Skip to main content
Top
Published in: Clinical and Experimental Medicine 1/2016

01-02-2016 | Original Article

Curcumin inhibits LPA-induced invasion by attenuating RhoA/ROCK/MMPs pathway in MCF7 breast cancer cells

Authors: Kai Sun, Xiaoyi Duan, Hui Cai, Xiaohong Liu, Ya Yang, Min Li, Xiaoyun Zhang, Jiansheng Wang

Published in: Clinical and Experimental Medicine | Issue 1/2016

Login to get access

Abstract

Breast cancer generally shows poor prognosis because of its invasion and metastasis. Lysophosphatidic acid (LPA) induces and aggravates cancer invasion and metastasis by activating its downstream signal pathways. RhoA/ROCK/MMP signaling was found one of the LPA-induced pathways, which may be involved in invasion of breast cancer. Furthermore, we investigated whether this pathway was involved in curcumin’s effect against LPA-induced invasion. LPA incubation was used to enhance invasion of MCF-7 breast cancer cells. RhoA expression was knocked-down by siRNA technique. MTT assay was used to evaluate the proliferation. Transwell assay was utilized to investigate the invasion ability of MCF-7 cells. Real-time PCR and Western blotting were used to assess the expressions of RhoA, ROCK1, ROCK2, MMP2 and MMP9 at both translational and transcriptional levels. The RhoA and ROCK activities were also evaluated. LPA incubation significantly boosted invasion rate of MCF-7. RhoA silencing by siRNA dramatically inhibited LPA-enhanced invasion. Concurrently, RhoA and ROCK activities and expression levels of RhoA, ROCK1, ROCK2, MMP2 and MMP9 were down-regulated by RhoA siRNA transfection. In order to avoid influence of cytotoxicity of curcumin, concentrations below 45 μmol/L were selected to further investigate the mechanism of curcumin’s anti-invasion effect. Invasion of LPA-incubated MCF-7 cells was impaired by curcumin in a concentration-dependent manner. Concurrently, RhoA and ROCK activities and expression levels of RhoA, ROCK1, ROCK2, MMP2 and MMP9 were down-regulated by curcumin in a concentration-dependent manner. In conclusion, RhoA/ROCK/MMPs pathway activation is involved in LPA-induced invasion in MCF-7 cells; curcumin inhibited LPA-induced invasion in MCF-7 cells by attenuating RhoA/ROCK/MMPs pathway.
Literature
1.
go back to reference Engelhardt EG, Garvelink MM, de Haes JH, van der Hoeven JJ, Smets EM, Pieterse AH, et al. Predicting and communicating the risk of recurrence and death in women with early-stage breast cancer: a systematic review of risk prediction models. J Clin Oncol. 2014;32(3):238–50. doi:10.1200/JCO.2013.50.3417.CrossRefPubMed Engelhardt EG, Garvelink MM, de Haes JH, van der Hoeven JJ, Smets EM, Pieterse AH, et al. Predicting and communicating the risk of recurrence and death in women with early-stage breast cancer: a systematic review of risk prediction models. J Clin Oncol. 2014;32(3):238–50. doi:10.​1200/​JCO.​2013.​50.​3417.CrossRefPubMed
7.
go back to reference Du J, Sun C, Hu Z, Yang Y, Zhu Y, Zheng D, et al. Lysophosphatidic acid induces MDA-MB-231 breast cancer cells migration through activation of PI3K/PAK1/ERK signaling. PLoS One. 2010;5(12):0015940.CrossRef Du J, Sun C, Hu Z, Yang Y, Zhu Y, Zheng D, et al. Lysophosphatidic acid induces MDA-MB-231 breast cancer cells migration through activation of PI3K/PAK1/ERK signaling. PLoS One. 2010;5(12):0015940.CrossRef
8.
go back to reference Mierke CT, Bretz N, Altevogt P. Contractile forces contribute to increased glycosylphosphatidylinositol-anchored receptor CD24-facilitated cancer cell invasion. J Biol Chem. 2011;286(40):34858–71.CrossRefPubMedPubMedCentral Mierke CT, Bretz N, Altevogt P. Contractile forces contribute to increased glycosylphosphatidylinositol-anchored receptor CD24-facilitated cancer cell invasion. J Biol Chem. 2011;286(40):34858–71.CrossRefPubMedPubMedCentral
9.
go back to reference Alemayehu M, Dragan M, Pape C, Siddiqui I, Sacks DB, Di Guglielmo GM, et al. beta-Arrestin2 regulates lysophosphatidic acid-induced human breast tumor cell migration and invasion via Rap1 and IQGAP1. PLoS One. 2013;8(2):6.CrossRef Alemayehu M, Dragan M, Pape C, Siddiqui I, Sacks DB, Di Guglielmo GM, et al. beta-Arrestin2 regulates lysophosphatidic acid-induced human breast tumor cell migration and invasion via Rap1 and IQGAP1. PLoS One. 2013;8(2):6.CrossRef
14.
go back to reference Abecassis I, Olofsson B, Schmid M, Zalcman G, Karniguian A. RhoA induces MMP-9 expression at CD44 lamellipodial focal complexes and promotes HMEC-1 cell invasion. Exp Cell Res. 2003;291(2):363–76.CrossRefPubMed Abecassis I, Olofsson B, Schmid M, Zalcman G, Karniguian A. RhoA induces MMP-9 expression at CD44 lamellipodial focal complexes and promotes HMEC-1 cell invasion. Exp Cell Res. 2003;291(2):363–76.CrossRefPubMed
15.
go back to reference Noorafshan A, Ashkani-Esfahani S. A review of therapeutic effects of curcumin. Curr Pharm Des. 2013;19(11):2032–46.PubMed Noorafshan A, Ashkani-Esfahani S. A review of therapeutic effects of curcumin. Curr Pharm Des. 2013;19(11):2032–46.PubMed
16.
go back to reference Bar-Sela G, Epelbaum R, Schaffer M. Curcumin as an anti-cancer agent: review of the gap between basic and clinical applications. Curr Med Chem. 2010;17(3):190–7.CrossRefPubMed Bar-Sela G, Epelbaum R, Schaffer M. Curcumin as an anti-cancer agent: review of the gap between basic and clinical applications. Curr Med Chem. 2010;17(3):190–7.CrossRefPubMed
17.
go back to reference Lv ZD, Liu XP, Zhao WJ, Dong Q, Li FN, Wang HB, et al. Curcumin induces apoptosis in breast cancer cells and inhibits tumor growth in vitro and in vivo. Int J Clin Exp Pathol. 2014;7(6):2818–24.PubMedPubMedCentral Lv ZD, Liu XP, Zhao WJ, Dong Q, Li FN, Wang HB, et al. Curcumin induces apoptosis in breast cancer cells and inhibits tumor growth in vitro and in vivo. Int J Clin Exp Pathol. 2014;7(6):2818–24.PubMedPubMedCentral
18.
go back to reference Meiyanto E, Putri DD, Susidarti RA, Murwanti R, Sardjiman AF, et al. Curcumin and its analogues (PGV-0 and PGV-1) enhance sensitivity of resistant MCF-7 cells to doxorubicin through inhibition of HER2 and NF-kB activation. Asian Pac J Cancer Prev. 2014;15(1):179–84.CrossRefPubMed Meiyanto E, Putri DD, Susidarti RA, Murwanti R, Sardjiman AF, et al. Curcumin and its analogues (PGV-0 and PGV-1) enhance sensitivity of resistant MCF-7 cells to doxorubicin through inhibition of HER2 and NF-kB activation. Asian Pac J Cancer Prev. 2014;15(1):179–84.CrossRefPubMed
19.
go back to reference Mukherjee S, Mazumdar M, Chakraborty S, Manna A, Saha S, Khan P, et al. Curcumin inhibits breast cancer stem cell migration by amplifying the E-cadherin/beta-catenin negative feedback loop. Stem Cell Res Ther. 2014;5(5):116.CrossRefPubMedPubMedCentral Mukherjee S, Mazumdar M, Chakraborty S, Manna A, Saha S, Khan P, et al. Curcumin inhibits breast cancer stem cell migration by amplifying the E-cadherin/beta-catenin negative feedback loop. Stem Cell Res Ther. 2014;5(5):116.CrossRefPubMedPubMedCentral
20.
go back to reference Li X, Xie W, Xie C, Huang C, Zhu J, Liang Z, et al. Curcumin modulates miR-19/PTEN/AKT/p53 axis to suppress bisphenol A-induced MCF-7 breast cancer cell proliferation. Phytother Res. 2014;28(10):1553–60.CrossRefPubMed Li X, Xie W, Xie C, Huang C, Zhu J, Liang Z, et al. Curcumin modulates miR-19/PTEN/AKT/p53 axis to suppress bisphenol A-induced MCF-7 breast cancer cell proliferation. Phytother Res. 2014;28(10):1553–60.CrossRefPubMed
21.
go back to reference Mo N, Li ZQ, Li J, Cao YD. Curcumin inhibits TGF-beta1-induced MMP-9 and invasion through ERK and Smad signaling in breast cancer MDA- MB-231 cells. Asian Pac J Cancer Prev. 2012;13(11):5709–14.CrossRefPubMed Mo N, Li ZQ, Li J, Cao YD. Curcumin inhibits TGF-beta1-induced MMP-9 and invasion through ERK and Smad signaling in breast cancer MDA- MB-231 cells. Asian Pac J Cancer Prev. 2012;13(11):5709–14.CrossRefPubMed
23.
go back to reference Fagan-Solis KD, Schneider SS, Pentecost BT, Bentley BA, Otis CN, Gierthy JF, et al. The RhoA pathway mediates MMP-2 and MMP-9-independent invasive behavior in a triple-negative breast cancer cell line. J Cell Biochem. 2013;114(6):1385–94. doi:10.1002/jcb.24480.CrossRefPubMed Fagan-Solis KD, Schneider SS, Pentecost BT, Bentley BA, Otis CN, Gierthy JF, et al. The RhoA pathway mediates MMP-2 and MMP-9-independent invasive behavior in a triple-negative breast cancer cell line. J Cell Biochem. 2013;114(6):1385–94. doi:10.​1002/​jcb.​24480.CrossRefPubMed
24.
go back to reference Yamada T, Sato K, Komachi M, Malchinkhuu E, Tobo M, Kimura T, et al. Lysophosphatidic acid (LPA) in malignant ascites stimulates motility of human pancreatic cancer cells through LPA1. J Biol Chem. 2004;279(8):6595–605. doi:10.1074/jbc.M308133200.CrossRefPubMed Yamada T, Sato K, Komachi M, Malchinkhuu E, Tobo M, Kimura T, et al. Lysophosphatidic acid (LPA) in malignant ascites stimulates motility of human pancreatic cancer cells through LPA1. J Biol Chem. 2004;279(8):6595–605. doi:10.​1074/​jbc.​M308133200.CrossRefPubMed
28.
go back to reference Willier S, Butt E, Grunewald TG. Lysophosphatidic acid (LPA) signalling in cell migration and cancer invasion: a focussed review and analysis of LPA receptor gene expression on the basis of more than 1700 cancer microarrays. Biol Cell. 2013;105(8):317–33. doi:10.1111/boc.201300011.CrossRefPubMed Willier S, Butt E, Grunewald TG. Lysophosphatidic acid (LPA) signalling in cell migration and cancer invasion: a focussed review and analysis of LPA receptor gene expression on the basis of more than 1700 cancer microarrays. Biol Cell. 2013;105(8):317–33. doi:10.​1111/​boc.​201300011.CrossRefPubMed
30.
go back to reference Moolenaar WH. LPA: a novel lipid mediator with diverse biological actions. Trends Cell Biol. 1994;4(6):213–9.CrossRefPubMed Moolenaar WH. LPA: a novel lipid mediator with diverse biological actions. Trends Cell Biol. 1994;4(6):213–9.CrossRefPubMed
31.
go back to reference Li ZW, Zhao YR, Zhao C, Fu R, Li ZY. Function and biological activities of the autotaxin-LPA axis. Sheng Li Xue Bao. 2011;63(6):601–10.PubMed Li ZW, Zhao YR, Zhao C, Fu R, Li ZY. Function and biological activities of the autotaxin-LPA axis. Sheng Li Xue Bao. 2011;63(6):601–10.PubMed
35.
37.
go back to reference Zheng SQ, Huang RQ, Zhang YJ. Role of matrix metalloproteinase (MMP)-2 and -9 and vascular endothelial growth factor C in lymph node metastasis of breast cancer. Zhonghua Bing Li Xue Za Zhi. 2010;39(4):240–4.PubMed Zheng SQ, Huang RQ, Zhang YJ. Role of matrix metalloproteinase (MMP)-2 and -9 and vascular endothelial growth factor C in lymph node metastasis of breast cancer. Zhonghua Bing Li Xue Za Zhi. 2010;39(4):240–4.PubMed
39.
go back to reference Schram K, Ganguly R, No EK, Fang X, Thong FS, Sweeney G. Regulation of MT1-MMP and MMP-2 by leptin in cardiac fibroblasts involves Rho/ROCK-dependent actin cytoskeletal reorganization and leads to enhanced cell migration. Endocrinology. 2011;152(5):2037–47. doi:10.1210/en.2010-1166.CrossRefPubMed Schram K, Ganguly R, No EK, Fang X, Thong FS, Sweeney G. Regulation of MT1-MMP and MMP-2 by leptin in cardiac fibroblasts involves Rho/ROCK-dependent actin cytoskeletal reorganization and leads to enhanced cell migration. Endocrinology. 2011;152(5):2037–47. doi:10.​1210/​en.​2010-1166.CrossRefPubMed
Metadata
Title
Curcumin inhibits LPA-induced invasion by attenuating RhoA/ROCK/MMPs pathway in MCF7 breast cancer cells
Authors
Kai Sun
Xiaoyi Duan
Hui Cai
Xiaohong Liu
Ya Yang
Min Li
Xiaoyun Zhang
Jiansheng Wang
Publication date
01-02-2016
Publisher
Springer International Publishing
Published in
Clinical and Experimental Medicine / Issue 1/2016
Print ISSN: 1591-8890
Electronic ISSN: 1591-9528
DOI
https://doi.org/10.1007/s10238-015-0336-7

Other articles of this Issue 1/2016

Clinical and Experimental Medicine 1/2016 Go to the issue
Live Webinar | 27-06-2024 | 18:00 (CEST)

Keynote webinar | Spotlight on medication adherence

Live: Thursday 27th June 2024, 18:00-19:30 (CEST)

WHO estimates that half of all patients worldwide are non-adherent to their prescribed medication. The consequences of poor adherence can be catastrophic, on both the individual and population level.

Join our expert panel to discover why you need to understand the drivers of non-adherence in your patients, and how you can optimize medication adherence in your clinics to drastically improve patient outcomes.

Prof. Kevin Dolgin
Prof. Florian Limbourg
Prof. Anoop Chauhan
Developed by: Springer Medicine
Obesity Clinical Trial Summary

At a glance: The STEP trials

A round-up of the STEP phase 3 clinical trials evaluating semaglutide for weight loss in people with overweight or obesity.

Developed by: Springer Medicine

Highlights from the ACC 2024 Congress

Year in Review: Pediatric cardiology

Watch Dr. Anne Marie Valente present the last year's highlights in pediatric and congenital heart disease in the official ACC.24 Year in Review session.

Year in Review: Pulmonary vascular disease

The last year's highlights in pulmonary vascular disease are presented by Dr. Jane Leopold in this official video from ACC.24.

Year in Review: Valvular heart disease

Watch Prof. William Zoghbi present the last year's highlights in valvular heart disease from the official ACC.24 Year in Review session.

Year in Review: Heart failure and cardiomyopathies

Watch this official video from ACC.24. Dr. Biykem Bozkurt discusses last year's major advances in heart failure and cardiomyopathies.