Skip to main content
Top
Published in: Journal of NeuroEngineering and Rehabilitation 1/2013

Open Access 01-12-2013 | Research

Cross recurrence quantification analysis of precision grip following peripheral median nerve block

Authors: Ke Li, Zong-Ming Li

Published in: Journal of NeuroEngineering and Rehabilitation | Issue 1/2013

Login to get access

Abstract

Background

Precision grip by the thumb and index finger is vulnerable to sensorimotor deficits. Traditional biomechanical parameters offer limited insight into the dynamical coordination between digits during precision grip. In this study, the thumb and index finger were viewed as “coupled systems”, and a cross recurrence quantification analysis (CRQA) was used to examine the changes of interdigit dynamics and synchronization caused by peripheral median nerve block.

Methods

Seven subjects performed a precision grip by holding an instrumented handle before and after median nerve block at the wrist. The forces and the torques at each digit-handle interface were recorded with two six-component transducers. For CRQA, the percentage of recurrence rate (%RR), percentage of determinism (%DET), longest diagonal line (Lmax) and percentage of laminarity (%LAM) were computed for the force, torque and center of pressure (COP) signals. Phase synchronization of the thumb and index finger was examined based on the τ-recurrence rate. Paired t-tests and Wilcoxon signed-rank tests were used for statistical comparisons. The twin-surrogate hypothesis test was used to examine phase synchronization.

Results

Nerve block led to significant increases (p < 0.05) for %DET, Lmax and %LAM in all components of force, torque, and COP. Only the normal force met the conditions of phase synchronization for all successfully completed pre- and post-block grasping trials. The probability of synchronization with larger time lags (τ > 0.1 s) increased after nerve block. The percentage of trials that the thumb led the index finger increased from 52% (pre-block) to 86% (post-block).

Conclusions

Nerve block caused more deterministic structures in force, torque and COP when the thumb interacted with the index finger. A compensatory mechanism may be responsible for this change. Phase synchronization between the opposite normal forces exerted by the thumb and index finger would be an essential dynamical principle for a precision grip. The nerve block resulted in an increased interdigit phase delay and increased probability that the thumb leads the index finger. The CRQA provides an effective tool to examine interdigit coordination during precision grip and has the potential for clinical evaluation of hand dysfunction.
Appendix
Available only for authorised users
Literature
1.
go back to reference Fellows SJ, Noth J, Schwarz M: Precision grip and Parkinson’s disease. Brain 1998, 121: 1771-1784. 10.1093/brain/121.9.1771CrossRefPubMed Fellows SJ, Noth J, Schwarz M: Precision grip and Parkinson’s disease. Brain 1998, 121: 1771-1784. 10.1093/brain/121.9.1771CrossRefPubMed
2.
go back to reference Hermsdorfer J, Hagl E, Nowak DA, Marquardt C: Grip force control during object manipulation in cerebral stroke. Clin Neurophysiol 2003, 114: 915-929. 10.1016/S1388-2457(03)00042-7CrossRefPubMed Hermsdorfer J, Hagl E, Nowak DA, Marquardt C: Grip force control during object manipulation in cerebral stroke. Clin Neurophysiol 2003, 114: 915-929. 10.1016/S1388-2457(03)00042-7CrossRefPubMed
3.
go back to reference Nowak DA, Hermsdorfer J, Marquardt C, Topka H: Moving objects with clumsy fingers: how predictive is grip force control in patients with impaired manual sensibility? Clin Neurophysiol 2003, 114: 472-487. 10.1016/S1388-2457(02)00386-3CrossRefPubMed Nowak DA, Hermsdorfer J, Marquardt C, Topka H: Moving objects with clumsy fingers: how predictive is grip force control in patients with impaired manual sensibility? Clin Neurophysiol 2003, 114: 472-487. 10.1016/S1388-2457(02)00386-3CrossRefPubMed
4.
go back to reference Kozin SH, Porter S, Clark P, Thoder JJ: The contribution of the intrinsic muscles to grip and pinch strength. J Hand Surg Am 1999, 24: 64-72. 10.1053/jhsu.1999.jhsu24a0064CrossRefPubMed Kozin SH, Porter S, Clark P, Thoder JJ: The contribution of the intrinsic muscles to grip and pinch strength. J Hand Surg Am 1999, 24: 64-72. 10.1053/jhsu.1999.jhsu24a0064CrossRefPubMed
6.
go back to reference Li ZM, Nimbarte AD: Peripheral median nerve block impairs precision pinch movement. Clin Neurophysiol 2006, 117: 1941-1948. 10.1016/j.clinph.2006.06.005CrossRefPubMed Li ZM, Nimbarte AD: Peripheral median nerve block impairs precision pinch movement. Clin Neurophysiol 2006, 117: 1941-1948. 10.1016/j.clinph.2006.06.005CrossRefPubMed
7.
go back to reference Cole KJ, Steyers CM, Graybill EK: The effects of graded compression of the median nerve in the carpal canal on grip force. Exp Brain Res 2003, 148: 150-157.PubMed Cole KJ, Steyers CM, Graybill EK: The effects of graded compression of the median nerve in the carpal canal on grip force. Exp Brain Res 2003, 148: 150-157.PubMed
8.
go back to reference Dun S, Kaufmann RA, Li ZM: Lower median nerve block impairs precision grip. J Electromyogr Kinesiol 2007, 17: 348-354. 10.1016/j.jelekin.2006.02.002CrossRefPubMed Dun S, Kaufmann RA, Li ZM: Lower median nerve block impairs precision grip. J Electromyogr Kinesiol 2007, 17: 348-354. 10.1016/j.jelekin.2006.02.002CrossRefPubMed
9.
go back to reference Burstedt MK, Edin BB, Johansson RS: Coordination of fingertip forces during human manipulation can emerge from independent neural networks controlling each engaged digit. Exp Brain Res 1997, 117: 67-79. 10.1007/s002210050200CrossRefPubMed Burstedt MK, Edin BB, Johansson RS: Coordination of fingertip forces during human manipulation can emerge from independent neural networks controlling each engaged digit. Exp Brain Res 1997, 117: 67-79. 10.1007/s002210050200CrossRefPubMed
10.
go back to reference Del Santo F, Gelli F, Mazzocchio R, Rossi A: Recurrence quantification analysis of surface EMG detects changes in motor unit synchronization induced by recurrent inhibition. Exp Brain Res 2007, 178: 308-315. 10.1007/s00221-006-0734-xCrossRefPubMed Del Santo F, Gelli F, Mazzocchio R, Rossi A: Recurrence quantification analysis of surface EMG detects changes in motor unit synchronization induced by recurrent inhibition. Exp Brain Res 2007, 178: 308-315. 10.1007/s00221-006-0734-xCrossRefPubMed
11.
go back to reference Li K, Hogrel JY, Duchene J, Hewson DJ: Analysis of fatigue and tremor during sustained maximal grip contractions using Hilbert-Huang Transformation. Med Eng Phys 2012, 34: 832-840. 10.1016/j.medengphy.2011.09.025CrossRefPubMed Li K, Hogrel JY, Duchene J, Hewson DJ: Analysis of fatigue and tremor during sustained maximal grip contractions using Hilbert-Huang Transformation. Med Eng Phys 2012, 34: 832-840. 10.1016/j.medengphy.2011.09.025CrossRefPubMed
12.
go back to reference Sylos Labini F, Meli A, Ivanenko YP, Tufarelli D: Recurrence quantification analysis of gait in normal and hypovestibular subjects. Gait Posture 2011, 35: 48-55.CrossRef Sylos Labini F, Meli A, Ivanenko YP, Tufarelli D: Recurrence quantification analysis of gait in normal and hypovestibular subjects. Gait Posture 2011, 35: 48-55.CrossRef
13.
go back to reference Marwan N, Romano MC, Thiel M, Kurths J: Recurrence plots for the analysis of complex systems. Phys Rep 2007, 438: 237-329. 10.1016/j.physrep.2006.11.001CrossRef Marwan N, Romano MC, Thiel M, Kurths J: Recurrence plots for the analysis of complex systems. Phys Rep 2007, 438: 237-329. 10.1016/j.physrep.2006.11.001CrossRef
14.
go back to reference Webber CL Jr, Zbilut JP: Dynamical assessment of physiological systems and states using recurrence plot strategies. J Appl Physiol 1994, 76: 965-973.PubMed Webber CL Jr, Zbilut JP: Dynamical assessment of physiological systems and states using recurrence plot strategies. J Appl Physiol 1994, 76: 965-973.PubMed
15.
go back to reference Romano MC, Thiel M, Kurths J, Kiss IZ, Hudson JL: Detection of synchronization for non-phase-coherent and non-stationary data. Europhys Lett 2005, 71: 466-472. 10.1209/epl/i2005-10095-1CrossRef Romano MC, Thiel M, Kurths J, Kiss IZ, Hudson JL: Detection of synchronization for non-phase-coherent and non-stationary data. Europhys Lett 2005, 71: 466-472. 10.1209/epl/i2005-10095-1CrossRef
16.
go back to reference Quian Quiroga R, Kreuz T, Grassberger P: Event synchronization: a simple and fast method to measure synchronicity and time delay patterns. Phys Rev E Stat Nonlin Soft Matter Phys 2002, 66: 041904.CrossRefPubMed Quian Quiroga R, Kreuz T, Grassberger P: Event synchronization: a simple and fast method to measure synchronicity and time delay patterns. Phys Rev E Stat Nonlin Soft Matter Phys 2002, 66: 041904.CrossRefPubMed
17.
go back to reference Gross J, Tass PA, Salenius S, Hari R, Freund HJ, Schnitzler A: Cortico-muscular synchronization during isometric muscle contraction in humans as revealed by magnetoencephalography. J Physiol 2000, 527: 623-631. 10.1111/j.1469-7793.2000.00623.xPubMedCentralCrossRefPubMed Gross J, Tass PA, Salenius S, Hari R, Freund HJ, Schnitzler A: Cortico-muscular synchronization during isometric muscle contraction in humans as revealed by magnetoencephalography. J Physiol 2000, 527: 623-631. 10.1111/j.1469-7793.2000.00623.xPubMedCentralCrossRefPubMed
18.
go back to reference Coombes SA, Gamble KM, Cauraugh JH, Janelle CM: Emotional states alter force control during a feedback occluded motor task. Emotion 2008, 8: 104-113.CrossRefPubMed Coombes SA, Gamble KM, Cauraugh JH, Janelle CM: Emotional states alter force control during a feedback occluded motor task. Emotion 2008, 8: 104-113.CrossRefPubMed
19.
go back to reference Cluff T, Boulet J, Balasubramaniam R: Learning a stick-balancing task involves task-specific coupling between posture and hand displacements. Exp Brain Res 2011, 213: 15-25. 10.1007/s00221-011-2768-yCrossRefPubMed Cluff T, Boulet J, Balasubramaniam R: Learning a stick-balancing task involves task-specific coupling between posture and hand displacements. Exp Brain Res 2011, 213: 15-25. 10.1007/s00221-011-2768-yCrossRefPubMed
20.
go back to reference Cluff T, Riley MA, Balasubramaniam R: Dynamical structure of hand trajectories during pole balancing. Neurosci Lett 2009, 464: 88-92. 10.1016/j.neulet.2009.08.039CrossRefPubMed Cluff T, Riley MA, Balasubramaniam R: Dynamical structure of hand trajectories during pole balancing. Neurosci Lett 2009, 464: 88-92. 10.1016/j.neulet.2009.08.039CrossRefPubMed
21.
go back to reference Iwanski J, Bradley E: Recurrence plot analysis: to embed or not to embed? Chaos 1998, 8: 861-871. 10.1063/1.166372CrossRefPubMed Iwanski J, Bradley E: Recurrence plot analysis: to embed or not to embed? Chaos 1998, 8: 861-871. 10.1063/1.166372CrossRefPubMed
23.
go back to reference Li KJ, Gao PX, Zhang LS: Synchronization of sunspot numbers and sunspot areas. Sol Phys 2009, 255: 289-300. 10.1007/s11207-009-9328-7CrossRef Li KJ, Gao PX, Zhang LS: Synchronization of sunspot numbers and sunspot areas. Sol Phys 2009, 255: 289-300. 10.1007/s11207-009-9328-7CrossRef
24.
go back to reference Johansson RS, Cole KJ: Sensory-motor coordination during grasping and manipulative actions. Curr Opin Neurobiol 1992, 2: 815-823. 10.1016/0959-4388(92)90139-CCrossRefPubMed Johansson RS, Cole KJ: Sensory-motor coordination during grasping and manipulative actions. Curr Opin Neurobiol 1992, 2: 815-823. 10.1016/0959-4388(92)90139-CCrossRefPubMed
25.
go back to reference Schmit JM, Riley MA, Dalvi A, Sahay A, Shear PK, Shockley KD, Pun RY: Deterministic center of pressure patterns characterize postural instability in Parkinson’s disease. Exp Brain Res 2006, 168: 357-367. 10.1007/s00221-005-0094-yCrossRefPubMed Schmit JM, Riley MA, Dalvi A, Sahay A, Shear PK, Shockley KD, Pun RY: Deterministic center of pressure patterns characterize postural instability in Parkinson’s disease. Exp Brain Res 2006, 168: 357-367. 10.1007/s00221-005-0094-yCrossRefPubMed
26.
go back to reference Javorka M, Trunkvalterova Z, Tonhajzerova I, Lazarova Z, Javorkova J, Javorka K: Recurrences in heart rate dynamics are changed in patients with diabetes mellitus. Clin Physiol Funct Imaging 2008, 28: 326-331. 10.1111/j.1475-097X.2008.00813.xCrossRefPubMed Javorka M, Trunkvalterova Z, Tonhajzerova I, Lazarova Z, Javorkova J, Javorka K: Recurrences in heart rate dynamics are changed in patients with diabetes mellitus. Clin Physiol Funct Imaging 2008, 28: 326-331. 10.1111/j.1475-097X.2008.00813.xCrossRefPubMed
27.
go back to reference Li K, Hewson DJ, Snoussi H, Duchêne J, Hogrel J-Y: Recurrence quantification analysis of sustained sub-maximal grip contractions in patients with various metabolic muscle disorders. Biomed Signal Process Contr 2011, 6: 70-76. 10.1016/j.bspc.2010.10.001CrossRef Li K, Hewson DJ, Snoussi H, Duchêne J, Hogrel J-Y: Recurrence quantification analysis of sustained sub-maximal grip contractions in patients with various metabolic muscle disorders. Biomed Signal Process Contr 2011, 6: 70-76. 10.1016/j.bspc.2010.10.001CrossRef
28.
go back to reference Hasegawa Y, Kasai T, Tsuji T, Yahagi S: Further insight into the task-dependent excitability of motor evoked potentials in first dorsal interosseous muscle in humans. Exp Brain Res 2001, 140: 387-396. 10.1007/s002210100842CrossRefPubMed Hasegawa Y, Kasai T, Tsuji T, Yahagi S: Further insight into the task-dependent excitability of motor evoked potentials in first dorsal interosseous muscle in humans. Exp Brain Res 2001, 140: 387-396. 10.1007/s002210100842CrossRefPubMed
29.
go back to reference Kozin SH: The anatomy of the recurrent branch of the median nerve. J Hand Surg Am 1998, 23: 852-858. 10.1016/S0363-5023(98)80162-7CrossRefPubMed Kozin SH: The anatomy of the recurrent branch of the median nerve. J Hand Surg Am 1998, 23: 852-858. 10.1016/S0363-5023(98)80162-7CrossRefPubMed
Metadata
Title
Cross recurrence quantification analysis of precision grip following peripheral median nerve block
Authors
Ke Li
Zong-Ming Li
Publication date
01-12-2013
Publisher
BioMed Central
Published in
Journal of NeuroEngineering and Rehabilitation / Issue 1/2013
Electronic ISSN: 1743-0003
DOI
https://doi.org/10.1186/1743-0003-10-28

Other articles of this Issue 1/2013

Journal of NeuroEngineering and Rehabilitation 1/2013 Go to the issue