interim analysis. Nature Medicine, 26(11), 1686–1690. https://​doi.​org/​10.​1038/​s41591-020-1074-2CrossRefPubMed
157.
go back to reference Majzner, R. G., Ramakrishna, S., Yeom, K. W., Patel, S., Chinnasamy, H., Schultz, L. M., Richards, R. M., Jiang, L., Barsan, V., Mancusi, R., Geraghty, A. C., Good, Z., Mochizuki, A. Y., Gillespie, S. M., Toland, A. M. S., Mahdi, J., Reschke, A., Nie, E. H., Chau, I. J., & Monje, M. (2022). GD2-CAR T cell therapy for H3K27M-mutated diffuse midline gliomas. Nature, 603(7903), 934–941. https://doi.org/10.1038/s41586-022-04489-4CrossRefPubMedPubMedCentral Majzner, R. G., Ramakrishna, S., Yeom, K. W., Patel, S., Chinnasamy, H., Schultz, L. M., Richards, R. M., Jiang, L., Barsan, V., Mancusi, R., Geraghty, A. C., Good, Z., Mochizuki, A. Y., Gillespie, S. M., Toland, A. M. S., Mahdi, J., Reschke, A., Nie, E. H., Chau, I. J., & Monje, M. (2022). GD2-CAR T cell therapy for H3K27M-mutated diffuse midline gliomas. Nature, 603(7903), 934–941. https://​doi.​org/​10.​1038/​s41586-022-04489-4CrossRefPubMedPubMedCentral
158.
go back to reference Thomas, A., Sumughan, S., Dellacecca, E. R., Shivde, R. S., Lancki, N., Mukhatayev, Z., Vaca, C. C., Han, F., Barse, L., Henning, S. W., Zamora-Pineda, J., Akhtar, S., Gupta, N., Zahid, J. O., Zack, S. R., Ramesh, P., Jaishankar, D., Lo, A. S., Moss, J., & Le Poole, I. C. (2021). Benign tumors in TSC are amenable to treatment by GD3 CAR T cells in mice. JCI. Insight, 6(22). https://doi.org/10.1172/jci.insight.152014 Thomas, A., Sumughan, S., Dellacecca, E. R., Shivde, R. S., Lancki, N., Mukhatayev, Z., Vaca, C. C., Han, F., Barse, L., Henning, S. W., Zamora-Pineda, J., Akhtar, S., Gupta, N., Zahid, J. O., Zack, S. R., Ramesh, P., Jaishankar, D., Lo, A. S., Moss, J., & Le Poole, I. C. (2021). Benign tumors in TSC are amenable to treatment by GD3 CAR T cells in mice. JCI. Insight, 6(22). https://​doi.​org/​10.​1172/​jci.​insight.​152014
Metadata
Title
Current state-of-the-art on ganglioside-mediated immune modulation in the tumor microenvironment
Authors
Irene van der Haar Àvila
Britt Windhouwer
Sandra J. van Vliet
Publication date
02-06-2023
Publisher
Springer US
Published in
Cancer and Metastasis Reviews / Issue 3/2023
Print ISSN: 0167-7659
Electronic ISSN: 1573-7233
DOI
https://doi.org/10.1007/s10555-023-10108-z

Other articles of this Issue 3/2023

Cancer and Metastasis Reviews 3/2023 Go to the issue
Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine