Skip to main content
Top
Published in: World Journal of Surgical Oncology 1/2015

Open Access 01-12-2015 | Research

Cruciferous vegetable consumption and the risk of pancreatic cancer: a meta-analysis

Authors: Li-yi Li, Yue Luo, Ming-dong Lu, Xiao-wu Xu, Hai-duo Lin, Zhi-qiang Zheng

Published in: World Journal of Surgical Oncology | Issue 1/2015

Login to get access

Abstract

Background

Previous studies regarding the association between cruciferous vegetable intake and pancreatic cancer risk have reported inconsistent results. We conducted a meta-analysis to demonstrate the potential association between them.

Methods

A systematic literature search of papers was conducted in March 2014 using PubMed, EMBASE, and Web of Science, and the references of the retrieved articles were screened. The summary odds ratios (ORs) with 95% confidence interval (CI) for the highest versus the lowest intake of cruciferous vegetables were calculated.

Results

Four cohort and five case–control studies were eligible for inclusion. We found a significantly decreased risk of pancreatic cancer associated with the high intake of cruciferous vegetables (OR 0.78, 95% CI 0.64–0.91). Moderate heterogeneity was detected across studies (P = 0.065). There was no evidence of significant publication bias based on Begg’s funnel plot (P = 0.917) or Egger’s test (P = 0.669).

Conclusions

Cruciferous vegetable intake might be inversely associated with pancreatic cancer risk. Because of the limited number of studies included in this meta-analysis, further well-designed prospective studies are warranted to confirm the inverse association between cruciferous vegetable intake and risk of pancreatic cancer.
Literature
1.
2.
go back to reference Bosetti C, Levi F, Rosato V, Bertuccio P, Lucchini F, Negri E, et al. Recent trends in colorectal cancer mortality in Europe. Int J Cancer. 2011;129:180–91.CrossRefPubMed Bosetti C, Levi F, Rosato V, Bertuccio P, Lucchini F, Negri E, et al. Recent trends in colorectal cancer mortality in Europe. Int J Cancer. 2011;129:180–91.CrossRefPubMed
4.
go back to reference Fuchs CS, Colditz GA, Stampfer MJ, Giovannucci EL, Hunter DJ, Rimm EB, et al. A prospective study of cigarette smoking and the risk of pancreatic cancer. Arch Intern Med. 1996;156:2255–60.CrossRefPubMed Fuchs CS, Colditz GA, Stampfer MJ, Giovannucci EL, Hunter DJ, Rimm EB, et al. A prospective study of cigarette smoking and the risk of pancreatic cancer. Arch Intern Med. 1996;156:2255–60.CrossRefPubMed
5.
go back to reference Huxley R, Ansary-Moghaddam A. Berrington de Gonzalez A, Barzi F, Woodward M. Type-II diabetes and pancreatic cancer: a meta-analysis of 36 studies. Br J Cancer. 2005;92:2076–83.CrossRefPubMedCentralPubMed Huxley R, Ansary-Moghaddam A. Berrington de Gonzalez A, Barzi F, Woodward M. Type-II diabetes and pancreatic cancer: a meta-analysis of 36 studies. Br J Cancer. 2005;92:2076–83.CrossRefPubMedCentralPubMed
7.
go back to reference Han B, Li X, Yu T. Cruciferous vegetables consumption and the risk of ovarian cancer: a meta-analysis of observational studies. Diagn Pathol. 2014;9:7.CrossRefPubMedCentralPubMed Han B, Li X, Yu T. Cruciferous vegetables consumption and the risk of ovarian cancer: a meta-analysis of observational studies. Diagn Pathol. 2014;9:7.CrossRefPubMedCentralPubMed
8.
go back to reference Zhao J, Zhao L. Cruciferous vegetables intake is associated with lower risk of renal cell carcinoma: evidence from a meta-analysis of observational studies. PLoS One. 2013;8:e75732.CrossRefPubMedCentralPubMed Zhao J, Zhao L. Cruciferous vegetables intake is associated with lower risk of renal cell carcinoma: evidence from a meta-analysis of observational studies. PLoS One. 2013;8:e75732.CrossRefPubMedCentralPubMed
9.
go back to reference Liu X, Lv K. Cruciferous vegetables intake is inversely associated with risk of breast cancer: a meta-analysis. Breast. 2013;22:309–13.CrossRefPubMed Liu X, Lv K. Cruciferous vegetables intake is inversely associated with risk of breast cancer: a meta-analysis. Breast. 2013;22:309–13.CrossRefPubMed
10.
go back to reference Liu B, Mao Q, Cao M, Xie L. Cruciferous vegetables intake and risk of prostate cancer: a meta-analysis. Int J Urol. 2012;19:134–41.CrossRefPubMed Liu B, Mao Q, Cao M, Xie L. Cruciferous vegetables intake and risk of prostate cancer: a meta-analysis. Int J Urol. 2012;19:134–41.CrossRefPubMed
11.
go back to reference Chan JM, Wang F, Holly EA. Vegetable and fruit intake and pancreatic cancer in a population-based case–control study in the San Francisco bay area. Cancer Epidemiol Biomarkers Prev. 2005;14:2093–7.CrossRefPubMed Chan JM, Wang F, Holly EA. Vegetable and fruit intake and pancreatic cancer in a population-based case–control study in the San Francisco bay area. Cancer Epidemiol Biomarkers Prev. 2005;14:2093–7.CrossRefPubMed
12.
go back to reference Heinen MM, Verhage BA, Goldbohm RA, van den Brandt PA. Intake of vegetables, fruits, carotenoids and vitamins C and E and pancreatic cancer risk in The Netherlands Cohort Study. Int J Cancer. 2012;130:147–58.CrossRefPubMed Heinen MM, Verhage BA, Goldbohm RA, van den Brandt PA. Intake of vegetables, fruits, carotenoids and vitamins C and E and pancreatic cancer risk in The Netherlands Cohort Study. Int J Cancer. 2012;130:147–58.CrossRefPubMed
13.
go back to reference Larsson SC, Hakansson N, Naslund I, Bergkvist L, Wolk A. Fruit and vegetable consumption in relation to pancreatic cancer risk: a prospective study. Cancer Epidemiol Biomarkers Prev. 2006;15:301–5.CrossRefPubMed Larsson SC, Hakansson N, Naslund I, Bergkvist L, Wolk A. Fruit and vegetable consumption in relation to pancreatic cancer risk: a prospective study. Cancer Epidemiol Biomarkers Prev. 2006;15:301–5.CrossRefPubMed
14.
go back to reference Nothlings U, Wilkens LR, Murphy SP, Hankin JH, Henderson BE, Kolonel LN. Vegetable intake and pancreatic cancer risk: the multiethnic cohort study. Am J Epidemiol. 2007;165:138–47.CrossRefPubMed Nothlings U, Wilkens LR, Murphy SP, Hankin JH, Henderson BE, Kolonel LN. Vegetable intake and pancreatic cancer risk: the multiethnic cohort study. Am J Epidemiol. 2007;165:138–47.CrossRefPubMed
15.
go back to reference Moher D, Liberati A, Tetzlaff J, Altman DG, Group P. Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. PLoS Med. 2009;6:e1000097.CrossRefPubMedCentralPubMed Moher D, Liberati A, Tetzlaff J, Altman DG, Group P. Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. PLoS Med. 2009;6:e1000097.CrossRefPubMedCentralPubMed
16.
go back to reference Higgins JP, Thompson SG. Quantifying heterogeneity in a meta-analysis. Stat Med. 2002;21:1539–58.CrossRefPubMed Higgins JP, Thompson SG. Quantifying heterogeneity in a meta-analysis. Stat Med. 2002;21:1539–58.CrossRefPubMed
17.
go back to reference Bax L, Ikeda N, Fukui N, Yaju Y, Tsuruta H, Moons KG. More than numbers: the power of graphs in meta-analysis. Am J Epidemiol. 2009;169:249–55.CrossRefPubMed Bax L, Ikeda N, Fukui N, Yaju Y, Tsuruta H, Moons KG. More than numbers: the power of graphs in meta-analysis. Am J Epidemiol. 2009;169:249–55.CrossRefPubMed
19.
go back to reference Begg CB, Mazumdar M. Operating characteristics of a rank correlation test for publication bias. Biometrics. 1994;50:1088–101.CrossRefPubMed Begg CB, Mazumdar M. Operating characteristics of a rank correlation test for publication bias. Biometrics. 1994;50:1088–101.CrossRefPubMed
20.
go back to reference Duval S, Tweedie R. Trim and fill: a simple funnel-plot-based method of testing and adjusting for publication bias in meta-analysis. Biometrics. 2000;56:455–63.CrossRefPubMed Duval S, Tweedie R. Trim and fill: a simple funnel-plot-based method of testing and adjusting for publication bias in meta-analysis. Biometrics. 2000;56:455–63.CrossRefPubMed
21.
go back to reference Olsen GW, Mandel JS, Gibson RW, Wattenberg LW, Schuman LM. A case–control study of pancreatic cancer and cigarettes, alcohol, coffee and diet. Am J Public Health. 1989;79:1016–9.CrossRefPubMedCentralPubMed Olsen GW, Mandel JS, Gibson RW, Wattenberg LW, Schuman LM. A case–control study of pancreatic cancer and cigarettes, alcohol, coffee and diet. Am J Public Health. 1989;79:1016–9.CrossRefPubMedCentralPubMed
22.
go back to reference Ji BT, Chow WH, Gridley G, McLaughlin JK, Dai Q, Wacholder S, et al. Dietary factors and the risk of pancreatic cancer: a case–control study in Shanghai China. Cancer Epidemiol Biomarkers Prev. 1995;4:885–93.PubMed Ji BT, Chow WH, Gridley G, McLaughlin JK, Dai Q, Wacholder S, et al. Dietary factors and the risk of pancreatic cancer: a case–control study in Shanghai China. Cancer Epidemiol Biomarkers Prev. 1995;4:885–93.PubMed
23.
go back to reference Silverman DT, Swanson CA, Gridley G, Wacholder S, Greenberg RS, Brown LM, et al. Dietary and nutritional factors and pancreatic cancer: a case–control study based on direct interviews. J Natl Cancer Inst. 1998;90:1710–9.CrossRefPubMed Silverman DT, Swanson CA, Gridley G, Wacholder S, Greenberg RS, Brown LM, et al. Dietary and nutritional factors and pancreatic cancer: a case–control study based on direct interviews. J Natl Cancer Inst. 1998;90:1710–9.CrossRefPubMed
24.
go back to reference Stolzenberg-Solomon RZ, Pietinen P, Taylor PR, Virtamo J, Albanes D. Prospective study of diet and pancreatic cancer in male smokers. Am J Epidemiol. 2002;155:783–92.CrossRefPubMed Stolzenberg-Solomon RZ, Pietinen P, Taylor PR, Virtamo J, Albanes D. Prospective study of diet and pancreatic cancer in male smokers. Am J Epidemiol. 2002;155:783–92.CrossRefPubMed
25.
go back to reference Tse G, Eslick GD. Cruciferous vegetables and risk of colorectal neoplasms: a systematic review and meta-analysis. Nutr Cancer. 2014;66:128–39.CrossRefPubMed Tse G, Eslick GD. Cruciferous vegetables and risk of colorectal neoplasms: a systematic review and meta-analysis. Nutr Cancer. 2014;66:128–39.CrossRefPubMed
26.
go back to reference Bosetti C, Filomeno M, Riso P, Polesel J, Levi F, Talamini R, et al. Cruciferous vegetables and cancer risk in a network of case–control studies. Ann Oncol. 2012;23:2198–203.CrossRefPubMed Bosetti C, Filomeno M, Riso P, Polesel J, Levi F, Talamini R, et al. Cruciferous vegetables and cancer risk in a network of case–control studies. Ann Oncol. 2012;23:2198–203.CrossRefPubMed
27.
go back to reference Maisonneuve P, Lowenfels AB. Epidemiology of pancreatic cancer: an update. Dig Dis. 2010;28:645–56.CrossRefPubMed Maisonneuve P, Lowenfels AB. Epidemiology of pancreatic cancer: an update. Dig Dis. 2010;28:645–56.CrossRefPubMed
28.
go back to reference Aune D, Greenwood DC, Chan DS, Vieira R, Vieira AR, Navarro Rosenblatt DA, et al. Body mass index, abdominal fatness and pancreatic cancer risk: a systematic review and non-linear dose–response meta-analysis of prospective studies. Ann Oncol. 2012;23:843–52.CrossRefPubMed Aune D, Greenwood DC, Chan DS, Vieira R, Vieira AR, Navarro Rosenblatt DA, et al. Body mass index, abdominal fatness and pancreatic cancer risk: a systematic review and non-linear dose–response meta-analysis of prospective studies. Ann Oncol. 2012;23:843–52.CrossRefPubMed
29.
go back to reference Larsson SC, Orsini N, Wolk A. Body mass index and pancreatic cancer risk: a meta-analysis of prospective studies. Int J Cancer. 2007;120:1993–8.CrossRefPubMed Larsson SC, Orsini N, Wolk A. Body mass index and pancreatic cancer risk: a meta-analysis of prospective studies. Int J Cancer. 2007;120:1993–8.CrossRefPubMed
30.
go back to reference Ben Q, Xu M, Ning X, Liu J, Hong S, Huang W, et al. Diabetes mellitus and risk of pancreatic cancer: a meta-analysis of cohort studies. Eur J Cancer. 2011;47:1928–37.CrossRefPubMed Ben Q, Xu M, Ning X, Liu J, Hong S, Huang W, et al. Diabetes mellitus and risk of pancreatic cancer: a meta-analysis of cohort studies. Eur J Cancer. 2011;47:1928–37.CrossRefPubMed
31.
go back to reference Liao KF, Lai SW, Li CI, Chen WC. Diabetes mellitus correlates with increased risk of pancreatic cancer: a population-based cohort study in Taiwan. J Gastroenterol Hepatol. 2012;27:709–13.CrossRefPubMed Liao KF, Lai SW, Li CI, Chen WC. Diabetes mellitus correlates with increased risk of pancreatic cancer: a population-based cohort study in Taiwan. J Gastroenterol Hepatol. 2012;27:709–13.CrossRefPubMed
32.
go back to reference Xu C, Li CY, Kong AN. Induction of phase I, II and III drug metabolism/transport by xenobiotics. Arch Pharm Res. 2005;28:249–68.CrossRefPubMed Xu C, Li CY, Kong AN. Induction of phase I, II and III drug metabolism/transport by xenobiotics. Arch Pharm Res. 2005;28:249–68.CrossRefPubMed
33.
go back to reference Pham NA, Jacobberger JW, Schimmer AD, Cao P, Gronda M, Hedley DW. The dietary isothiocyanate sulforaphane targets pathways of apoptosis, cell cycle arrest, and oxidative stress in human pancreatic cancer cells and inhibits tumor growth in severe combined immunodeficient mice. Mol Cancer Ther. 2004;3:1239–48.PubMed Pham NA, Jacobberger JW, Schimmer AD, Cao P, Gronda M, Hedley DW. The dietary isothiocyanate sulforaphane targets pathways of apoptosis, cell cycle arrest, and oxidative stress in human pancreatic cancer cells and inhibits tumor growth in severe combined immunodeficient mice. Mol Cancer Ther. 2004;3:1239–48.PubMed
34.
go back to reference Li Y, Karagoz GE, Seo YH, Zhang T, Jiang Y, Yu Y, et al. Sulforaphane inhibits pancreatic cancer through disrupting Hsp90-p50(Cdc37) complex and direct interactions with amino acids residues of Hsp90. J Nutr Biochem. 2012;23:1617–26.CrossRefPubMedCentralPubMed Li Y, Karagoz GE, Seo YH, Zhang T, Jiang Y, Yu Y, et al. Sulforaphane inhibits pancreatic cancer through disrupting Hsp90-p50(Cdc37) complex and direct interactions with amino acids residues of Hsp90. J Nutr Biochem. 2012;23:1617–26.CrossRefPubMedCentralPubMed
35.
go back to reference Kallifatidis G, Rausch V, Baumann B, Apel A, Beckermann BM, Groth A, et al. Sulforaphane targets pancreatic tumour-initiating cells by NF-kappaB-induced antiapoptotic signalling. Gut. 2009;58:949–63.CrossRefPubMed Kallifatidis G, Rausch V, Baumann B, Apel A, Beckermann BM, Groth A, et al. Sulforaphane targets pancreatic tumour-initiating cells by NF-kappaB-induced antiapoptotic signalling. Gut. 2009;58:949–63.CrossRefPubMed
36.
go back to reference Stan SD, Singh SV, Whitcomb DC, Brand RE. Phenethyl isothiocyanate inhibits proliferation and induces apoptosis in pancreatic cancer cells in vitro and in a MIAPaca2 xenograft animal model. Nutr Cancer. 2014;66:747–55.CrossRefPubMed Stan SD, Singh SV, Whitcomb DC, Brand RE. Phenethyl isothiocyanate inhibits proliferation and induces apoptosis in pancreatic cancer cells in vitro and in a MIAPaca2 xenograft animal model. Nutr Cancer. 2014;66:747–55.CrossRefPubMed
37.
go back to reference Sahu RP, Srivastava SK. The role of STAT-3 in the induction of apoptosis in pancreatic cancer cells by benzyl isothiocyanate. J Natl Cancer Inst. 2009;101:176–93.CrossRefPubMedCentralPubMed Sahu RP, Srivastava SK. The role of STAT-3 in the induction of apoptosis in pancreatic cancer cells by benzyl isothiocyanate. J Natl Cancer Inst. 2009;101:176–93.CrossRefPubMedCentralPubMed
Metadata
Title
Cruciferous vegetable consumption and the risk of pancreatic cancer: a meta-analysis
Authors
Li-yi Li
Yue Luo
Ming-dong Lu
Xiao-wu Xu
Hai-duo Lin
Zhi-qiang Zheng
Publication date
01-12-2015
Publisher
BioMed Central
Published in
World Journal of Surgical Oncology / Issue 1/2015
Electronic ISSN: 1477-7819
DOI
https://doi.org/10.1186/s12957-015-0454-4

Other articles of this Issue 1/2015

World Journal of Surgical Oncology 1/2015 Go to the issue