Skip to main content
Top
Published in: Heart and Vessels 9/2023

01-04-2023 | CT Angiography | Original Article

The reliability and utility of on-site CT-derived fractional flow reserve (FFR) based on fluid structure interactions: comparison with FFRCT based on computational fluid dynamics, invasive FFR, and resting full-cycle ratio

Authors: Yuto Fujii, Toshiro Kitagawa, Hiroki Ikenaga, Fuminari Tatsugami, Kazuo Awai, Yukiko Nakano

Published in: Heart and Vessels | Issue 9/2023

Login to get access

Abstract

Fractional flow reserve (FFR) derived off-site by coronary computed tomography angiography (CCTA) (FFRCT) is obtained by applying the principles of computational fluid dynamics. This study aimed to validate the overall reliability of on-site CCTA-derived FFR based on fluid structure interactions (CT-FFR) and assess its clinical utility compared with FFRCT, invasive FFR, and resting full-cycle ratio (RFR). We calculated the CT-FFR for 924 coronary vessels in 308 patients who underwent CCTA for clinically suspected coronary artery disease. Of these patients, 35 patients with at least one obstructive stenosis (> 50%) detected on CCTA underwent both CT-FFR and FFRCT for further investigation. Furthermore, 24 and 20 patients underwent invasive FFR and RFR in addition to CT-FFR, respectively. The inter-observer correlation (r) of CT-FFR was 0.93 (95% confidence interval [CI] 0.85–0.97, P < 0.0001) with a mean absolute difference of − 0.0042 (limits of agreement − 0.073, 0.064); 97.3% of coronary arteries without obstructive lesions on CCTA had negative results for ischemia on CT-FFR (> 0.80). The correlation coefficient between CT-FFR and FFRCT for 105 coronary vessels was 0.87 (95% CI 0.82–0.91, P < 0.0001) with a mean absolute difference of − 0.012 (limits of agreement − 0.12, 0.10). CT-FFR correlated well with both invasive FFR (r = 0.66, 95% CI 0.36–0.84, P = 0.0003) and RFR (r = 0.78, 95% CI 0.51–0.91, P < 0.0001). These data suggest that CT-FFR can potentially substitute for FFRCT and correlates closely with invasive FFR and RFR with high reproducibility. Our findings should be proven by further clinical investigation in a larger cohort.
Literature
1.
go back to reference Tonino PA, De Bruyne B, Pijls NH, Siebert U, Ikeno F, Van’t Veer M, Klauss V, Manoharan G, Engstrøm T, Oldroyd KG, Ver Lee PN, MacCarthy PA, Fearon WF, FAME Study Investigators (2009) Fractional flow reserve versus angiography for guiding percutaneous coronary intervention. N Engl J Med 360:213–224CrossRefPubMed Tonino PA, De Bruyne B, Pijls NH, Siebert U, Ikeno F, Van’t Veer M, Klauss V, Manoharan G, Engstrøm T, Oldroyd KG, Ver Lee PN, MacCarthy PA, Fearon WF, FAME Study Investigators (2009) Fractional flow reserve versus angiography for guiding percutaneous coronary intervention. N Engl J Med 360:213–224CrossRefPubMed
2.
go back to reference De Bruyne B, Fearon WF, Pijls NH, Barbato E, Tonino P, Piroth Z, Jagic N, Mobius-Winckler S, Rioufol G, Witt N, Kala P, MacCarthy P, Engström T, Oldroyd K, Mavromatis K, Manoharan G, Verlee P, Frobert O, Curzen N, Johnson JB, Limacher A, Nüesch E, Jüni P, FAME 2 Trial Investigators (2014) Fractional flow reserve-guided PCI for stable coronary artery disease. N Engl J Med 371:1208–1217CrossRefPubMed De Bruyne B, Fearon WF, Pijls NH, Barbato E, Tonino P, Piroth Z, Jagic N, Mobius-Winckler S, Rioufol G, Witt N, Kala P, MacCarthy P, Engström T, Oldroyd K, Mavromatis K, Manoharan G, Verlee P, Frobert O, Curzen N, Johnson JB, Limacher A, Nüesch E, Jüni P, FAME 2 Trial Investigators (2014) Fractional flow reserve-guided PCI for stable coronary artery disease. N Engl J Med 371:1208–1217CrossRefPubMed
3.
go back to reference Koo BK, Erglis A, Doh JH, Daniels DV, Jegere S, Kim HS, Dunning A, DeFrance T, Lansky A, Leipsic J, Min JK (2011) Diagnosis of ischemia-causing coronary stenoses by noninvasive fractional flow reserve computed from coronary computed tomographic angiograms. Results from the prospective multicenter DISCOVER-FLOW (Diagnosis of Ischemia-Causing Stenoses Obtained Via Noninvasive Fractional Flow Reserve) study. J Am Coll Cardiol 58:1989–1997CrossRefPubMed Koo BK, Erglis A, Doh JH, Daniels DV, Jegere S, Kim HS, Dunning A, DeFrance T, Lansky A, Leipsic J, Min JK (2011) Diagnosis of ischemia-causing coronary stenoses by noninvasive fractional flow reserve computed from coronary computed tomographic angiograms. Results from the prospective multicenter DISCOVER-FLOW (Diagnosis of Ischemia-Causing Stenoses Obtained Via Noninvasive Fractional Flow Reserve) study. J Am Coll Cardiol 58:1989–1997CrossRefPubMed
4.
go back to reference Min JK, Leipsic J, Pencina MJ, Berman DS, Koo BK, van Mieghem C, Erglis A, Lin FY, Dunning AM, Apruzzese P, Budoff MJ, Cole JH, Jaffer FA, Leon MB, Malpeso J, Mancini GB, Park SJ, Schwartz RS, Shaw LJ, Mauri L (2012) Diagnostic accuracy of fractional flow reserve from anatomic CT angiography. JAMA 308:1237–1245CrossRefPubMedPubMedCentral Min JK, Leipsic J, Pencina MJ, Berman DS, Koo BK, van Mieghem C, Erglis A, Lin FY, Dunning AM, Apruzzese P, Budoff MJ, Cole JH, Jaffer FA, Leon MB, Malpeso J, Mancini GB, Park SJ, Schwartz RS, Shaw LJ, Mauri L (2012) Diagnostic accuracy of fractional flow reserve from anatomic CT angiography. JAMA 308:1237–1245CrossRefPubMedPubMedCentral
5.
go back to reference Nørgaard BL, Leipsic J, Gaur S, Seneviratne S, Ko BS, Ito H, Jensen JM, Mauri L, De Bruyne B, Bezerra H, Osawa K, Marwan M, Naber C, Erglis A, Park SJ, Christiansen EH, Kaltoft A, Lassen JF, Bøtker HE, Achenbach S, NXT Trial Study Group (2014) Diagnostic performance of noninvasive fractional flow reserve derived from coronary computed tomography angiography in suspected coronary artery disease: the NXT trial (analysis of coronary blood flow using CT angiography: next steps). J Am Coll Cardiol 63:1145–1155CrossRefPubMed Nørgaard BL, Leipsic J, Gaur S, Seneviratne S, Ko BS, Ito H, Jensen JM, Mauri L, De Bruyne B, Bezerra H, Osawa K, Marwan M, Naber C, Erglis A, Park SJ, Christiansen EH, Kaltoft A, Lassen JF, Bøtker HE, Achenbach S, NXT Trial Study Group (2014) Diagnostic performance of noninvasive fractional flow reserve derived from coronary computed tomography angiography in suspected coronary artery disease: the NXT trial (analysis of coronary blood flow using CT angiography: next steps). J Am Coll Cardiol 63:1145–1155CrossRefPubMed
6.
go back to reference Patel MR, Nørgaard BL, Fairbairn TA, Nieman K, Akasaka T, Berman DS, Raff GL, Hurwitz Koweek LM, Pontone G, Kawasaki T, Sand NPR, Jensen JM, Amano T, Poon M, Øvrehus KA, Sonck J, Rabbat MG, Mullen S, De Bruyne B, Rogers C, Matsuo H, Bax JJ, Leipsic J (2020) 1-year impact on medical practice and clinical outcomes of FFRCT: the advance registry. JACC Cardiovasc Imaging 13:97–105CrossRefPubMed Patel MR, Nørgaard BL, Fairbairn TA, Nieman K, Akasaka T, Berman DS, Raff GL, Hurwitz Koweek LM, Pontone G, Kawasaki T, Sand NPR, Jensen JM, Amano T, Poon M, Øvrehus KA, Sonck J, Rabbat MG, Mullen S, De Bruyne B, Rogers C, Matsuo H, Bax JJ, Leipsic J (2020) 1-year impact on medical practice and clinical outcomes of FFRCT: the advance registry. JACC Cardiovasc Imaging 13:97–105CrossRefPubMed
7.
go back to reference Hirohata K, Kano A, Goryu A, Ooga J, Hongo T, Higashi S, Fujisawa Y, Wakai S, Arakita K, Ikeda Y, Kaminaga S, Ko BS, Seneviratne SK (2015) A novel CT-FFR method for the coronary artery based on 4D-CT image analysis and structural and fluid analysis. SPIE Med Imaging. 9412:652–666 Hirohata K, Kano A, Goryu A, Ooga J, Hongo T, Higashi S, Fujisawa Y, Wakai S, Arakita K, Ikeda Y, Kaminaga S, Ko BS, Seneviratne SK (2015) A novel CT-FFR method for the coronary artery based on 4D-CT image analysis and structural and fluid analysis. SPIE Med Imaging. 9412:652–666
8.
go back to reference Kato M, Hirohata K, Kano A, Higashi S, Goryu A, Hongo T, Kaminaga S, Fujisawa Y (2015) Fast CT-FFR analysis method for the coronary artery based on 4D-CT image analysis and structural and fluid analysis. In Proceedings of the American Society of Mechanical Engineers 2015 International Mechanical Engineering Congress and Exposition. ASME, New York. pp. 51124. Kato M, Hirohata K, Kano A, Higashi S, Goryu A, Hongo T, Kaminaga S, Fujisawa Y (2015) Fast CT-FFR analysis method for the coronary artery based on 4D-CT image analysis and structural and fluid analysis. In Proceedings of the American Society of Mechanical Engineers 2015 International Mechanical Engineering Congress and Exposition. ASME, New York. pp. 51124.
9.
go back to reference Ko BS, Cameron JD, Munnur RK, Wong DTL, Fujisawa Y, Sakaguchi T, Hirohata K, Hislop-Jambrich J, Fujimoto S, Takamura K, Crossett M, Leung M, Kuganesan A, Malaiapan Y, Nasis A, Troupis J, Meredith IT, Seneviratne SK (2017) Noninvasive CT-Derived FFR based on structural and fluid analysis: a Comparison with invasive FFR for detection of functionally significant stenosis. JACC Cardiovasc Imaging 10:663–673CrossRefPubMed Ko BS, Cameron JD, Munnur RK, Wong DTL, Fujisawa Y, Sakaguchi T, Hirohata K, Hislop-Jambrich J, Fujimoto S, Takamura K, Crossett M, Leung M, Kuganesan A, Malaiapan Y, Nasis A, Troupis J, Meredith IT, Seneviratne SK (2017) Noninvasive CT-Derived FFR based on structural and fluid analysis: a Comparison with invasive FFR for detection of functionally significant stenosis. JACC Cardiovasc Imaging 10:663–673CrossRefPubMed
10.
go back to reference Fujimoto S, Kawasaki T, Kumamaru KK, Kawaguchi Y, Dohi T, Okonogi T, Ri K, Yamada S, Takamura K, Kato E, Kato Y, Hiki M, Okazaki S, Aoki S, Mitsouras D, Rybicki FJ, Daida H (2019) Diagnostic performance of on-site computed CT-fractional flow reserve based on fluid structure interactions: comparison with invasive fractional flow reserve and instantaneous wave-free ratio. Eur Heart J Cardiovasc Imaging 20:343–352CrossRefPubMed Fujimoto S, Kawasaki T, Kumamaru KK, Kawaguchi Y, Dohi T, Okonogi T, Ri K, Yamada S, Takamura K, Kato E, Kato Y, Hiki M, Okazaki S, Aoki S, Mitsouras D, Rybicki FJ, Daida H (2019) Diagnostic performance of on-site computed CT-fractional flow reserve based on fluid structure interactions: comparison with invasive fractional flow reserve and instantaneous wave-free ratio. Eur Heart J Cardiovasc Imaging 20:343–352CrossRefPubMed
11.
go back to reference Abbara S, Blanke P, Maroules CD, Cheezum M, Choi AD, Han BK, Marwan M, Naoum C, Norgaard BL, Rubinshtein R, Schoenhagen P, Villines T, Leipsic J (2016) SCCT guidelines for the performance and acquisition of coronary computed tomographic angiography: a report of the society of cardiovascular computed tomography guidelines committee: endorsed by the North American Society for Cardiovascular Imaging (NASCI). J Cardiovasc Comput Tomogr 10:435–449CrossRefPubMed Abbara S, Blanke P, Maroules CD, Cheezum M, Choi AD, Han BK, Marwan M, Naoum C, Norgaard BL, Rubinshtein R, Schoenhagen P, Villines T, Leipsic J (2016) SCCT guidelines for the performance and acquisition of coronary computed tomographic angiography: a report of the society of cardiovascular computed tomography guidelines committee: endorsed by the North American Society for Cardiovascular Imaging (NASCI). J Cardiovasc Comput Tomogr 10:435–449CrossRefPubMed
12.
go back to reference Agatston AS, Janowitz WR, Hildner FJ, Zusmer NR, Viamonte M Jr, Detrano R (1990) Quantification of coronary artery calcium using ultrafast computed tomography. J Am Coll Cardiol 15:827–832CrossRefPubMed Agatston AS, Janowitz WR, Hildner FJ, Zusmer NR, Viamonte M Jr, Detrano R (1990) Quantification of coronary artery calcium using ultrafast computed tomography. J Am Coll Cardiol 15:827–832CrossRefPubMed
13.
go back to reference Kitagawa T, Yamamoto H, Toshimitsu S, Sasaki K, Senoo A, Kubo Y, Tatsugami F, Awai K, Hirokawa Y, Kihara Y (2017) 18F-sodium fluoride positron emission tomography for molecular imaging of coronary atherosclerosis based on computed tomography analysis. Atherosclerosis 263:385–392CrossRefPubMed Kitagawa T, Yamamoto H, Toshimitsu S, Sasaki K, Senoo A, Kubo Y, Tatsugami F, Awai K, Hirokawa Y, Kihara Y (2017) 18F-sodium fluoride positron emission tomography for molecular imaging of coronary atherosclerosis based on computed tomography analysis. Atherosclerosis 263:385–392CrossRefPubMed
14.
go back to reference Cury RC, Abbara S, Achenbach S, Agatston A, Berman DS, Budoff MJ, Dill KE, Jacobs JE, Maroules CD, Rubin GD, Rybicki FJ, Schoepf UJ, Shaw LJ, Stillman AE, White CS, Woodard PK, Leipsic JA (2016) CAD-RADS(TM) coronary artery disease reporting and data system. An expert consensus document of the Society of Cardiovascular Computed Tomography (SCCT), the American College of Radiology (ACR) and the North American Society for Cardiovascular Imaging (NASCI). Endorsed by the American College of Cardiology. J Cardiovasc Comput Tomogr. 10(4):269–281CrossRefPubMed Cury RC, Abbara S, Achenbach S, Agatston A, Berman DS, Budoff MJ, Dill KE, Jacobs JE, Maroules CD, Rubin GD, Rybicki FJ, Schoepf UJ, Shaw LJ, Stillman AE, White CS, Woodard PK, Leipsic JA (2016) CAD-RADS(TM) coronary artery disease reporting and data system. An expert consensus document of the Society of Cardiovascular Computed Tomography (SCCT), the American College of Radiology (ACR) and the North American Society for Cardiovascular Imaging (NASCI). Endorsed by the American College of Cardiology. J Cardiovasc Comput Tomogr. 10(4):269–281CrossRefPubMed
15.
go back to reference Sen S, Escaned J, Malik IS, Mikhail GW, Foale RA, Mila R, Tarkin J, Petraco R, Broyd C, Jabbour R, Sethi A, Baker CS, Bellamy M, Al-Bustami M, Hackett D, Khan M, Lefroy D, Parker KH, Hughes AD, Francis DP, Di Mario C, Mayet J, Davies JE (2012) Development and validation of a new adenosine-independent index of stenosis severity from coronary wave intensity analysis: results of the ADVISE (ADenosine Vasodilator Independent Stenosis Evaluation) study. J Am Coll Cardiol 59:1392–1402CrossRefPubMed Sen S, Escaned J, Malik IS, Mikhail GW, Foale RA, Mila R, Tarkin J, Petraco R, Broyd C, Jabbour R, Sethi A, Baker CS, Bellamy M, Al-Bustami M, Hackett D, Khan M, Lefroy D, Parker KH, Hughes AD, Francis DP, Di Mario C, Mayet J, Davies JE (2012) Development and validation of a new adenosine-independent index of stenosis severity from coronary wave intensity analysis: results of the ADVISE (ADenosine Vasodilator Independent Stenosis Evaluation) study. J Am Coll Cardiol 59:1392–1402CrossRefPubMed
16.
go back to reference Nozaki YO, Fujimoto S, Aoshima C, Kamo Y, Kawaguchi YO, Takamura K, Kudo A, Takahashi D, Hiki M, Kato Y, Okai I, Dohi T, Okazaki S, Tomizawa N, Kumamaru KK, Aoki S, Minamino T (2021) Comparison of diagnostic performance in on-site based CT-derived fractional flow reserve measurements. Int J Cardiol Heart Vasc 35:100815PubMedPubMedCentral Nozaki YO, Fujimoto S, Aoshima C, Kamo Y, Kawaguchi YO, Takamura K, Kudo A, Takahashi D, Hiki M, Kato Y, Okai I, Dohi T, Okazaki S, Tomizawa N, Kumamaru KK, Aoki S, Minamino T (2021) Comparison of diagnostic performance in on-site based CT-derived fractional flow reserve measurements. Int J Cardiol Heart Vasc 35:100815PubMedPubMedCentral
17.
go back to reference Taylor CA, Fonte TA, Min JK (2013) Computational fluid dynamics applied to cardiac computed tomography for noninvasive quantification of fractional flow reserve: scientific basis. J Am Coll Cardiol 61:2233–2241CrossRefPubMed Taylor CA, Fonte TA, Min JK (2013) Computational fluid dynamics applied to cardiac computed tomography for noninvasive quantification of fractional flow reserve: scientific basis. J Am Coll Cardiol 61:2233–2241CrossRefPubMed
18.
go back to reference Omori H, Hara M, Sobue Y, Kawase Y, Mizukami T, Tanigaki T, Hirata T, Ota H, Okubo M, Hirakawa A, Suzuki T, Kondo T, Leipsic J, Nørgaard BL, Matsuo H (2021) Determination of the optimal measurement point for fractional flow reserve derived from CTA using pressure wire assessment as reference. AJR Am J Roentgenol 216(6):1492–1499CrossRefPubMed Omori H, Hara M, Sobue Y, Kawase Y, Mizukami T, Tanigaki T, Hirata T, Ota H, Okubo M, Hirakawa A, Suzuki T, Kondo T, Leipsic J, Nørgaard BL, Matsuo H (2021) Determination of the optimal measurement point for fractional flow reserve derived from CTA using pressure wire assessment as reference. AJR Am J Roentgenol 216(6):1492–1499CrossRefPubMed
19.
go back to reference Norgaard BL, Fairbairn TA, Safian RD, Rabbat MG, Ko B, Jensen JM, Nieman K, Chinnaiyan KM, Sand NP, Matsuo H, Leipsic J, Raff G (2019) Coronary CT angiography-derived fractional flow reserve testing in patients with stable coronary artery disease: recommendations on interpretation and reporting. Radiol Cardiothorac Imaging 1(5):e190050CrossRefPubMedPubMedCentral Norgaard BL, Fairbairn TA, Safian RD, Rabbat MG, Ko B, Jensen JM, Nieman K, Chinnaiyan KM, Sand NP, Matsuo H, Leipsic J, Raff G (2019) Coronary CT angiography-derived fractional flow reserve testing in patients with stable coronary artery disease: recommendations on interpretation and reporting. Radiol Cardiothorac Imaging 1(5):e190050CrossRefPubMedPubMedCentral
20.
go back to reference Lee JM, Choi KH, Park J, Hwang D, Rhee TM, Kim J, Park J, Kim HY, Jung HW, Cho YK, Yoon HJ, Song YB, Hahn JY, Nam CW, Shin ES, Doh JH, Hur SH, Koo BK (2019) Physiological and clinical assessment of resting physiological indexes. resting full-cycle ratio, diastolic pressure ratio, and instantaneous wave-free ratio. Circulation 139:889–900CrossRefPubMed Lee JM, Choi KH, Park J, Hwang D, Rhee TM, Kim J, Park J, Kim HY, Jung HW, Cho YK, Yoon HJ, Song YB, Hahn JY, Nam CW, Shin ES, Doh JH, Hur SH, Koo BK (2019) Physiological and clinical assessment of resting physiological indexes. resting full-cycle ratio, diastolic pressure ratio, and instantaneous wave-free ratio. Circulation 139:889–900CrossRefPubMed
21.
go back to reference Ge J, Erbel R, Rupprecht HJ, Koch L, Kearney P, Görge G, Haude M, Meyer J (1994) Comparison of intravascular ultrasound and angiography in the assessment of myocardial bridging. Circulation 89:1725–1732CrossRefPubMed Ge J, Erbel R, Rupprecht HJ, Koch L, Kearney P, Görge G, Haude M, Meyer J (1994) Comparison of intravascular ultrasound and angiography in the assessment of myocardial bridging. Circulation 89:1725–1732CrossRefPubMed
22.
go back to reference Kumar G, Desai R, Gore A, Rahim H, Maehara A, Matsumura M, Kirtane A, Jeremias A, Ali Z (2020) Real world validation of the nonhyperemic index of coronary artery stenosis severity—Resting full-cycle ratio—RE-VALIDATE. Catheter Cardiovasc Interv 96(1):E53–E58CrossRefPubMed Kumar G, Desai R, Gore A, Rahim H, Maehara A, Matsumura M, Kirtane A, Jeremias A, Ali Z (2020) Real world validation of the nonhyperemic index of coronary artery stenosis severity—Resting full-cycle ratio—RE-VALIDATE. Catheter Cardiovasc Interv 96(1):E53–E58CrossRefPubMed
23.
go back to reference Kawaguchi YO, Fujimoto S, Kumamaru KK, Kato E, Dohi T, Takamura K, Aoshima C, Kamo Y, Kato Y, Hiki M, Okai I, Okazaki S, Aoki S, Daida H (2019) The predictive factors affecting false positive in on-site operated CT-fractional flow reserve based on fluid and structural interaction. Int J Cardiol Heart Vasc 23:100372PubMedPubMedCentral Kawaguchi YO, Fujimoto S, Kumamaru KK, Kato E, Dohi T, Takamura K, Aoshima C, Kamo Y, Kato Y, Hiki M, Okai I, Okazaki S, Aoki S, Daida H (2019) The predictive factors affecting false positive in on-site operated CT-fractional flow reserve based on fluid and structural interaction. Int J Cardiol Heart Vasc 23:100372PubMedPubMedCentral
Metadata
Title
The reliability and utility of on-site CT-derived fractional flow reserve (FFR) based on fluid structure interactions: comparison with FFRCT based on computational fluid dynamics, invasive FFR, and resting full-cycle ratio
Authors
Yuto Fujii
Toshiro Kitagawa
Hiroki Ikenaga
Fuminari Tatsugami
Kazuo Awai
Yukiko Nakano
Publication date
01-04-2023
Publisher
Springer Japan
Keyword
CT Angiography
Published in
Heart and Vessels / Issue 9/2023
Print ISSN: 0910-8327
Electronic ISSN: 1615-2573
DOI
https://doi.org/10.1007/s00380-023-02265-6

Other articles of this Issue 9/2023

Heart and Vessels 9/2023 Go to the issue