Skip to main content
Top
Published in: Endocrine 2/2011

01-10-2011 | Review

Cross-talk and modulation of signaling between somatostatin and growth factor receptors

Author: Ujendra Kumar

Published in: Endocrine | Issue 2/2011

Login to get access

Abstract

The process of homo- and/or heterodimerization of G-protein coupled receptors (GPCRs) and receptor tyrosine kinase (RTK) families are crucial for implicating the fundamental properties of receptor proteins including receptor expression, trafficking, and desensitization as well as signal transduction. The members of GPCR and RTK family constitute largest cell surface receptor proteins and regulate physiological functions of cells in response to external and internal stimuli. Notably, GPCRs and RTKs play major role in regulation of several key cellular functions which are associated with several pathological conditions including cancer biology, neurodegenerative and cardiovascular diseases. The focus of this review is to highlight the recent findings on the possible cross-talk between somatostatin receptors (members of GPCR family) and growth factor receptors like epidermal growth factor receptors (members of RTK family). Furthermore, functional consequences of such an interaction in modulation of signaling pathways linked to pathological conditions specifically in cancer are discussed.
Literature
1.
go back to reference D. Fotiadis, Y. Liang, S. Filipek, D.A. Saperstein, A. Engel, K. Palczewski, Atomic-force microscopy: rhodopsin dimers in native disc membranes. Nature 421(6919), 127–128 (2003)PubMedCrossRef D. Fotiadis, Y. Liang, S. Filipek, D.A. Saperstein, A. Engel, K. Palczewski, Atomic-force microscopy: rhodopsin dimers in native disc membranes. Nature 421(6919), 127–128 (2003)PubMedCrossRef
2.
go back to reference M. Bouvier, N. Heveker, R. Jockers, S. Marullo, G. Milligan, BRET analysis of GPCR oligomerization: newer does not mean better. Nat. Methods 4(1), 3–4 (2007). author reply 4PubMedCrossRef M. Bouvier, N. Heveker, R. Jockers, S. Marullo, G. Milligan, BRET analysis of GPCR oligomerization: newer does not mean better. Nat. Methods 4(1), 3–4 (2007). author reply 4PubMedCrossRef
3.
go back to reference G. Milligan, G protein-coupled receptor dimerization: function and ligand pharmacology. Mol. Pharmacol. 66(1), 1–7 (2004)PubMedCrossRef G. Milligan, G protein-coupled receptor dimerization: function and ligand pharmacology. Mol. Pharmacol. 66(1), 1–7 (2004)PubMedCrossRef
4.
go back to reference U. Kumar, M. Grant, Somatostatin and somatostatin receptors. Results Probl. Cell Differ. 50, 137–184 (2010)PubMed U. Kumar, M. Grant, Somatostatin and somatostatin receptors. Results Probl. Cell Differ. 50, 137–184 (2010)PubMed
5.
go back to reference Y. Yarden, M.X. Sliwkowski, Untangling the ErbB signalling network. Nat. Rev. Mol. Cell Biol. 2(2), 127–137 (2001)PubMedCrossRef Y. Yarden, M.X. Sliwkowski, Untangling the ErbB signalling network. Nat. Rev. Mol. Cell Biol. 2(2), 127–137 (2001)PubMedCrossRef
6.
7.
go back to reference H. Daub, C. Wallasch, A. Lankenau, A. Herrlich, A. Ullrich, Signal characteristics of G protein-transactivated EGF receptor. EMBO J. 16(23), 7032–7044 (1997)PubMedCrossRef H. Daub, C. Wallasch, A. Lankenau, A. Herrlich, A. Ullrich, Signal characteristics of G protein-transactivated EGF receptor. EMBO J. 16(23), 7032–7044 (1997)PubMedCrossRef
8.
go back to reference L.M. Luttrell, Y. Daaka, R.J. Lefkowitz, Regulation of tyrosine kinase cascades by G-protein-coupled receptors. Curr. Opin. Cell Biol. 11, 177–183 (1999)PubMedCrossRef L.M. Luttrell, Y. Daaka, R.J. Lefkowitz, Regulation of tyrosine kinase cascades by G-protein-coupled receptors. Curr. Opin. Cell Biol. 11, 177–183 (1999)PubMedCrossRef
9.
go back to reference F.S. Lee, M.V. Chao, Activation of Trk neurotrophin receptors in the absence of neurotrophins. Proc. Natl. Acad. Sci. USA 98(6), 3555–3560 (2001)PubMedCrossRef F.S. Lee, M.V. Chao, Activation of Trk neurotrophin receptors in the absence of neurotrophins. Proc. Natl. Acad. Sci. USA 98(6), 3555–3560 (2001)PubMedCrossRef
10.
go back to reference K.L. Pierce, L.M. Luttrell, R.J. Lefkowitz, New mechanisms in heptahelical receptor signaling to mitogen activated protein kinase cascades. Oncogene 20(13), 1532–1539 (2001)PubMedCrossRef K.L. Pierce, L.M. Luttrell, R.J. Lefkowitz, New mechanisms in heptahelical receptor signaling to mitogen activated protein kinase cascades. Oncogene 20(13), 1532–1539 (2001)PubMedCrossRef
11.
go back to reference P.O. Hackel, E. Zwick, N. Prenzel, A. Ullrich, Epidermal growth factor receptors: critical mediators of multiple receptor pathways. Curr. Opin. Cell Biol. 11(2), 184–189 (1999)PubMedCrossRef P.O. Hackel, E. Zwick, N. Prenzel, A. Ullrich, Epidermal growth factor receptors: critical mediators of multiple receptor pathways. Curr. Opin. Cell Biol. 11(2), 184–189 (1999)PubMedCrossRef
12.
go back to reference B. Hellman, A. Lernmark, Inhibition of the in vitro secretion of insulin by an extract of pancreatic alpha-1 cells. Endocrinology 84(6), 1484–1488 (1969)PubMedCrossRef B. Hellman, A. Lernmark, Inhibition of the in vitro secretion of insulin by an extract of pancreatic alpha-1 cells. Endocrinology 84(6), 1484–1488 (1969)PubMedCrossRef
13.
go back to reference L. Krulich, A.P. Dhariwal, S.M. McCann, Stimulatory and inhibitory effects of purified hypothalamic extracts on growth hormone release from rat pituitary in vitro. Endocrinology 83(4), 783–790 (1968)PubMedCrossRef L. Krulich, A.P. Dhariwal, S.M. McCann, Stimulatory and inhibitory effects of purified hypothalamic extracts on growth hormone release from rat pituitary in vitro. Endocrinology 83(4), 783–790 (1968)PubMedCrossRef
14.
go back to reference Y.C. Patel, S. Reichlin, Somatostatin in hypothalamus, extrahypothalamic brain, and peripheral tissues of the rat. Endocrinology 102(2), 523–530 (1978)PubMedCrossRef Y.C. Patel, S. Reichlin, Somatostatin in hypothalamus, extrahypothalamic brain, and peripheral tissues of the rat. Endocrinology 102(2), 523–530 (1978)PubMedCrossRef
15.
16.
go back to reference J. Epelbaum, P. Dournaud, M. Fodor, C. Viollet, The neurobiology of somatostatin. Crit. Rev. Neurobiol. 8(1–2), 25–44 (1994)PubMed J. Epelbaum, P. Dournaud, M. Fodor, C. Viollet, The neurobiology of somatostatin. Crit. Rev. Neurobiol. 8(1–2), 25–44 (1994)PubMed
17.
go back to reference Y.C. Patel, Molecular pharmacology of somatostatin receptor subtypes. J. Endocrinol. Invest. 20(6), 348–367 (1997)PubMed Y.C. Patel, Molecular pharmacology of somatostatin receptor subtypes. J. Endocrinol. Invest. 20(6), 348–367 (1997)PubMed
18.
go back to reference U. Kumar, D. Laird, C.B. Srikant, E. Escher, Y.C. Patel, Expression of the five somatostatin receptor (SSTR1–5) subtypes in rat pituitary somatotrophes: quantitative analysis by double-layer immunofluorescence confocal microscopy. Endocrinology 138(10), 4473–4476 (1997)PubMedCrossRef U. Kumar, D. Laird, C.B. Srikant, E. Escher, Y.C. Patel, Expression of the five somatostatin receptor (SSTR1–5) subtypes in rat pituitary somatotrophes: quantitative analysis by double-layer immunofluorescence confocal microscopy. Endocrinology 138(10), 4473–4476 (1997)PubMedCrossRef
19.
go back to reference K.V. Sorensen, S.E. Christensen, A.P. Hansen, E. Pedersen, H. Orskov, Cerebrospinal fluid somatostatin inversely correlated with disease activity in multiple sclerosis. Lancet 1(8331), 988 (1983)PubMedCrossRef K.V. Sorensen, S.E. Christensen, A.P. Hansen, E. Pedersen, H. Orskov, Cerebrospinal fluid somatostatin inversely correlated with disease activity in multiple sclerosis. Lancet 1(8331), 988 (1983)PubMedCrossRef
20.
go back to reference D. Hoyer, H. Lubbert, C. Bruns, Molecular pharmacology of somatostatin receptors. Naunyn Schmiedebergs Arch Pharmacol 350(5), 441–453 (1994)PubMedCrossRef D. Hoyer, H. Lubbert, C. Bruns, Molecular pharmacology of somatostatin receptors. Naunyn Schmiedebergs Arch Pharmacol 350(5), 441–453 (1994)PubMedCrossRef
21.
go back to reference A. Schonbrunn, H. Tashjian Jr., Characterization of functional receptors for somatostatin in rat pituitary cells in culture. J. Biol. Chem. 253(18), 6473–6483 (1978)PubMed A. Schonbrunn, H. Tashjian Jr., Characterization of functional receptors for somatostatin in rat pituitary cells in culture. J. Biol. Chem. 253(18), 6473–6483 (1978)PubMed
22.
go back to reference K.D. Pfleger, K.A. Eidne, Monitoring the formation of dynamic G-protein-coupled receptor-protein complexes in living cells. Biochem. J. 385(Pt 3), 625–637 (2005)PubMed K.D. Pfleger, K.A. Eidne, Monitoring the formation of dynamic G-protein-coupled receptor-protein complexes in living cells. Biochem. J. 385(Pt 3), 625–637 (2005)PubMed
23.
go back to reference S. Bulenger, S. Marullo, M. Bouvier, Emerging role of homo- and heterodimerization in G-protein-coupled receptor biosynthesis and maturation. Trends Pharmacol. Sci. 26(3), 131–137 (2005)PubMedCrossRef S. Bulenger, S. Marullo, M. Bouvier, Emerging role of homo- and heterodimerization in G-protein-coupled receptor biosynthesis and maturation. Trends Pharmacol. Sci. 26(3), 131–137 (2005)PubMedCrossRef
24.
go back to reference M. Duran-Prado, M.M. Malagon, F. Gracia-Navarro, J.P. Castano, Dimerization of G protein-coupled receptors: new avenues for somatostatin receptor signalling, control and functioning. Mol. Cell. Endocrinol. 286(1–2), 63–68 (2008)PubMedCrossRef M. Duran-Prado, M.M. Malagon, F. Gracia-Navarro, J.P. Castano, Dimerization of G protein-coupled receptors: new avenues for somatostatin receptor signalling, control and functioning. Mol. Cell. Endocrinol. 286(1–2), 63–68 (2008)PubMedCrossRef
25.
go back to reference J.M. Gripentrog, K.P. Kantele, A.J. Jesaitis, H.M. Miettinen, Experimental evidence for lack of homodimerization of the G protein-coupled human N-formyl peptide receptor. J. Immunol. 171(6), 3187–3193 (2003)PubMed J.M. Gripentrog, K.P. Kantele, A.J. Jesaitis, H.M. Miettinen, Experimental evidence for lack of homodimerization of the G protein-coupled human N-formyl peptide receptor. J. Immunol. 171(6), 3187–3193 (2003)PubMed
26.
go back to reference B.H. Meyer, J.M. Segura, K.L. Martinez, R. Hovius, N. George, K. Johnsson, H. Vogel, FRET imaging reveals that functional neurokinin-1 receptors are monomeric and reside in membrane microdomains of live cells. Proc. Natl. Acad. Sci. USA 103(7), 2138–2143 (2006)PubMedCrossRef B.H. Meyer, J.M. Segura, K.L. Martinez, R. Hovius, N. George, K. Johnsson, H. Vogel, FRET imaging reveals that functional neurokinin-1 receptors are monomeric and reside in membrane microdomains of live cells. Proc. Natl. Acad. Sci. USA 103(7), 2138–2143 (2006)PubMedCrossRef
27.
go back to reference M. Grant, B. Collier, U. Kumar, Agonist-dependent dissociation of human somatostatin receptor 2 dimers: a role in receptor trafficking. J. Biol. Chem. 279(35), 36179–36183 (2004)PubMedCrossRef M. Grant, B. Collier, U. Kumar, Agonist-dependent dissociation of human somatostatin receptor 2 dimers: a role in receptor trafficking. J. Biol. Chem. 279(35), 36179–36183 (2004)PubMedCrossRef
28.
go back to reference M. Pfeiffer, T. Koch, H. Schroder, M. Klutzny, S. Kirscht, H.J. Kreienkamp, V. Hollt, S. Schulz, Homo- and heterodimerization of somatostatin receptor subtypes. Inactivation of sst(3) receptor function by heterodimerization with sst(2A). J. Biol. Chem. 276(17), 14027–14036 (2001)PubMed M. Pfeiffer, T. Koch, H. Schroder, M. Klutzny, S. Kirscht, H.J. Kreienkamp, V. Hollt, S. Schulz, Homo- and heterodimerization of somatostatin receptor subtypes. Inactivation of sst(3) receptor function by heterodimerization with sst(2A). J. Biol. Chem. 276(17), 14027–14036 (2001)PubMed
29.
go back to reference M.A. Ayoub, C. Couturier, E. Lucas-Meunier, S. Angers, P. Fossier, M. Bouvier, R. Jockers, Monitoring of ligand-independent dimerization and ligand-induced conformational changes of melatonin receptors in living cells by bioluminescence resonance energy transfer. J. Biol. Chem. 277(24), 21522–21528 (2002)PubMedCrossRef M.A. Ayoub, C. Couturier, E. Lucas-Meunier, S. Angers, P. Fossier, M. Bouvier, R. Jockers, Monitoring of ligand-independent dimerization and ligand-induced conformational changes of melatonin receptors in living cells by bioluminescence resonance energy transfer. J. Biol. Chem. 277(24), 21522–21528 (2002)PubMedCrossRef
30.
go back to reference M. Rocheville, D.C. Lange, U. Kumar, R. Sasi, R.C. Patel, Y.C. Patel, Subtypes of the somatostatin receptor assemble as functional homo- and heterodimers. J. Biol. Chem. 275(11), 7862–7869 (2000)PubMedCrossRef M. Rocheville, D.C. Lange, U. Kumar, R. Sasi, R.C. Patel, Y.C. Patel, Subtypes of the somatostatin receptor assemble as functional homo- and heterodimers. J. Biol. Chem. 275(11), 7862–7869 (2000)PubMedCrossRef
31.
go back to reference M. Grant, R.C. Patel, U. Kumar, The role of subtype-specific ligand binding and the C-tail domain in dimer formation of human somatostatin receptors. J. Biol. Chem. 279(37), 38636–38643 (2004)PubMedCrossRef M. Grant, R.C. Patel, U. Kumar, The role of subtype-specific ligand binding and the C-tail domain in dimer formation of human somatostatin receptors. J. Biol. Chem. 279(37), 38636–38643 (2004)PubMedCrossRef
32.
go back to reference M. Duran-Prado, C. Bucharles, B.J. Gonzalez, R. Vazquez-Martinez, A.J. Martinez-Fuentes, S. Garcia-Navarro, S.J. Rhodes, H. Vaudry, M.M. Malagon, J.P. Castano, Porcine somatostatin receptor 2 displays typical pharmacological sst2 features but unique dynamics of homodimerization and internalization. Endocrinology 148(1), 411–421 (2007)PubMedCrossRef M. Duran-Prado, C. Bucharles, B.J. Gonzalez, R. Vazquez-Martinez, A.J. Martinez-Fuentes, S. Garcia-Navarro, S.J. Rhodes, H. Vaudry, M.M. Malagon, J.P. Castano, Porcine somatostatin receptor 2 displays typical pharmacological sst2 features but unique dynamics of homodimerization and internalization. Endocrinology 148(1), 411–421 (2007)PubMedCrossRef
33.
go back to reference S.A. War, R.K. Somvanshi, U. Kumar, Somatostatin receptor-3 mediated intracellular signaling and apoptosis is regulated by its cytoplasmic terminal. Biochim. Biophys. Acta 1813(3), 390–402 (2011)PubMedCrossRef S.A. War, R.K. Somvanshi, U. Kumar, Somatostatin receptor-3 mediated intracellular signaling and apoptosis is regulated by its cytoplasmic terminal. Biochim. Biophys. Acta 1813(3), 390–402 (2011)PubMedCrossRef
34.
go back to reference R.K. Somvanshi, S. Billova, G. Kharmate, P.S. Rajput, U. Kumar, C-tail mediated modulation of somatostatin receptor type-4 homo- and heterodimerizations and signaling. Cell. Signal. 21(9), 1396–1414 (2009)PubMedCrossRef R.K. Somvanshi, S. Billova, G. Kharmate, P.S. Rajput, U. Kumar, C-tail mediated modulation of somatostatin receptor type-4 homo- and heterodimerizations and signaling. Cell. Signal. 21(9), 1396–1414 (2009)PubMedCrossRef
35.
go back to reference A. Baragli, H. Alturaihi, H.L. Watt, A. Abdallah, U. Kumar, Heterooligomerization of human dopamine receptor 2 and somatostatin receptor 2 co-immunoprecipitation and fluorescence resonance energy transfer analysis. Cell. Signal. 19(11), 2304–2316 (2007)PubMedCrossRef A. Baragli, H. Alturaihi, H.L. Watt, A. Abdallah, U. Kumar, Heterooligomerization of human dopamine receptor 2 and somatostatin receptor 2 co-immunoprecipitation and fluorescence resonance energy transfer analysis. Cell. Signal. 19(11), 2304–2316 (2007)PubMedCrossRef
36.
go back to reference M. Grant, H. Alturaihi, P. Jaquet, B. Collier, U. Kumar, Cell growth inhibition and functioning of human somatostatin receptor type 2 are modulated by receptor heterodimerization. Mol. Endocrinol. 22(10), 2278–2292 (2008)PubMedCrossRef M. Grant, H. Alturaihi, P. Jaquet, B. Collier, U. Kumar, Cell growth inhibition and functioning of human somatostatin receptor type 2 are modulated by receptor heterodimerization. Mol. Endocrinol. 22(10), 2278–2292 (2008)PubMedCrossRef
37.
go back to reference M. Pfeiffer, T. Koch, H. Schroder, M. Laugsch, V. Hollt, S. Schulz, Heterodimerization of somatostatin and opioid receptors cross-modulates phosphorylation, internalization, and desensitization. J. Biol. Chem. 277(22), 19762–19772 (2002)PubMedCrossRef M. Pfeiffer, T. Koch, H. Schroder, M. Laugsch, V. Hollt, S. Schulz, Heterodimerization of somatostatin and opioid receptors cross-modulates phosphorylation, internalization, and desensitization. J. Biol. Chem. 277(22), 19762–19772 (2002)PubMedCrossRef
38.
go back to reference M. Rocheville, D.C. Lange, U. Kumar, S.C. Patel, R.C. Patel, Y.C. Patel, Receptors for dopamine and somatostatin: formation of hetero-oligomers with enhanced functional activity. Science 288(5463), 154–157 (2000)PubMedCrossRef M. Rocheville, D.C. Lange, U. Kumar, S.C. Patel, R.C. Patel, Y.C. Patel, Receptors for dopamine and somatostatin: formation of hetero-oligomers with enhanced functional activity. Science 288(5463), 154–157 (2000)PubMedCrossRef
39.
go back to reference R.K. Somvanshi, N. Chaudhari, X. Qiu, U. Kumar, Heterodimerization of beta2 adrenergic receptor and somatostatin receptor 5: implications in modulation of signaling pathway. J. Mol. Signal. 6, 9 (2011) R.K. Somvanshi, N. Chaudhari, X. Qiu, U. Kumar, Heterodimerization of beta2 adrenergic receptor and somatostatin receptor 5: implications in modulation of signaling pathway. J. Mol. Signal. 6, 9 (2011)
40.
go back to reference R.K. Somvanshi, S.A. War, N. Chaudhari, X. Qiu, U. Kumar, Receptor specific crosstalk and modulation of signaling upon heterodimerization between beta1-adrenergic receptor and somatostatin receptor-5. Cell. Signal. 23(5), 794–811 (2011)PubMedCrossRef R.K. Somvanshi, S.A. War, N. Chaudhari, X. Qiu, U. Kumar, Receptor specific crosstalk and modulation of signaling upon heterodimerization between beta1-adrenergic receptor and somatostatin receptor-5. Cell. Signal. 23(5), 794–811 (2011)PubMedCrossRef
41.
go back to reference G. Kharmate, P.S. Rajput, H.L. Watt, R.K. Somvanshi, N. Chaudhari, X. Qiu, U. Kumar, Dissociation of epidermal growth factor receptor and ErbB2 heterodimers in the presence of somatostatin receptor 5 modulate signaling pathways. Endocrinology 152(3), 931–945 (2011)PubMedCrossRef G. Kharmate, P.S. Rajput, H.L. Watt, R.K. Somvanshi, N. Chaudhari, X. Qiu, U. Kumar, Dissociation of epidermal growth factor receptor and ErbB2 heterodimers in the presence of somatostatin receptor 5 modulate signaling pathways. Endocrinology 152(3), 931–945 (2011)PubMedCrossRef
42.
go back to reference G. Kharmate, P.S. Rajput, H.L. Watt, R.K. Somvanshi, N. Chaudhari, X. Qiu, U. Kumar, Role of somatostatin receptor 1 and 5 on epidermal growth factor receptor mediated signaling. Biochim. Biophys. Acta 1813(6), 1172–1189 (2011)PubMedCrossRef G. Kharmate, P.S. Rajput, H.L. Watt, R.K. Somvanshi, N. Chaudhari, X. Qiu, U. Kumar, Role of somatostatin receptor 1 and 5 on epidermal growth factor receptor mediated signaling. Biochim. Biophys. Acta 1813(6), 1172–1189 (2011)PubMedCrossRef
43.
go back to reference H.L. Watt, G.D. Kharmate, U. Kumar, Somatostatin receptors 1 and 5 heterodimerize with epidermal growth factor receptor: agonist-dependent modulation of the downstream MAPK signalling pathway in breast cancer cells. Cell. Signal. 21(3), 428–439 (2009)PubMedCrossRef H.L. Watt, G.D. Kharmate, U. Kumar, Somatostatin receptors 1 and 5 heterodimerize with epidermal growth factor receptor: agonist-dependent modulation of the downstream MAPK signalling pathway in breast cancer cells. Cell. Signal. 21(3), 428–439 (2009)PubMedCrossRef
44.
go back to reference M. Grant, U. Kumar, The role of G-proteins in the dimerisation of human somatostatin receptor types 2 and 5. Regul. Pept. 159(1–3), 3–8 (2010)PubMedCrossRef M. Grant, U. Kumar, The role of G-proteins in the dimerisation of human somatostatin receptor types 2 and 5. Regul. Pept. 159(1–3), 3–8 (2010)PubMedCrossRef
45.
go back to reference R.C. Patel, U. Kumar, D.C. Lamb, J.S. Eid, M. Rocheville, M. Grant, A. Rani, T. Hazlett, S.C. Patel, E. Gratton, Y.C. Patel, Ligand binding to somatostatin receptors induces receptor-specific oligomer formation in live cells. Proc. Natl. Acad. Sci. USA 99(5), 3294–3299 (2002)PubMedCrossRef R.C. Patel, U. Kumar, D.C. Lamb, J.S. Eid, M. Rocheville, M. Grant, A. Rani, T. Hazlett, S.C. Patel, E. Gratton, Y.C. Patel, Ligand binding to somatostatin receptors induces receptor-specific oligomer formation in live cells. Proc. Natl. Acad. Sci. USA 99(5), 3294–3299 (2002)PubMedCrossRef
46.
go back to reference Y.C. Patel, M.T. Greenwood, A. Warszynska, R. Panetta, C.B. Srikant, All five cloned human somatostatin receptors (hSSTR1–5) are functionally coupled to adenylyl cyclase. Biochem. Biophys. Res. Commun. 198(2), 605–612 (1994)PubMedCrossRef Y.C. Patel, M.T. Greenwood, A. Warszynska, R. Panetta, C.B. Srikant, All five cloned human somatostatin receptors (hSSTR1–5) are functionally coupled to adenylyl cyclase. Biochem. Biophys. Res. Commun. 198(2), 605–612 (1994)PubMedCrossRef
47.
go back to reference M.A. Olayioye, R.M. Neve, H. Lane, N.E. Hynes, The ErbB signaling network: receptor heterodimerization in development and cancer. EMBO J. 19(13), 3159–3167 (2000)PubMedCrossRef M.A. Olayioye, R.M. Neve, H. Lane, N.E. Hynes, The ErbB signaling network: receptor heterodimerization in development and cancer. EMBO J. 19(13), 3159–3167 (2000)PubMedCrossRef
48.
go back to reference D.C. Lev, L.S. Kim, V. Melnikova, M. Ruiz, H.N. Ananthaswamy, J.E. Price, Dual blockade of EGFR and ERK1/2 phosphorylation potentiates growth inhibition of breast cancer cells. Br. J. Cancer 91(4), 795–802 (2004)PubMed D.C. Lev, L.S. Kim, V. Melnikova, M. Ruiz, H.N. Ananthaswamy, J.E. Price, Dual blockade of EGFR and ERK1/2 phosphorylation potentiates growth inhibition of breast cancer cells. Br. J. Cancer 91(4), 795–802 (2004)PubMed
49.
go back to reference S. Okubo, J. Kurebayashi, T. Otsuki, Y. Yamamoto, K. Tanaka, H. Sonoo, Additive antitumour effect of the epidermal growth factor receptor tyrosine kinase inhibitor gefitinib (Iressa, ZD1839) and the antioestrogen fulvestrant (Faslodex, ICI 182, 780) in breast cancer cells. Br. J. Cancer 90(1), 236–244 (2004)PubMedCrossRef S. Okubo, J. Kurebayashi, T. Otsuki, Y. Yamamoto, K. Tanaka, H. Sonoo, Additive antitumour effect of the epidermal growth factor receptor tyrosine kinase inhibitor gefitinib (Iressa, ZD1839) and the antioestrogen fulvestrant (Faslodex, ICI 182, 780) in breast cancer cells. Br. J. Cancer 90(1), 236–244 (2004)PubMedCrossRef
50.
go back to reference A. deFazio, Y.E. Chiew, R.L. Sini, P.W. Janes, R.L. Sutherland, Expression of c-erbB receptors, heregulin and oestrogen receptor in human breast cell lines. Int. J. Cancer 87(4), 487–498 (2000)PubMedCrossRef A. deFazio, Y.E. Chiew, R.L. Sini, P.W. Janes, R.L. Sutherland, Expression of c-erbB receptors, heregulin and oestrogen receptor in human breast cell lines. Int. J. Cancer 87(4), 487–498 (2000)PubMedCrossRef
52.
go back to reference H.K. Gan, M. Lappas, D.X. Cao, A. Cvrljevdic, A.M. Scott, T.G. Johns, Targeting a unique EGFR epitope with monoclonal antibody 806 activates NF-kappaB and initiates tumour vascular normalization. J. Cell Mol. Med. 13(9B), 3993–4001 (2009)PubMedCrossRef H.K. Gan, M. Lappas, D.X. Cao, A. Cvrljevdic, A.M. Scott, T.G. Johns, Targeting a unique EGFR epitope with monoclonal antibody 806 activates NF-kappaB and initiates tumour vascular normalization. J. Cell Mol. Med. 13(9B), 3993–4001 (2009)PubMedCrossRef
53.
go back to reference D. Gerber, N. Sal-Man, Y. Shai, Two motifs within a transmembrane domain, one for homodimerization and the other for heterodimerization. J. Biol. Chem. 279(20), 21177–21182 (2004)PubMedCrossRef D. Gerber, N. Sal-Man, Y. Shai, Two motifs within a transmembrane domain, one for homodimerization and the other for heterodimerization. J. Biol. Chem. 279(20), 21177–21182 (2004)PubMedCrossRef
54.
go back to reference A.W. Burgess, H.S. Cho, C. Eigenbrot, K.M. Ferguson, T.P. Garrett, D.J. Leahy, M.A. Lemmon, M.X. Sliwkowski, C.W. Ward, S. Yokoyama, An open-and-shut case? Recent insights into the activation of EGF/ErbB receptors. Mol. Cell 12(3), 541–552 (2003)PubMedCrossRef A.W. Burgess, H.S. Cho, C. Eigenbrot, K.M. Ferguson, T.P. Garrett, D.J. Leahy, M.A. Lemmon, M.X. Sliwkowski, C.W. Ward, S. Yokoyama, An open-and-shut case? Recent insights into the activation of EGF/ErbB receptors. Mol. Cell 12(3), 541–552 (2003)PubMedCrossRef
55.
go back to reference T.P. Garrett, N.M. McKern, M. Lou, T.C. Elleman, T.E. Adams, G.O. Lovrecz, M. Kofler, R.N. Jorissen, E.C. Nice, A.W. Burgess, C.W. Ward, The crystal structure of a truncated ErbB2 ectodomain reveals an active conformation, poised to interact with other ErbB receptors. Mol. Cell 11(2), 495–505 (2003)PubMedCrossRef T.P. Garrett, N.M. McKern, M. Lou, T.C. Elleman, T.E. Adams, G.O. Lovrecz, M. Kofler, R.N. Jorissen, E.C. Nice, A.W. Burgess, C.W. Ward, The crystal structure of a truncated ErbB2 ectodomain reveals an active conformation, poised to interact with other ErbB receptors. Mol. Cell 11(2), 495–505 (2003)PubMedCrossRef
56.
go back to reference L.N. Klapper, M.H. Kirschbaum, M. Sela, Y. Yarden, Biochemical and clinical implications of the ErbB/HER signaling network of growth factor receptors. Adv. Cancer Res. 77, 25–79 (2000)PubMedCrossRef L.N. Klapper, M.H. Kirschbaum, M. Sela, Y. Yarden, Biochemical and clinical implications of the ErbB/HER signaling network of growth factor receptors. Adv. Cancer Res. 77, 25–79 (2000)PubMedCrossRef
57.
go back to reference K.L. Carraway 3rd, L.C. Cantley, A neu acquaintance for erbB3 and erbB4: a role for receptor heterodimerization in growth signaling. Cell 78(1), 5–8 (1994)PubMedCrossRef K.L. Carraway 3rd, L.C. Cantley, A neu acquaintance for erbB3 and erbB4: a role for receptor heterodimerization in growth signaling. Cell 78(1), 5–8 (1994)PubMedCrossRef
58.
go back to reference J.L. Gilmore, D.J. Riese 2nd, secErbB4-26/549 antagonizes ligand-induced ErbB4 tyrosine phosphorylation. Oncol. Res. 14(11–12), 589–602 (2004)PubMed J.L. Gilmore, D.J. Riese 2nd, secErbB4-26/549 antagonizes ligand-induced ErbB4 tyrosine phosphorylation. Oncol. Res. 14(11–12), 589–602 (2004)PubMed
59.
go back to reference K.L. Carraway 3rd, S.P. Soltoff, A.J. Diamonti, L.C. Cantley, Heregulin stimulates mitogenesis and phosphatidylinositol 3-kinase in mouse fibroblasts transfected with erbB2/neu and erbB3. J. Biol. Chem. 270(13), 7111–7116 (1995)PubMedCrossRef K.L. Carraway 3rd, S.P. Soltoff, A.J. Diamonti, L.C. Cantley, Heregulin stimulates mitogenesis and phosphatidylinositol 3-kinase in mouse fibroblasts transfected with erbB2/neu and erbB3. J. Biol. Chem. 270(13), 7111–7116 (1995)PubMedCrossRef
60.
go back to reference B.D. Cohen, P.A. Kiener, J.M. Green, L. Foy, H.P. Fell, K. Zhang, The relationship between human epidermal growth-like factor receptor expression and cellular transformation in NIH3T3 cells. J. Biol. Chem. 271(48), 30897–30903 (1996)PubMedCrossRef B.D. Cohen, P.A. Kiener, J.M. Green, L. Foy, H.P. Fell, K. Zhang, The relationship between human epidermal growth-like factor receptor expression and cellular transformation in NIH3T3 cells. J. Biol. Chem. 271(48), 30897–30903 (1996)PubMedCrossRef
61.
go back to reference P.M. Guy, J.V. Platko, L.C. Cantley, R.A. Cerione, K.L. Carraway 3rd, Insect cell-expressed p180erbB3 possesses an impaired tyrosine kinase activity. Proc. Natl. Acad. Sci. USA 91(17), 8132–8136 (1994)PubMedCrossRef P.M. Guy, J.V. Platko, L.C. Cantley, R.A. Cerione, K.L. Carraway 3rd, Insect cell-expressed p180erbB3 possesses an impaired tyrosine kinase activity. Proc. Natl. Acad. Sci. USA 91(17), 8132–8136 (1994)PubMedCrossRef
62.
go back to reference T. Holbro, R.R. Beerli, F. Maurer, M. Koziczak, C.F. Barbas 3rd, N.E. Hynes, The ErbB2/ErbB3 heterodimer functions as an oncogenic unit: ErbB2 requires ErbB3 to drive breast tumor cell proliferation. Proc. Natl. Acad. Sci. USA 100(15), 8933–8938 (2003)PubMedCrossRef T. Holbro, R.R. Beerli, F. Maurer, M. Koziczak, C.F. Barbas 3rd, N.E. Hynes, The ErbB2/ErbB3 heterodimer functions as an oncogenic unit: ErbB2 requires ErbB3 to drive breast tumor cell proliferation. Proc. Natl. Acad. Sci. USA 100(15), 8933–8938 (2003)PubMedCrossRef
63.
go back to reference R. Pinkas-Kramarski, M. Shelly, S. Glathe, B.J. Ratzkin, Y. Yarden, Neu differentiation factor/neuregulin isoforms activate distinct receptor combinations. J. Biol. Chem. 271(32), 19029–19032 (1996)PubMedCrossRef R. Pinkas-Kramarski, M. Shelly, S. Glathe, B.J. Ratzkin, Y. Yarden, Neu differentiation factor/neuregulin isoforms activate distinct receptor combinations. J. Biol. Chem. 271(32), 19029–19032 (1996)PubMedCrossRef
64.
go back to reference K. Zhang, J. Sun, N. Liu, D. Wen, D. Chang, A. Thomason, S.K. Yoshinaga, Transformation of NIH 3T3 cells by HER3 or HER4 receptors requires the presence of HER1 or HER2. J. Biol. Chem. 271(7), 3884–3890 (1996)PubMedCrossRef K. Zhang, J. Sun, N. Liu, D. Wen, D. Chang, A. Thomason, S.K. Yoshinaga, Transformation of NIH 3T3 cells by HER3 or HER4 receptors requires the presence of HER1 or HER2. J. Biol. Chem. 271(7), 3884–3890 (1996)PubMedCrossRef
65.
go back to reference J. Baulida, G. Carpenter, Heregulin degradation in the absence of rapid receptor-mediated internalization. Exp. Cell Res. 232(1), 167–172 (1997)PubMedCrossRef J. Baulida, G. Carpenter, Heregulin degradation in the absence of rapid receptor-mediated internalization. Exp. Cell Res. 232(1), 167–172 (1997)PubMedCrossRef
66.
go back to reference Z. Wang, L. Zhang, T.K. Yeung, X. Chen, Endocytosis deficiency of epidermal growth factor (EGF) receptor-ErbB2 heterodimers in response to EGF stimulation. Mol. Biol. Cell 10(5), 1621–1636 (1999)PubMed Z. Wang, L. Zhang, T.K. Yeung, X. Chen, Endocytosis deficiency of epidermal growth factor (EGF) receptor-ErbB2 heterodimers in response to EGF stimulation. Mol. Biol. Cell 10(5), 1621–1636 (1999)PubMed
67.
go back to reference H. Waterman, I. Sabanai, B. Geiger, Y. Yarden, Alternative intracellular routing of ErbB receptors may determine signaling potency. J. Biol. Chem. 273(22), 13819–13827 (1998)PubMedCrossRef H. Waterman, I. Sabanai, B. Geiger, Y. Yarden, Alternative intracellular routing of ErbB receptors may determine signaling potency. J. Biol. Chem. 273(22), 13819–13827 (1998)PubMedCrossRef
68.
go back to reference A.E. Lenferink, R. Pinkas-Kramarski, M.L. van de Poll, M.J. van Vugt, L.N. Klapper, E. Tzahar, H. Waterman, M. Sela, E.J. van Zoelen, Y. Yarden, Differential endocytic routing of homo- and hetero-dimeric ErbB tyrosine kinases confers signaling superiority to receptor heterodimers. EMBO J. 17(12), 3385–3397 (1998)PubMedCrossRef A.E. Lenferink, R. Pinkas-Kramarski, M.L. van de Poll, M.J. van Vugt, L.N. Klapper, E. Tzahar, H. Waterman, M. Sela, E.J. van Zoelen, Y. Yarden, Differential endocytic routing of homo- and hetero-dimeric ErbB tyrosine kinases confers signaling superiority to receptor heterodimers. EMBO J. 17(12), 3385–3397 (1998)PubMedCrossRef
69.
go back to reference R. Zandi, A.B. Larsen, P. Andersen, M.T. Stockhausen, H.S. Poulsen, Mechanisms for oncogenic activation of the epidermal growth factor receptor. Cell. Signal. 19(10), 2013–2023 (2007)PubMedCrossRef R. Zandi, A.B. Larsen, P. Andersen, M.T. Stockhausen, H.S. Poulsen, Mechanisms for oncogenic activation of the epidermal growth factor receptor. Cell. Signal. 19(10), 2013–2023 (2007)PubMedCrossRef
70.
go back to reference E. Peles, R. Ben-Levy, E. Tzahar, N. Liu, D. Wen, Y. Yarden, Cell-type specific interaction of Neu differentiation factor (NDF/heregulin) with Neu/HER-2 suggests complex ligand-receptor relationships. EMBO J. 12(3), 961–971 (1993)PubMed E. Peles, R. Ben-Levy, E. Tzahar, N. Liu, D. Wen, Y. Yarden, Cell-type specific interaction of Neu differentiation factor (NDF/heregulin) with Neu/HER-2 suggests complex ligand-receptor relationships. EMBO J. 12(3), 961–971 (1993)PubMed
71.
go back to reference G.D. Plowman, J.M. Green, J.M. Culouscou, G.W. Carlton, V.M. Rothwell, S. Buckley, Heregulin induces tyrosine phosphorylation of HER4/p180erbB4. Nature 366(6454), 473–475 (1993)PubMedCrossRef G.D. Plowman, J.M. Green, J.M. Culouscou, G.W. Carlton, V.M. Rothwell, S. Buckley, Heregulin induces tyrosine phosphorylation of HER4/p180erbB4. Nature 366(6454), 473–475 (1993)PubMedCrossRef
72.
go back to reference M.X. Sliwkowski, G. Schaefer, R.W. Akita, J.A. Lofgren, V.D. Fitzpatrick, A. Nuijens, B.M. Fendly, R.A. Cerione, R.L. Vandlen, K.L. Carraway 3rd, Coexpression of erbB2 and erbB3 proteins reconstitutes a high affinity receptor for heregulin. J. Biol. Chem. 269(20), 14661–14665 (1994)PubMed M.X. Sliwkowski, G. Schaefer, R.W. Akita, J.A. Lofgren, V.D. Fitzpatrick, A. Nuijens, B.M. Fendly, R.A. Cerione, R.L. Vandlen, K.L. Carraway 3rd, Coexpression of erbB2 and erbB3 proteins reconstitutes a high affinity receptor for heregulin. J. Biol. Chem. 269(20), 14661–14665 (1994)PubMed
73.
go back to reference X. Qian, C.M. LeVea, J.K. Freeman, W.C. Dougall, M.I. Greene, Heterodimerization of epidermal growth factor receptor and wild-type or kinase-deficient Neu: a mechanism of interreceptor kinase activation and transphosphorylation. Proc. Natl. Acad. Sci. USA 91(4), 1500–1504 (1994)PubMedCrossRef X. Qian, C.M. LeVea, J.K. Freeman, W.C. Dougall, M.I. Greene, Heterodimerization of epidermal growth factor receptor and wild-type or kinase-deficient Neu: a mechanism of interreceptor kinase activation and transphosphorylation. Proc. Natl. Acad. Sci. USA 91(4), 1500–1504 (1994)PubMedCrossRef
74.
go back to reference S. Gavi, D. Yin, E. Shumay, H.Y. Wang, C.C. Malbon, Insulin-like growth factor-I provokes functional antagonism and internalization of beta1-adrenergic receptors. Endocrinology 148(6), 2653–2662 (2007)PubMedCrossRef S. Gavi, D. Yin, E. Shumay, H.Y. Wang, C.C. Malbon, Insulin-like growth factor-I provokes functional antagonism and internalization of beta1-adrenergic receptors. Endocrinology 148(6), 2653–2662 (2007)PubMedCrossRef
75.
go back to reference F.S. Lee, Novel crosstalk between G protein-coupled receptors and NMDA receptors. Exp. Neurol. 183(2), 269–272 (2003)PubMedCrossRef F.S. Lee, Novel crosstalk between G protein-coupled receptors and NMDA receptors. Exp. Neurol. 183(2), 269–272 (2003)PubMedCrossRef
76.
go back to reference J.A. Garcia-Sainz, M.T. Romero-Avila, C. Medina Ldel, Dissecting how receptor tyrosine kinases modulate G protein-coupled receptor function. Eur. J. Pharmacol. 648(1–3), 1–5 (2010)PubMedCrossRef J.A. Garcia-Sainz, M.T. Romero-Avila, C. Medina Ldel, Dissecting how receptor tyrosine kinases modulate G protein-coupled receptor function. Eur. J. Pharmacol. 648(1–3), 1–5 (2010)PubMedCrossRef
77.
go back to reference U. Kumar, S.I. Grigorakis, H.L. Watt, R. Sasi, L. Snell, P. Watson, S. Chaudhari, Somatostatin receptors in primary human breast cancer: quantitative analysis of mRNA for subtypes 1–5 and correlation with receptor protein expression and tumor pathology. Breast Cancer Res. Treat. 92(2), 175–186 (2005)PubMedCrossRef U. Kumar, S.I. Grigorakis, H.L. Watt, R. Sasi, L. Snell, P. Watson, S. Chaudhari, Somatostatin receptors in primary human breast cancer: quantitative analysis of mRNA for subtypes 1–5 and correlation with receptor protein expression and tumor pathology. Breast Cancer Res. Treat. 92(2), 175–186 (2005)PubMedCrossRef
78.
go back to reference H.L. Watt, U. Kumar, Colocalization of somatostatin receptors and epidermal growth factor receptors in breast cancer cells. Cancer Cell. Int. 6, 5 (2006)PubMedCrossRef H.L. Watt, U. Kumar, Colocalization of somatostatin receptors and epidermal growth factor receptors in breast cancer cells. Cancer Cell. Int. 6, 5 (2006)PubMedCrossRef
79.
go back to reference J. Held-Feindt, F. Forstreuter, T. Pufe, R. Mentlein, Influence of the somatostatin receptor sst2 on growth factor signal cascades in human glioma cells. Brain Res. Mol. Brain Res. 87(1), 12–21 (2001)PubMedCrossRef J. Held-Feindt, F. Forstreuter, T. Pufe, R. Mentlein, Influence of the somatostatin receptor sst2 on growth factor signal cascades in human glioma cells. Brain Res. Mol. Brain Res. 87(1), 12–21 (2001)PubMedCrossRef
80.
go back to reference M.T. Lee, C. Liebow, A.R. Kamer, A.V. Schally, Effects of epidermal growth factor and analogues of luteinizing hormone-releasing hormone and somatostatin on phosphorylation and dephosphorylation of tyrosine residues of specific protein substrates in various tumors. Proc. Natl. Acad. Sci. USA 88(5), 1656–1660 (1991)PubMedCrossRef M.T. Lee, C. Liebow, A.R. Kamer, A.V. Schally, Effects of epidermal growth factor and analogues of luteinizing hormone-releasing hormone and somatostatin on phosphorylation and dephosphorylation of tyrosine residues of specific protein substrates in various tumors. Proc. Natl. Acad. Sci. USA 88(5), 1656–1660 (1991)PubMedCrossRef
81.
go back to reference S. Hart, O.M. Fischer, N. Prenzel, E. Zwick-Wallasch, M. Schneider, L. Hennighausen, A. Ullrich, GPCR-induced migration of breast carcinoma cells depends on both EGFR signal transactivation and EGFR-independent pathways. Biol. Chem. 386(9), 845–855 (2005)PubMedCrossRef S. Hart, O.M. Fischer, N. Prenzel, E. Zwick-Wallasch, M. Schneider, L. Hennighausen, A. Ullrich, GPCR-induced migration of breast carcinoma cells depends on both EGFR signal transactivation and EGFR-independent pathways. Biol. Chem. 386(9), 845–855 (2005)PubMedCrossRef
82.
go back to reference E.J. Filardo, J.A. Quinn, K.I. Bland, A.R. Frackelton Jr., Estrogen-induced activation of Erk-1 and Erk-2 requires the G protein-coupled receptor homolog, GPR30, and occurs via trans-activation of the epidermal growth factor receptor through release of HB-EGF. Mol. Endocrinol. 14(10), 1649–1660 (2000)PubMedCrossRef E.J. Filardo, J.A. Quinn, K.I. Bland, A.R. Frackelton Jr., Estrogen-induced activation of Erk-1 and Erk-2 requires the G protein-coupled receptor homolog, GPR30, and occurs via trans-activation of the epidermal growth factor receptor through release of HB-EGF. Mol. Endocrinol. 14(10), 1649–1660 (2000)PubMedCrossRef
83.
go back to reference N. Prenzel, E. Zwick, H. Daub, M. Leserer, R. Abraham, C. Wallasch, A. Ullrich, EGF receptor transactivation by G-protein-coupled receptors requires metalloproteinase cleavage of proHB-EGF. Nature 402(6764), 884–888 (1999)PubMed N. Prenzel, E. Zwick, H. Daub, M. Leserer, R. Abraham, C. Wallasch, A. Ullrich, EGF receptor transactivation by G-protein-coupled receptors requires metalloproteinase cleavage of proHB-EGF. Nature 402(6764), 884–888 (1999)PubMed
84.
go back to reference H. Daub, F.U. Weiss, C. Wallash, A. Ullrich, Role of transactivation of the EGF receptor in signalling by G-protein coupled receptors. Nature 379, 557–560 (1996)PubMedCrossRef H. Daub, F.U. Weiss, C. Wallash, A. Ullrich, Role of transactivation of the EGF receptor in signalling by G-protein coupled receptors. Nature 379, 557–560 (1996)PubMedCrossRef
85.
go back to reference D. Darmoul, V. Gratio, H. Devaud, M. Laburthe, Protease-activated receptor 2 in colon cancer: trypsin-induced MAPK phosphorylation and cell proliferation are mediated by epidermal growth factor receptor transactivation. J. Biol. Chem. 279(20), 20927–20934 (2004)PubMedCrossRef D. Darmoul, V. Gratio, H. Devaud, M. Laburthe, Protease-activated receptor 2 in colon cancer: trypsin-induced MAPK phosphorylation and cell proliferation are mediated by epidermal growth factor receptor transactivation. J. Biol. Chem. 279(20), 20927–20934 (2004)PubMedCrossRef
86.
go back to reference H. Shankaran, H.S. Wiley, H. Resat, Modeling the effects of HER/ErbB1–3 coexpression on receptor dimerization and biological response. Biophys. J. 90(11), 3993–4009 (2006)PubMedCrossRef H. Shankaran, H.S. Wiley, H. Resat, Modeling the effects of HER/ErbB1–3 coexpression on receptor dimerization and biological response. Biophys. J. 90(11), 3993–4009 (2006)PubMedCrossRef
87.
go back to reference N.E. Willmarth, A. Baillo, M.L. Dziubinski, K. Wilson, D.J. Riese Ii, S.P. Ethier, Altered EGFR localization and degradation in human breast cancer cells with an amphiregulin/EGFR autocrine loop. Cell. Signal. 21(2), 212–219 (2009)PubMedCrossRef N.E. Willmarth, A. Baillo, M.L. Dziubinski, K. Wilson, D.J. Riese Ii, S.P. Ethier, Altered EGFR localization and degradation in human breast cancer cells with an amphiregulin/EGFR autocrine loop. Cell. Signal. 21(2), 212–219 (2009)PubMedCrossRef
88.
go back to reference N. Moghal, P.W. Sternberg, Multiple positive and negative regulators of signaling by the EGF-receptor. Curr. Opin. Cell Biol. 11(2), 190–196 (1999)PubMedCrossRef N. Moghal, P.W. Sternberg, Multiple positive and negative regulators of signaling by the EGF-receptor. Curr. Opin. Cell Biol. 11(2), 190–196 (1999)PubMedCrossRef
89.
go back to reference W.J. Wu, S. Tu, R.A. Cerione, Activated Cdc42 sequesters c-Cbl and prevents EGF receptor degradation. Cell 114(6), 715–725 (2003)PubMedCrossRef W.J. Wu, S. Tu, R.A. Cerione, Activated Cdc42 sequesters c-Cbl and prevents EGF receptor degradation. Cell 114(6), 715–725 (2003)PubMedCrossRef
90.
go back to reference T. Fukazawa, S. Miyake, V. Band, H. Band, Tyrosine phosphorylation of Cbl upon epidermal growth factor (EGF) stimulation and its association with EGF receptor and downstream signaling proteins. J. Biol. Chem. 271(24), 14554–14559 (1996)PubMedCrossRef T. Fukazawa, S. Miyake, V. Band, H. Band, Tyrosine phosphorylation of Cbl upon epidermal growth factor (EGF) stimulation and its association with EGF receptor and downstream signaling proteins. J. Biol. Chem. 271(24), 14554–14559 (1996)PubMedCrossRef
91.
go back to reference T. Florio, S. Thellung, S. Arena, A. Corsaro, A. Bajetto, G. Schettini, P.J. Stork, Somatostatin receptor 1 (SSTR1)-mediated inhibition of cell proliferation correlates with the activation of the MAP kinase cascade: role of the phosphotyrosine phosphatase SHP-2. J. Physiol. Paris 94(3–4), 239–250 (2000)PubMedCrossRef T. Florio, S. Thellung, S. Arena, A. Corsaro, A. Bajetto, G. Schettini, P.J. Stork, Somatostatin receptor 1 (SSTR1)-mediated inhibition of cell proliferation correlates with the activation of the MAP kinase cascade: role of the phosphotyrosine phosphatase SHP-2. J. Physiol. Paris 94(3–4), 239–250 (2000)PubMedCrossRef
92.
go back to reference T. Florio, H. Yao, K.D. Carey, T.J. Dillon, P.J. Stork, Somatostatin activation of mitogen-activated protein kinase via somatostatin receptor 1 (SSTR1). Mol. Endocrinol. 13(1), 24–37 (1999)PubMedCrossRef T. Florio, H. Yao, K.D. Carey, T.J. Dillon, P.J. Stork, Somatostatin activation of mitogen-activated protein kinase via somatostatin receptor 1 (SSTR1). Mol. Endocrinol. 13(1), 24–37 (1999)PubMedCrossRef
93.
go back to reference H. Lahlou, N. Saint-Laurent, J.P. Esteve, A. Eychene, L. Pradayrol, S. Pyronnet, C. Susini, sst2 Somatostatin receptor inhibits cell proliferation through Ras-, Rap1-, and B-Raf-dependent ERK2 activation. J. Biol. Chem. 278(41), 39356–39371 (2003)PubMedCrossRef H. Lahlou, N. Saint-Laurent, J.P. Esteve, A. Eychene, L. Pradayrol, S. Pyronnet, C. Susini, sst2 Somatostatin receptor inhibits cell proliferation through Ras-, Rap1-, and B-Raf-dependent ERK2 activation. J. Biol. Chem. 278(41), 39356–39371 (2003)PubMedCrossRef
94.
go back to reference A. Esparis-Ogando, E. Diaz-Rodriguez, J.C. Montero, L. Yuste, P. Crespo, A. Pandiella, Erk5 participates in neuregulin signal transduction and is constitutively active in breast cancer cells overexpressing ErbB2. Mol. Cell. Biol. 22(1), 270–285 (2002)PubMedCrossRef A. Esparis-Ogando, E. Diaz-Rodriguez, J.C. Montero, L. Yuste, P. Crespo, A. Pandiella, Erk5 participates in neuregulin signal transduction and is constitutively active in breast cancer cells overexpressing ErbB2. Mol. Cell. Biol. 22(1), 270–285 (2002)PubMedCrossRef
95.
go back to reference J.C. Montero, A. Ocana, M. Abad, M.J. Ortiz-Ruiz, A. Pandiella, A. Esparis-Ogando, Expression of Erk5 in early stage breast cancer and association with disease free survival identifies this kinase as a potential therapeutic target. PLoS One 4(5), e5565 (2009)PubMedCrossRef J.C. Montero, A. Ocana, M. Abad, M.J. Ortiz-Ruiz, A. Pandiella, A. Esparis-Ogando, Expression of Erk5 in early stage breast cancer and association with disease free survival identifies this kinase as a potential therapeutic target. PLoS One 4(5), e5565 (2009)PubMedCrossRef
96.
go back to reference N.E. Hynes, J.H. Dey, PI3K inhibition overcomes trastuzumab resistance: blockade of ErbB2/ErbB3 is not always enough. Cancer Cell 15(5), 353–355 (2009)PubMedCrossRef N.E. Hynes, J.H. Dey, PI3K inhibition overcomes trastuzumab resistance: blockade of ErbB2/ErbB3 is not always enough. Cancer Cell 15(5), 353–355 (2009)PubMedCrossRef
97.
go back to reference B.N. Rexer, R. Ghosh, C.L. Arteaga, Inhibition of PI3K and MEK: it is all about combinations and biomarkers. Clin. Cancer Res. 15(14), 4518–4520 (2009)PubMedCrossRef B.N. Rexer, R. Ghosh, C.L. Arteaga, Inhibition of PI3K and MEK: it is all about combinations and biomarkers. Clin. Cancer Res. 15(14), 4518–4520 (2009)PubMedCrossRef
98.
go back to reference B.N. Rexer, J.A. Engelman, C.L. Arteaga, Overcoming resistance to tyrosine kinase inhibitors: lessons learned from cancer cells treated with EGFR antagonists. Cell Cycle 8(1), 18–22 (2009)PubMedCrossRef B.N. Rexer, J.A. Engelman, C.L. Arteaga, Overcoming resistance to tyrosine kinase inhibitors: lessons learned from cancer cells treated with EGFR antagonists. Cell Cycle 8(1), 18–22 (2009)PubMedCrossRef
99.
go back to reference K. Berns, H.M. Horlings, B.T. Hennessy, M. Madiredjo, E.M. Hijmans, K. Beelen, S.C. Linn, A.M. Gonzalez-Angulo, K. Stemke-Hale, M. Hauptmann, R.L. Beijersbergen, G.B. Mills, M.J. van de Vijver, R. Bernards, A functional genetic approach identifies the PI3K pathway as a major determinant of trastuzumab resistance in breast cancer. Cancer Cell 12(4), 395–402 (2007)PubMedCrossRef K. Berns, H.M. Horlings, B.T. Hennessy, M. Madiredjo, E.M. Hijmans, K. Beelen, S.C. Linn, A.M. Gonzalez-Angulo, K. Stemke-Hale, M. Hauptmann, R.L. Beijersbergen, G.B. Mills, M.J. van de Vijver, R. Bernards, A functional genetic approach identifies the PI3K pathway as a major determinant of trastuzumab resistance in breast cancer. Cancer Cell 12(4), 395–402 (2007)PubMedCrossRef
100.
go back to reference C.B. Srikant, S.H. Shen, Octapeptide somatostatin analog SMS 201–995 induces translocation of intracellular PTP1C to membranes in MCF-7 human breast adenocarcinoma cells. Endocrinology 137(8), 3461–3468 (1996)PubMedCrossRef C.B. Srikant, S.H. Shen, Octapeptide somatostatin analog SMS 201–995 induces translocation of intracellular PTP1C to membranes in MCF-7 human breast adenocarcinoma cells. Endocrinology 137(8), 3461–3468 (1996)PubMedCrossRef
101.
go back to reference C. Susini, L. Buscail, Rationale for the use of somatostatin analogs as antitumor agents. Ann. Oncol. 17(12), 1733–1742 (2006)PubMedCrossRef C. Susini, L. Buscail, Rationale for the use of somatostatin analogs as antitumor agents. Ann. Oncol. 17(12), 1733–1742 (2006)PubMedCrossRef
102.
go back to reference M.P. Sanderson, P.J. Dempsey, A.J. Dunbar, Control of ErbB signaling through metalloprotease mediated ectodomain shedding of EGF-like factors. Growth Factors 24(2), 121–136 (2006)PubMedCrossRef M.P. Sanderson, P.J. Dempsey, A.J. Dunbar, Control of ErbB signaling through metalloprotease mediated ectodomain shedding of EGF-like factors. Growth Factors 24(2), 121–136 (2006)PubMedCrossRef
Metadata
Title
Cross-talk and modulation of signaling between somatostatin and growth factor receptors
Author
Ujendra Kumar
Publication date
01-10-2011
Publisher
Springer US
Published in
Endocrine / Issue 2/2011
Print ISSN: 1355-008X
Electronic ISSN: 1559-0100
DOI
https://doi.org/10.1007/s12020-011-9524-8

Other articles of this Issue 2/2011

Endocrine 2/2011 Go to the issue
Live Webinar | 27-06-2024 | 18:00 (CEST)

Keynote webinar | Spotlight on medication adherence

Live: Thursday 27th June 2024, 18:00-19:30 (CEST)

WHO estimates that half of all patients worldwide are non-adherent to their prescribed medication. The consequences of poor adherence can be catastrophic, on both the individual and population level.

Join our expert panel to discover why you need to understand the drivers of non-adherence in your patients, and how you can optimize medication adherence in your clinics to drastically improve patient outcomes.

Prof. Kevin Dolgin
Prof. Florian Limbourg
Prof. Anoop Chauhan
Developed by: Springer Medicine
Obesity Clinical Trial Summary

At a glance: The STEP trials

A round-up of the STEP phase 3 clinical trials evaluating semaglutide for weight loss in people with overweight or obesity.

Developed by: Springer Medicine

Highlights from the ACC 2024 Congress

Year in Review: Pediatric cardiology

Watch Dr. Anne Marie Valente present the last year's highlights in pediatric and congenital heart disease in the official ACC.24 Year in Review session.

Year in Review: Pulmonary vascular disease

The last year's highlights in pulmonary vascular disease are presented by Dr. Jane Leopold in this official video from ACC.24.

Year in Review: Valvular heart disease

Watch Prof. William Zoghbi present the last year's highlights in valvular heart disease from the official ACC.24 Year in Review session.

Year in Review: Heart failure and cardiomyopathies

Watch this official video from ACC.24. Dr. Biykem Bozkurt discusses last year's major advances in heart failure and cardiomyopathies.