Skip to main content
Top
Published in: Fibrogenesis & Tissue Repair 1/2012

Open Access 01-12-2012 | Proceedings

CTGF is a central mediator of tissue remodeling and fibrosis and its inhibition can reverse the process of fibrosis

Authors: Kenneth E Lipson, Carol Wong, Yuchin Teng, Suzanne Spong

Published in: Fibrogenesis & Tissue Repair | Special Issue 1/2012

Login to get access

Abstract

CTGF is a secreted matricellular protein with very complex biology. It has been shown to modulate many signaling pathways leading to cell adhesion and migration, angiogenesis, myofibroblast activation, and extracellular matrix deposition and remodeling, which together lead to tissue remodeling and fibrosis. It has been reported in the literature that inhibition of CTGF expression by siRNA prevents CCl4-induced liver fibrosis and can reverse fibrosis when administered after significant collagen deposition is observed. A monoclonal antibody to CTGF that is currently in clinical development (FG-3019) has demonstrated the ability to reverse vascular stiffening and improve cardiac function in a rat model of diabetic complications. FG-3019 has also exhibited activity in a murine radiation-induced pulmonary fibrosis model. When FG-3019 was administered to mice after a significant radiation-induced increase in lung density could be observed by CT imaging, the density of the lungs was observed to decrease over the period during which the antibody was administered and to remain stable after therapy had ceased. When considered together, these data indicate that inhibition of CTGF can prevent and reverse the process of fibrosis.
Literature
1.
go back to reference De Winter P, Leoni P, Abraham D: Connective tissue growth factor: Structure-function relationships of a mosaic, multifunctional protein. Growth Factors. 2008, 26: 80-91. 10.1080/08977190802025602.CrossRefPubMed De Winter P, Leoni P, Abraham D: Connective tissue growth factor: Structure-function relationships of a mosaic, multifunctional protein. Growth Factors. 2008, 26: 80-91. 10.1080/08977190802025602.CrossRefPubMed
2.
go back to reference Holbourn KP, Acharya KR, Perbal B: The CCN family of proteins: structure-function relationships. Trends Biochem Sci. 2008, 33: 461-473. 10.1016/j.tibs.2008.07.006.PubMedCentralCrossRefPubMed Holbourn KP, Acharya KR, Perbal B: The CCN family of proteins: structure-function relationships. Trends Biochem Sci. 2008, 33: 461-473. 10.1016/j.tibs.2008.07.006.PubMedCentralCrossRefPubMed
3.
go back to reference Jaffa AA, Usinger WR, McHenry MB, Jaffa MA, Lipstiz SR, Lackland D: Connective tissue growth factor and susceptibility to renal and vascular disease risk in type 1 diabetes. J Clin Endocrinol Metab. 2008, 93: 1893-1900. 10.1210/jc.2007-2544.PubMedCentralCrossRefPubMed Jaffa AA, Usinger WR, McHenry MB, Jaffa MA, Lipstiz SR, Lackland D: Connective tissue growth factor and susceptibility to renal and vascular disease risk in type 1 diabetes. J Clin Endocrinol Metab. 2008, 93: 1893-1900. 10.1210/jc.2007-2544.PubMedCentralCrossRefPubMed
4.
go back to reference Nguyen TQ, Tarnow L, Andersen S, Hovind P, Parving HH, Goldschmeding R: Urinary connective tissue growth factor excretion correlates with clinical markers of renal disease in a large population of type 1 diabetic patients with diabetic nephropathy. Diabetes Care. 2006, 29: 83-88. 10.2337/diacare.29.01.06.dc05-1670.CrossRefPubMed Nguyen TQ, Tarnow L, Andersen S, Hovind P, Parving HH, Goldschmeding R: Urinary connective tissue growth factor excretion correlates with clinical markers of renal disease in a large population of type 1 diabetic patients with diabetic nephropathy. Diabetes Care. 2006, 29: 83-88. 10.2337/diacare.29.01.06.dc05-1670.CrossRefPubMed
5.
go back to reference Gressner AM, Yagmur E, Lahme B, Gressner O, Stanzel S: Connective tissue growth factor in serum as a new candidate test for assessment of hepatic fibrosis. Clin Chem. 2006, 52: 1815-1817. 10.1373/clinchem.2006.070466.CrossRefPubMed Gressner AM, Yagmur E, Lahme B, Gressner O, Stanzel S: Connective tissue growth factor in serum as a new candidate test for assessment of hepatic fibrosis. Clin Chem. 2006, 52: 1815-1817. 10.1373/clinchem.2006.070466.CrossRefPubMed
6.
go back to reference Kovalenko E, Tacke F, Gressner OA, Zimmermann HW, Lahme B, Janetzko A: Validation of connective tissue growth factor (CTGF/CCN2) and its gene polymorphisms as noninvasive biomarkers for the assessment of liver fibrosis. J Viral Hepat. 2009, 16: 612-620. 10.1111/j.1365-2893.2009.01110.x.CrossRefPubMed Kovalenko E, Tacke F, Gressner OA, Zimmermann HW, Lahme B, Janetzko A: Validation of connective tissue growth factor (CTGF/CCN2) and its gene polymorphisms as noninvasive biomarkers for the assessment of liver fibrosis. J Viral Hepat. 2009, 16: 612-620. 10.1111/j.1365-2893.2009.01110.x.CrossRefPubMed
7.
go back to reference Bradham DM, Igarashi A, Potter RL, Grotendorst GR: Connective tissue growth factor: a cysteine-rich mitogen secreted by human vascular endothelial cells is related to the SRC-induced immediate early gene product CEF-10. J Cell Biol. 1991, 114: 1285-1294. 10.1083/jcb.114.6.1285.CrossRefPubMed Bradham DM, Igarashi A, Potter RL, Grotendorst GR: Connective tissue growth factor: a cysteine-rich mitogen secreted by human vascular endothelial cells is related to the SRC-induced immediate early gene product CEF-10. J Cell Biol. 1991, 114: 1285-1294. 10.1083/jcb.114.6.1285.CrossRefPubMed
8.
go back to reference Bornstein P, Sage E: Matricellular proteins: extracellular modulators of cell function. Curr Opin Cell Biol. 2002, 14: 608-616. 10.1016/S0955-0674(02)00361-7.CrossRefPubMed Bornstein P, Sage E: Matricellular proteins: extracellular modulators of cell function. Curr Opin Cell Biol. 2002, 14: 608-616. 10.1016/S0955-0674(02)00361-7.CrossRefPubMed
9.
go back to reference Leask A, Abraham DJ: All in the CCN family: essential matricellular signaling modulators emerge from the bunker. J Cell Sci. 2006, 119: 4803-4810. 10.1242/jcs.03270.CrossRefPubMed Leask A, Abraham DJ: All in the CCN family: essential matricellular signaling modulators emerge from the bunker. J Cell Sci. 2006, 119: 4803-4810. 10.1242/jcs.03270.CrossRefPubMed
10.
go back to reference Shi-wen X, Leask A, Abraham D: Regulation and function of connective tissue growth factor/CCN2 in tissue repair, scarring and fibrosis. Cytokine Growth Factor Rev. 2008, 19: 133-144. 10.1016/j.cytogfr.2008.01.002.CrossRefPubMed Shi-wen X, Leask A, Abraham D: Regulation and function of connective tissue growth factor/CCN2 in tissue repair, scarring and fibrosis. Cytokine Growth Factor Rev. 2008, 19: 133-144. 10.1016/j.cytogfr.2008.01.002.CrossRefPubMed
11.
go back to reference Chen CC, Lau LF: Functions and mechanisms of action of CCN matricellular proteins. Int J Biochem Cell Biol. 2009, 41: 771-783. 10.1016/j.biocel.2008.07.025.PubMedCentralCrossRefPubMed Chen CC, Lau LF: Functions and mechanisms of action of CCN matricellular proteins. Int J Biochem Cell Biol. 2009, 41: 771-783. 10.1016/j.biocel.2008.07.025.PubMedCentralCrossRefPubMed
12.
go back to reference Abreu JG, Ketpura NI, Reversade B, De Robertis EM: Connective-tissue growth factor (CTGF) modulates cell signalling by BMP and TGF-beta. Nat Cell Biol. 2002, 4: 599-604.PubMedCentralPubMed Abreu JG, Ketpura NI, Reversade B, De Robertis EM: Connective-tissue growth factor (CTGF) modulates cell signalling by BMP and TGF-beta. Nat Cell Biol. 2002, 4: 599-604.PubMedCentralPubMed
13.
go back to reference Inoki I, Shiomi T, Hashimoto G, Enomoto H, Nakamura H, Makino K: Connective tissue growth factor binds vascular endothelial growth factor (VEGF) and inhibits VEGF-induced angiogenesis. FASEB J. 2002, 16: 219-221.PubMed Inoki I, Shiomi T, Hashimoto G, Enomoto H, Nakamura H, Makino K: Connective tissue growth factor binds vascular endothelial growth factor (VEGF) and inhibits VEGF-induced angiogenesis. FASEB J. 2002, 16: 219-221.PubMed
14.
go back to reference Nishida T, Kubota S, Fukunaga T, Kondo S, Yosimichi G, Nakanishi T: CTGF/Hcs24, hypertrophic chondrocyte-specific gene product, interacts with perlecan in regulating the proliferation and differentiation of chondrocytes. J Cell Physiol. 2003, 196: 265-275. 10.1002/jcp.10277.CrossRefPubMed Nishida T, Kubota S, Fukunaga T, Kondo S, Yosimichi G, Nakanishi T: CTGF/Hcs24, hypertrophic chondrocyte-specific gene product, interacts with perlecan in regulating the proliferation and differentiation of chondrocytes. J Cell Physiol. 2003, 196: 265-275. 10.1002/jcp.10277.CrossRefPubMed
15.
go back to reference Chen Y, Abraham DJ, Shi-wen X, Pearson JD, Black CM, Lyons KM: CCN2 (connective tissue growth factor) promotes fibroblast adhesion to fibronectin. Mol Biol Cell. 2004, 15: 5635-5646. 10.1091/mbc.E04-06-0490.PubMedCentralCrossRefPubMed Chen Y, Abraham DJ, Shi-wen X, Pearson JD, Black CM, Lyons KM: CCN2 (connective tissue growth factor) promotes fibroblast adhesion to fibronectin. Mol Biol Cell. 2004, 15: 5635-5646. 10.1091/mbc.E04-06-0490.PubMedCentralCrossRefPubMed
16.
go back to reference Babic AM, Chen CC, Lau LF: Fisp12/mouse connective tissue growth factor mediates endothelial cell adhesion and migration through integrin alphavbeta3, promotes endothelial cell survival, and induces angiogenesis in vivo. Mol Cell Biol. 1999, 19: 2958-2966.PubMedCentralCrossRefPubMed Babic AM, Chen CC, Lau LF: Fisp12/mouse connective tissue growth factor mediates endothelial cell adhesion and migration through integrin alphavbeta3, promotes endothelial cell survival, and induces angiogenesis in vivo. Mol Cell Biol. 1999, 19: 2958-2966.PubMedCentralCrossRefPubMed
17.
go back to reference Segarini PR, Nesbitt JE, Li D, Hays LG, Yates JR, Carmichael DF: The low density lipoprotein receptor-related protein/alpha2-macroglobulin receptor is a receptor for connective tissue growth factor. J Biol Chem. 2001, 276: 40659-40667. 10.1074/jbc.M105180200.CrossRefPubMed Segarini PR, Nesbitt JE, Li D, Hays LG, Yates JR, Carmichael DF: The low density lipoprotein receptor-related protein/alpha2-macroglobulin receptor is a receptor for connective tissue growth factor. J Biol Chem. 2001, 276: 40659-40667. 10.1074/jbc.M105180200.CrossRefPubMed
18.
go back to reference Wahab NA, Weston BS, Mason RM: Connective tissue growth factor CCN2 interacts with and activates the tyrosine kinase receptor TrkA. J Am Soc Nephrol. 2005, 16: 340-351. 10.1681/ASN.2003100905.CrossRefPubMed Wahab NA, Weston BS, Mason RM: Connective tissue growth factor CCN2 interacts with and activates the tyrosine kinase receptor TrkA. J Am Soc Nephrol. 2005, 16: 340-351. 10.1681/ASN.2003100905.CrossRefPubMed
19.
go back to reference Wahab NA, Brinkman H, Mason RM: Uptake and intracellular transport of the connective tissue growth factor: a potential mode of action. Biochem J. 2001, 359: 89-97. 10.1042/0264-6021:3590089.PubMedCentralCrossRefPubMed Wahab NA, Brinkman H, Mason RM: Uptake and intracellular transport of the connective tissue growth factor: a potential mode of action. Biochem J. 2001, 359: 89-97. 10.1042/0264-6021:3590089.PubMedCentralCrossRefPubMed
20.
go back to reference Oliver N, Sternlicht M, Gerritsen K, Goldschmeding R: Could aging human skin use a connective tissue growth factor boost to increase collagen content?. J Invest Dermatol. 2010, 130: 338-341. 10.1038/jid.2009.331.CrossRefPubMed Oliver N, Sternlicht M, Gerritsen K, Goldschmeding R: Could aging human skin use a connective tissue growth factor boost to increase collagen content?. J Invest Dermatol. 2010, 130: 338-341. 10.1038/jid.2009.331.CrossRefPubMed
21.
go back to reference Gore-Hyer E, Shegogue D, Markiewicz M, Lo S, Hazen-Martin D, Greene EL: TGF-beta and CTGF have overlapping and distinct fibrogenic effects on human renal cells. Am J Physiol Renal Physiol. 2002, 283: F707-F716.CrossRefPubMed Gore-Hyer E, Shegogue D, Markiewicz M, Lo S, Hazen-Martin D, Greene EL: TGF-beta and CTGF have overlapping and distinct fibrogenic effects on human renal cells. Am J Physiol Renal Physiol. 2002, 283: F707-F716.CrossRefPubMed
22.
go back to reference Paradis V, Dargere D, Bonvoust F, Vidaud M, Segarini P, Bedossa P: Effects and regulation of connective tissue growth factor on hepatic stellate cells. Lab Invest. 2002, 82: 767-774.CrossRefPubMed Paradis V, Dargere D, Bonvoust F, Vidaud M, Segarini P, Bedossa P: Effects and regulation of connective tissue growth factor on hepatic stellate cells. Lab Invest. 2002, 82: 767-774.CrossRefPubMed
23.
go back to reference Grotendorst GR, Rahmanie H, Duncan MR: Combinatorial signaling pathways determine fibroblast proliferation and myofibroblast differentiation. FASEB J. 2004, 18: 469-479. 10.1096/fj.03-0699com.CrossRefPubMed Grotendorst GR, Rahmanie H, Duncan MR: Combinatorial signaling pathways determine fibroblast proliferation and myofibroblast differentiation. FASEB J. 2004, 18: 469-479. 10.1096/fj.03-0699com.CrossRefPubMed
24.
go back to reference Lee CH, Shah B, Moioli EK, Mao JJ: CTGF directs fibroblast differentiation from human mesenchymal stem/stromal cells and defines connective tissue healing in a rodent injury model. J Clin Invest. 2010, 120: 3340-3349. 10.1172/JCI43230.PubMedCentralCrossRefPubMed Lee CH, Shah B, Moioli EK, Mao JJ: CTGF directs fibroblast differentiation from human mesenchymal stem/stromal cells and defines connective tissue healing in a rodent injury model. J Clin Invest. 2010, 120: 3340-3349. 10.1172/JCI43230.PubMedCentralCrossRefPubMed
25.
go back to reference Hishikawa K, Oemar BS, Nakaki T: Static pressure regulates connective tissue growth factor expression in human mesangial cells. J Biol Chem. 2001, 276: 16797-16803. 10.1074/jbc.M010722200.CrossRefPubMed Hishikawa K, Oemar BS, Nakaki T: Static pressure regulates connective tissue growth factor expression in human mesangial cells. J Biol Chem. 2001, 276: 16797-16803. 10.1074/jbc.M010722200.CrossRefPubMed
26.
go back to reference de Las HN, Ruiz-Ortega M, Miana M, Ruperez M, Sanz-Rosa D, Aragoncillo P: Interactions between aldosterone and connective tissue growth factor in vascular and renal damage in spontaneously hypertensive rats. J Hypertens. 2007, 25: 629-638. 10.1097/HJH.0b013e3280112ce5.CrossRef de Las HN, Ruiz-Ortega M, Miana M, Ruperez M, Sanz-Rosa D, Aragoncillo P: Interactions between aldosterone and connective tissue growth factor in vascular and renal damage in spontaneously hypertensive rats. J Hypertens. 2007, 25: 629-638. 10.1097/HJH.0b013e3280112ce5.CrossRef
27.
go back to reference Chaqour B, Goppelt-Struebe M: Mechanical regulation of the Cyr61/CCN1 and CTGF/CCN2 proteins. FEBS J. 2006, 273: 3639-3649. 10.1111/j.1742-4658.2006.05360.x.CrossRefPubMed Chaqour B, Goppelt-Struebe M: Mechanical regulation of the Cyr61/CCN1 and CTGF/CCN2 proteins. FEBS J. 2006, 273: 3639-3649. 10.1111/j.1742-4658.2006.05360.x.CrossRefPubMed
28.
go back to reference Yang H, Huang Y, Chen X, Liu J, Lu Y, Bu L: The role of CTGF in the diabetic rat retina and its relationship with VEGF and TGF-beta, elucidated by treatment with CTGFsiRNA. Acta Ophthalmol. 2010, 88: 652-659. 10.1111/j.1755-3768.2009.01641.x.CrossRefPubMed Yang H, Huang Y, Chen X, Liu J, Lu Y, Bu L: The role of CTGF in the diabetic rat retina and its relationship with VEGF and TGF-beta, elucidated by treatment with CTGFsiRNA. Acta Ophthalmol. 2010, 88: 652-659. 10.1111/j.1755-3768.2009.01641.x.CrossRefPubMed
29.
go back to reference Liu FY, Xiao L, Peng YM, Duan SB, Liu H, Liu YH: Inhibition effect of small interfering RNA of connective tissue growth factor on the expression of vascular endothelial growth factor and connective tissue growth factor in cultured human peritoneal mesothelial cells. Chin Med J (Engl). 2007, 120: 231-236. Liu FY, Xiao L, Peng YM, Duan SB, Liu H, Liu YH: Inhibition effect of small interfering RNA of connective tissue growth factor on the expression of vascular endothelial growth factor and connective tissue growth factor in cultured human peritoneal mesothelial cells. Chin Med J (Engl). 2007, 120: 231-236.
30.
go back to reference Nguyen TQ, Roestenberg P, Van Nieuwenhoven FA, Bovenschen N, Li Z, Xu L: CTGF inhibits BMP-7 signaling in diabetic nephropathy. J Am Soc Nephrol. 2008, 19: 2098-2107. 10.1681/ASN.2007111261.PubMedCentralCrossRefPubMed Nguyen TQ, Roestenberg P, Van Nieuwenhoven FA, Bovenschen N, Li Z, Xu L: CTGF inhibits BMP-7 signaling in diabetic nephropathy. J Am Soc Nephrol. 2008, 19: 2098-2107. 10.1681/ASN.2007111261.PubMedCentralCrossRefPubMed
31.
go back to reference Wahab NA, Mason RM: A critical look at growth factors and epithelial-to-mesenchymal transition in the adult kidney. Interrelationships between growth factors that regulate EMT in the adult kidney. Nephron Exp Nephrol. 2006, 104: e129-e134. 10.1159/000094963.CrossRefPubMed Wahab NA, Mason RM: A critical look at growth factors and epithelial-to-mesenchymal transition in the adult kidney. Interrelationships between growth factors that regulate EMT in the adult kidney. Nephron Exp Nephrol. 2006, 104: e129-e134. 10.1159/000094963.CrossRefPubMed
32.
go back to reference Mitu G, Hirschberg R: Bone morphogenetic protein-7 (BMP7) in chronic kidney disease. Front Biosci. 2008, 13: 4726-4739.CrossRefPubMed Mitu G, Hirschberg R: Bone morphogenetic protein-7 (BMP7) in chronic kidney disease. Front Biosci. 2008, 13: 4726-4739.CrossRefPubMed
33.
go back to reference Mori T, Kawara S, Shinozaki M, Hayashi N, Kakinuma T, Igarashi A: Role and interaction of connective tissue growth factor with transforming growth factor-beta in persistent fibrosis: A mouse fibrosis model. J Cell Physiol. 1999, 181: 153-159. 10.1002/(SICI)1097-4652(199910)181:1<153::AID-JCP16>3.0.CO;2-K.CrossRefPubMed Mori T, Kawara S, Shinozaki M, Hayashi N, Kakinuma T, Igarashi A: Role and interaction of connective tissue growth factor with transforming growth factor-beta in persistent fibrosis: A mouse fibrosis model. J Cell Physiol. 1999, 181: 153-159. 10.1002/(SICI)1097-4652(199910)181:1<153::AID-JCP16>3.0.CO;2-K.CrossRefPubMed
34.
go back to reference Paradis V, Dargere D, Vidaud M, De GA, Huet S, Martinez V: Expression of connective tissue growth factor in experimental rat and human liver fibrosis. Hepatology. 1999, 30: 968-976. 10.1002/hep.510300425.CrossRefPubMed Paradis V, Dargere D, Vidaud M, De GA, Huet S, Martinez V: Expression of connective tissue growth factor in experimental rat and human liver fibrosis. Hepatology. 1999, 30: 968-976. 10.1002/hep.510300425.CrossRefPubMed
35.
go back to reference Hsu YC, Chiu YT, Lee CY, Lin YL, Huang YT: Increases in fibrosis-related gene transcripts in livers of dimethylnitrosamine-intoxicated rats. J Biomed Sci. 2004, 11: 408-417. 10.1007/BF02254446.CrossRefPubMed Hsu YC, Chiu YT, Lee CY, Lin YL, Huang YT: Increases in fibrosis-related gene transcripts in livers of dimethylnitrosamine-intoxicated rats. J Biomed Sci. 2004, 11: 408-417. 10.1007/BF02254446.CrossRefPubMed
36.
go back to reference Li G, Xie Q, Shi Y, Li D, Zhang M, Jiang S: Inhibition of connective tissue growth factor by siRNA prevents liver fibrosis in rats. J Gene Med. 2006, 8: 889-900. 10.1002/jgm.894.CrossRefPubMed Li G, Xie Q, Shi Y, Li D, Zhang M, Jiang S: Inhibition of connective tissue growth factor by siRNA prevents liver fibrosis in rats. J Gene Med. 2006, 8: 889-900. 10.1002/jgm.894.CrossRefPubMed
37.
go back to reference Brigstock DR: Strategies for blocking the fibrogenic actions of connective tissue growth factor (CCN2): From pharmacological inhibition in vitro to targeted siRNA therapy in vivo. J Cell Commun Signal. 2009, 3: 5-18. 10.1007/s12079-009-0043-9.PubMedCentralCrossRefPubMed Brigstock DR: Strategies for blocking the fibrogenic actions of connective tissue growth factor (CCN2): From pharmacological inhibition in vitro to targeted siRNA therapy in vivo. J Cell Commun Signal. 2009, 3: 5-18. 10.1007/s12079-009-0043-9.PubMedCentralCrossRefPubMed
38.
go back to reference Langsetmo I, Jacob CT, Zhang W, Oliver N, Lin A, Coker G: Anti-CTGF human antibody therapy with FG-3019 prevents and reverses diabetes-induced cardiovascular complications in streptozotocin (STZ) treated rats. Diabetes. 2006, 55 (Suppl 1): A122. Langsetmo I, Jacob CT, Zhang W, Oliver N, Lin A, Coker G: Anti-CTGF human antibody therapy with FG-3019 prevents and reverses diabetes-induced cardiovascular complications in streptozotocin (STZ) treated rats. Diabetes. 2006, 55 (Suppl 1): A122.
39.
go back to reference Huber PE, Bickelhaupt S, Peschke P, Tietz A, Wirkner U, Lipson KE: Reversal Of Established Fibrosis By Treatment With The Anti-CTGF Monoclonal Antibody FG-3019 In A Murine Model Of Radiation-Induced Pulmonary Fibrosis. Am J Respir Crit Care Med. 2010, 181: A1054. Huber PE, Bickelhaupt S, Peschke P, Tietz A, Wirkner U, Lipson KE: Reversal Of Established Fibrosis By Treatment With The Anti-CTGF Monoclonal Antibody FG-3019 In A Murine Model Of Radiation-Induced Pulmonary Fibrosis. Am J Respir Crit Care Med. 2010, 181: A1054.
40.
go back to reference Plathow C, Li M, Gong P, Zieher H, Kiessling F, Peschke P: Computed tomography monitoring of radiation-induced lung fibrosis in mice. Invest Radiol. 2004, 39: 600-609. 10.1097/01.rli.0000138134.89050.a5.CrossRefPubMed Plathow C, Li M, Gong P, Zieher H, Kiessling F, Peschke P: Computed tomography monitoring of radiation-induced lung fibrosis in mice. Invest Radiol. 2004, 39: 600-609. 10.1097/01.rli.0000138134.89050.a5.CrossRefPubMed
41.
go back to reference Abdollahi A, Li M, Ping G, Plathow C, Domhan S, Kiessling F: Inhibition of platelet-derived growth factor signaling attenuates pulmonary fibrosis. J Exp Med. 2005, 201: 925-935. 10.1084/jem.20041393.PubMedCentralCrossRefPubMed Abdollahi A, Li M, Ping G, Plathow C, Domhan S, Kiessling F: Inhibition of platelet-derived growth factor signaling attenuates pulmonary fibrosis. J Exp Med. 2005, 201: 925-935. 10.1084/jem.20041393.PubMedCentralCrossRefPubMed
42.
go back to reference Armstrong T, Packham G, Murphy LB, Bateman AC, Conti JA, Fine DR: Type I collagen promotes the malignant phenotype of pancreatic ductal adenocarcinoma. Clin Cancer Res. 2004, 10: 7427-7437. 10.1158/1078-0432.CCR-03-0825.CrossRefPubMed Armstrong T, Packham G, Murphy LB, Bateman AC, Conti JA, Fine DR: Type I collagen promotes the malignant phenotype of pancreatic ductal adenocarcinoma. Clin Cancer Res. 2004, 10: 7427-7437. 10.1158/1078-0432.CCR-03-0825.CrossRefPubMed
43.
go back to reference Wenger C, Ellenrieder V, Alber B, Lacher U, Menke A, Hameister H: Expression and differential regulation of connective tissue growth factor in pancreatic cancer cells. Oncogene. 1999, 18: 1073-1080. 10.1038/sj.onc.1202395.CrossRefPubMed Wenger C, Ellenrieder V, Alber B, Lacher U, Menke A, Hameister H: Expression and differential regulation of connective tissue growth factor in pancreatic cancer cells. Oncogene. 1999, 18: 1073-1080. 10.1038/sj.onc.1202395.CrossRefPubMed
44.
go back to reference Hartel M, di Mola FF, Gardini A, Zimmermann A, Di Sebastiano P, Guweidhi A: Desmoplastic reaction influences pancreatic cancer growth behavior. World J Surg. 2004, 28: 818-825. 10.1007/s00268-004-7147-4.CrossRefPubMed Hartel M, di Mola FF, Gardini A, Zimmermann A, Di Sebastiano P, Guweidhi A: Desmoplastic reaction influences pancreatic cancer growth behavior. World J Surg. 2004, 28: 818-825. 10.1007/s00268-004-7147-4.CrossRefPubMed
45.
go back to reference Karger A, Fitzner B, Brock P, Sparmann G, Emmrich J, Liebe S: Molecular insights into connective tissue growth factor action in rat pancreatic stellate cells. Cell Signal. 2008, 20: 1865-1872. 10.1016/j.cellsig.2008.06.016.CrossRefPubMed Karger A, Fitzner B, Brock P, Sparmann G, Emmrich J, Liebe S: Molecular insights into connective tissue growth factor action in rat pancreatic stellate cells. Cell Signal. 2008, 20: 1865-1872. 10.1016/j.cellsig.2008.06.016.CrossRefPubMed
46.
go back to reference Dornhofer N, Spong S, Bennewith K, Salim A, Klaus S, Kambham N: Connective tissue growth factor-specific monoclonal antibody therapy inhibits pancreatic tumor growth and metastasis. Cancer Res. 2006, 66: 5816-5827. 10.1158/0008-5472.CAN-06-0081.CrossRefPubMed Dornhofer N, Spong S, Bennewith K, Salim A, Klaus S, Kambham N: Connective tissue growth factor-specific monoclonal antibody therapy inhibits pancreatic tumor growth and metastasis. Cancer Res. 2006, 66: 5816-5827. 10.1158/0008-5472.CAN-06-0081.CrossRefPubMed
47.
go back to reference Bennewith KL, Huang X, Ham CM, Graves EE, Erler JT, Kambham N: The role of tumor cell-derived connective tissue growth factor (CTGF/CCN2) in pancreatic tumor growth. Cancer Res. 2009, 69: 775-784. 10.1158/0008-5472.CAN-08-0987.PubMedCentralCrossRefPubMed Bennewith KL, Huang X, Ham CM, Graves EE, Erler JT, Kambham N: The role of tumor cell-derived connective tissue growth factor (CTGF/CCN2) in pancreatic tumor growth. Cancer Res. 2009, 69: 775-784. 10.1158/0008-5472.CAN-08-0987.PubMedCentralCrossRefPubMed
48.
go back to reference Aikawa T, Gunn J, Spong SM, Klaus SJ, Korc M: Connective tissue growth factor-specific antibody attenuates tumor growth, metastasis, and angiogenesis in an orthotopic mouse model of pancreatic cancer. Mol Cancer Ther. 2006, 5: 1108-1116. 10.1158/1535-7163.MCT-05-0516.CrossRefPubMed Aikawa T, Gunn J, Spong SM, Klaus SJ, Korc M: Connective tissue growth factor-specific antibody attenuates tumor growth, metastasis, and angiogenesis in an orthotopic mouse model of pancreatic cancer. Mol Cancer Ther. 2006, 5: 1108-1116. 10.1158/1535-7163.MCT-05-0516.CrossRefPubMed
Metadata
Title
CTGF is a central mediator of tissue remodeling and fibrosis and its inhibition can reverse the process of fibrosis
Authors
Kenneth E Lipson
Carol Wong
Yuchin Teng
Suzanne Spong
Publication date
01-12-2012
Publisher
BioMed Central
Published in
Fibrogenesis & Tissue Repair / Issue Special Issue 1/2012
Electronic ISSN: 1755-1536
DOI
https://doi.org/10.1186/1755-1536-5-S1-S24

Other articles of this Special Issue 1/2012

Fibrogenesis & Tissue Repair 1/2012 Go to the issue
Live Webinar | 27-06-2024 | 18:00 (CEST)

Keynote webinar | Spotlight on medication adherence

Live: Thursday 27th June 2024, 18:00-19:30 (CEST)

WHO estimates that half of all patients worldwide are non-adherent to their prescribed medication. The consequences of poor adherence can be catastrophic, on both the individual and population level.

Join our expert panel to discover why you need to understand the drivers of non-adherence in your patients, and how you can optimize medication adherence in your clinics to drastically improve patient outcomes.

Prof. Kevin Dolgin
Prof. Florian Limbourg
Prof. Anoop Chauhan
Developed by: Springer Medicine
Obesity Clinical Trial Summary

At a glance: The STEP trials

A round-up of the STEP phase 3 clinical trials evaluating semaglutide for weight loss in people with overweight or obesity.

Developed by: Springer Medicine

Highlights from the ACC 2024 Congress

Year in Review: Pediatric cardiology

Watch Dr. Anne Marie Valente present the last year's highlights in pediatric and congenital heart disease in the official ACC.24 Year in Review session.

Year in Review: Pulmonary vascular disease

The last year's highlights in pulmonary vascular disease are presented by Dr. Jane Leopold in this official video from ACC.24.

Year in Review: Valvular heart disease

Watch Prof. William Zoghbi present the last year's highlights in valvular heart disease from the official ACC.24 Year in Review session.

Year in Review: Heart failure and cardiomyopathies

Watch this official video from ACC.24. Dr. Biykem Bozkurt discusses last year's major advances in heart failure and cardiomyopathies.