Skip to main content
Top
Published in: Gut Pathogens 1/2021

Open Access 01-12-2021 | Crohn's Disease | Research

Transcriptome-wide association study identified candidate genes associated with gut microbiota

Authors: Chuyu Pan, Yujie Ning, Yumeng Jia, Shiqiang Cheng, Yan Wen, Xuena Yang, Peilin Meng, Chun’e Li, Huijie Zhang, Yujing Chen, Jingxi Zhang, Zhen Zhang, Feng Zhang

Published in: Gut Pathogens | Issue 1/2021

Login to get access

Abstract

Background

Gut microbiota is closely associated with host health and disease occurrence. Host genetic factor plays an important role in shaping gut microbial communities. The specific mechanism of host-regulated gene expression affecting gut microbiota has not been elucidated yet. Here we conducted a transcriptome-wide association study (TWAS) for gut microbiota by leveraging expression imputation from large-scale GWAS data sets.

Results

TWAS detected multiple tissue-specific candidate genes for gut microbiota, such as FUT2 for genus Bifidobacterium in transverse colon (PPERM.ANL = 1.68 × 10–3) and SFTPD for an unclassified genus of Proteobacteria in transverse colon (PPERM.ANL = 5.69 × 10–3). Fine mapping replicated 3 candidate genes in TWAS, such as HELLS for Streptococcus (PIP = 0.685) in sigmoid colon, ANO7 for Erysipelotrichaceae (PIP = 0.449) in sigmoid colon. Functional analyses detected 94 significant GO terms and 11 pathways for various taxa in total, such as GO_NUCLEOSIDE_DIPHOSPHATASE_ACTIVITY for Butyrivibrio (FDR P = 1.30 × 10–4), KEGG_RENIN_ANGIOTENSIN_SYSTEM for Anaerostipes (FDR P = 3.16 × 10–2). Literature search results showed 12 genes prioritized by TWAS were associated with 12 diseases. For instance, SFTPD for an unclassified genus of Proteobacteria was related to atherosclerosis, and FUT2 for Bifidobacterium was associated with Crohn’s disease.

Conclusions

Our study results provided novel insights for understanding the genetic mechanism of gut microbiota, and attempted to provide clues for revealing the influence of genetic factors on gut microbiota for the occurrence and development of diseases.
Appendix
Available only for authorised users
Literature
2.
go back to reference Hagan T, Cortese M, Rouphael N, Boudreau C, Linde C, Maddur MS, et al. Antibiotics-driven gut microbiome perturbation alters immunity to vaccines in humans. Cell. 2019;178(6):1313-28e13.PubMedPubMedCentralCrossRef Hagan T, Cortese M, Rouphael N, Boudreau C, Linde C, Maddur MS, et al. Antibiotics-driven gut microbiome perturbation alters immunity to vaccines in humans. Cell. 2019;178(6):1313-28e13.PubMedPubMedCentralCrossRef
3.
go back to reference Plaza-Díaz J, Álvarez-Mercado AI, Ruiz-Marín CM, Reina-Pérez I, Pérez-Alonso AJ, Sánchez-Andujar MB, et al. Association of breast and gut microbiota dysbiosis and the risk of breast cancer: a case–control clinical study. BMC Cancer. 2019;19(1):495.PubMedPubMedCentralCrossRef Plaza-Díaz J, Álvarez-Mercado AI, Ruiz-Marín CM, Reina-Pérez I, Pérez-Alonso AJ, Sánchez-Andujar MB, et al. Association of breast and gut microbiota dysbiosis and the risk of breast cancer: a case–control clinical study. BMC Cancer. 2019;19(1):495.PubMedPubMedCentralCrossRef
4.
go back to reference Pulikkan J, Mazumder A, Grace T. Role of the gut microbiome in autism spectrum disorders. Adv Exp Med Biol. 2019;1118:253–69.PubMedCrossRef Pulikkan J, Mazumder A, Grace T. Role of the gut microbiome in autism spectrum disorders. Adv Exp Med Biol. 2019;1118:253–69.PubMedCrossRef
5.
go back to reference Fu J, Bonder MJ, Cenit MC, Tigchelaar EF, Maatman A, Dekens JA, et al. The gut microbiome contributes to a substantial proportion of the variation in blood lipids. Circ Res. 2015;117(9):817–24.PubMedPubMedCentralCrossRef Fu J, Bonder MJ, Cenit MC, Tigchelaar EF, Maatman A, Dekens JA, et al. The gut microbiome contributes to a substantial proportion of the variation in blood lipids. Circ Res. 2015;117(9):817–24.PubMedPubMedCentralCrossRef
6.
go back to reference Zhernakova A, Kurilshikov A, Bonder MJ, Tigchelaar EF, Schirmer M, Vatanen T, et al. Population-based metagenomics analysis reveals markers for gut microbiome composition and diversity. Science. 2016;352(6285):565–9.PubMedPubMedCentralCrossRef Zhernakova A, Kurilshikov A, Bonder MJ, Tigchelaar EF, Schirmer M, Vatanen T, et al. Population-based metagenomics analysis reveals markers for gut microbiome composition and diversity. Science. 2016;352(6285):565–9.PubMedPubMedCentralCrossRef
7.
go back to reference Lim MY, You HJ, Yoon HS, Kwon B, Lee JY, Lee S, et al. The effect of heritability and host genetics on the gut microbiota and metabolic syndrome. Gut. 2017;66(6):1031–8.PubMedCrossRef Lim MY, You HJ, Yoon HS, Kwon B, Lee JY, Lee S, et al. The effect of heritability and host genetics on the gut microbiota and metabolic syndrome. Gut. 2017;66(6):1031–8.PubMedCrossRef
8.
go back to reference Benson AK, Kelly SA, Legge R, Ma F, Low SJ, Kim J, et al. Individuality in gut microbiota composition is a complex polygenic trait shaped by multiple environmental and host genetic factors. Proc Natl Acad Sci USA. 2010;107(44):18933–8.PubMedPubMedCentralCrossRef Benson AK, Kelly SA, Legge R, Ma F, Low SJ, Kim J, et al. Individuality in gut microbiota composition is a complex polygenic trait shaped by multiple environmental and host genetic factors. Proc Natl Acad Sci USA. 2010;107(44):18933–8.PubMedPubMedCentralCrossRef
9.
go back to reference Bonder MJ, Kurilshikov A, Tigchelaar EF, Mujagic Z, Imhann F, Vila AV, et al. The effect of host genetics on the gut microbiome. Nat Genet. 2016;48(11):1407–12.PubMedCrossRef Bonder MJ, Kurilshikov A, Tigchelaar EF, Mujagic Z, Imhann F, Vila AV, et al. The effect of host genetics on the gut microbiome. Nat Genet. 2016;48(11):1407–12.PubMedCrossRef
10.
go back to reference Wainberg M, Sinnott-Armstrong N, Mancuso N, Barbeira AN, Knowles DA, Golan D, et al. Opportunities and challenges for transcriptome-wide association studies. Nat Genet. 2019;51(4):592–9.PubMedPubMedCentralCrossRef Wainberg M, Sinnott-Armstrong N, Mancuso N, Barbeira AN, Knowles DA, Golan D, et al. Opportunities and challenges for transcriptome-wide association studies. Nat Genet. 2019;51(4):592–9.PubMedPubMedCentralCrossRef
11.
go back to reference Westra HJ, Franke L. From genome to function by studying eQTLs. Biochim Biophys Acta. 2014;1842(10):1896–902.PubMedCrossRef Westra HJ, Franke L. From genome to function by studying eQTLs. Biochim Biophys Acta. 2014;1842(10):1896–902.PubMedCrossRef
12.
go back to reference Bosse Y. Genome-wide expression quantitative trait loci analysis in asthma. Curr Opin Allergy Clin Immunol. 2013;13(5):487–94.PubMedCrossRef Bosse Y. Genome-wide expression quantitative trait loci analysis in asthma. Curr Opin Allergy Clin Immunol. 2013;13(5):487–94.PubMedCrossRef
13.
go back to reference Gusev A, Ko A, Shi H, Bhatia G, Chung W, Penninx BW, et al. Integrative approaches for large-scale transcriptome-wide association studies. Nat Genet. 2016;48(3):245–52.PubMedPubMedCentralCrossRef Gusev A, Ko A, Shi H, Bhatia G, Chung W, Penninx BW, et al. Integrative approaches for large-scale transcriptome-wide association studies. Nat Genet. 2016;48(3):245–52.PubMedPubMedCentralCrossRef
14.
go back to reference Liao C, Laporte AD, Spiegelman D, Akcimen F, Joober R, Dion PA, et al. Transcriptome-wide association study of attention deficit hyperactivity disorder identifies associated genes and phenotypes. Nat Commun. 2019;10(1):4450.PubMedPubMedCentralCrossRef Liao C, Laporte AD, Spiegelman D, Akcimen F, Joober R, Dion PA, et al. Transcriptome-wide association study of attention deficit hyperactivity disorder identifies associated genes and phenotypes. Nat Commun. 2019;10(1):4450.PubMedPubMedCentralCrossRef
15.
go back to reference Zhong J, Jermusyk A, Wu L, Hoskins JW, Collins I, Mocci E, et al. A transcriptome-wide association study identifies novel candidate susceptibility genes for pancreatic cancer. J Natl Cancer Inst. 2020;112(10):1003–12.PubMedPubMedCentralCrossRef Zhong J, Jermusyk A, Wu L, Hoskins JW, Collins I, Mocci E, et al. A transcriptome-wide association study identifies novel candidate susceptibility genes for pancreatic cancer. J Natl Cancer Inst. 2020;112(10):1003–12.PubMedPubMedCentralCrossRef
16.
go back to reference Hughes DA, Bacigalupe R, Wang J, Rühlemann MC, Tito RY, Falony G, et al. Genome-wide associations of human gut microbiome variation and implications for causal inference analyses. Nat Microbiol. 2020;5(9):1079–87.PubMedPubMedCentralCrossRef Hughes DA, Bacigalupe R, Wang J, Rühlemann MC, Tito RY, Falony G, et al. Genome-wide associations of human gut microbiome variation and implications for causal inference analyses. Nat Microbiol. 2020;5(9):1079–87.PubMedPubMedCentralCrossRef
18.
go back to reference Mancuso N, Freund MK, Johnson R, Shi H, Kichaev G, Gusev A, et al. Probabilistic fine-mapping of transcriptome-wide association studies. Nat Genet. 2019;51(4):675–82.PubMedPubMedCentralCrossRef Mancuso N, Freund MK, Johnson R, Shi H, Kichaev G, Gusev A, et al. Probabilistic fine-mapping of transcriptome-wide association studies. Nat Genet. 2019;51(4):675–82.PubMedPubMedCentralCrossRef
19.
20.
go back to reference Liu X, Hou X, Zhou Y, Li Q, Kong F, Yan S, et al. Downregulation of the helicase lymphoid-specific (HELLS) gene impairs cell proliferation and induces cell cycle arrest in colorectal cancer cells. Onco Targets Ther. 2019;12:10153–63.PubMedPubMedCentralCrossRef Liu X, Hou X, Zhou Y, Li Q, Kong F, Yan S, et al. Downregulation of the helicase lymphoid-specific (HELLS) gene impairs cell proliferation and induces cell cycle arrest in colorectal cancer cells. Onco Targets Ther. 2019;12:10153–63.PubMedPubMedCentralCrossRef
21.
go back to reference Sorensen GL, Bladbjerg EM, Steffensen R, Tan Q, Madsen J, Drivsholm T, et al. Association between the surfactant protein D (SFTPD) gene and subclinical carotid artery atherosclerosis. Atherosclerosis. 2016;246:7–12.PubMedCrossRef Sorensen GL, Bladbjerg EM, Steffensen R, Tan Q, Madsen J, Drivsholm T, et al. Association between the surfactant protein D (SFTPD) gene and subclinical carotid artery atherosclerosis. Atherosclerosis. 2016;246:7–12.PubMedCrossRef
22.
go back to reference Ye BD, Kim BM, Jung S, Lee HS, Hong M, Kim K, et al. Association of FUT2 and ABO with Croh’s disease in Koreans. J Gastroenterol Hepatol. 2020;35(1):104–9.PubMedCrossRef Ye BD, Kim BM, Jung S, Lee HS, Hong M, Kim K, et al. Association of FUT2 and ABO with Croh’s disease in Koreans. J Gastroenterol Hepatol. 2020;35(1):104–9.PubMedCrossRef
23.
go back to reference Lamas B, Richard ML, Leducq V, Pham HP, Michel ML, Da Costa G, et al. CARD9 impacts colitis by altering gut microbiota metabolism of tryptophan into aryl hydrocarbon receptor ligands. Nat Med. 2016;22(6):598–605.PubMedPubMedCentralCrossRef Lamas B, Richard ML, Leducq V, Pham HP, Michel ML, Da Costa G, et al. CARD9 impacts colitis by altering gut microbiota metabolism of tryptophan into aryl hydrocarbon receptor ligands. Nat Med. 2016;22(6):598–605.PubMedPubMedCentralCrossRef
24.
go back to reference Ruan JW, Statt S, Huang CT, Tsai YT, Kuo CC, Chan HL, et al. Dual-specificity phosphatase 6 deficiency regulates gut microbiome and transcriptome response against diet-induced obesity in mice. Nat Microbiol. 2016;2:16220.PubMedCrossRef Ruan JW, Statt S, Huang CT, Tsai YT, Kuo CC, Chan HL, et al. Dual-specificity phosphatase 6 deficiency regulates gut microbiome and transcriptome response against diet-induced obesity in mice. Nat Microbiol. 2016;2:16220.PubMedCrossRef
25.
go back to reference Vijay-Kumar M, Aitken JD, Carvalho FA, Cullender TC, Mwangi S, Srinivasan S, et al. Metabolic syndrome and altered gut microbiota in mice lacking Toll-like receptor 5. Science. 2010;328(5975):228–31. Vijay-Kumar M, Aitken JD, Carvalho FA, Cullender TC, Mwangi S, Srinivasan S, et al. Metabolic syndrome and altered gut microbiota in mice lacking Toll-like receptor 5. Science. 2010;328(5975):228–31.
26.
go back to reference Choi YJ, Yoo NJ, Lee SH. Mutation of HELLS, a chromatin remodeling gene, gastric and colorectal cancers. Pathol Oncol Res. 2015;21(3):851–2.PubMedCrossRef Choi YJ, Yoo NJ, Lee SH. Mutation of HELLS, a chromatin remodeling gene, gastric and colorectal cancers. Pathol Oncol Res. 2015;21(3):851–2.PubMedCrossRef
27.
go back to reference Gagnière J, Raisch J, Veziant J, Barnich N, Bonnet R, Buc E, et al. Gut microbiota imbalance and colorectal cancer. World J Gastroenterol. 2016;22(2):501–18.PubMedPubMedCentralCrossRef Gagnière J, Raisch J, Veziant J, Barnich N, Bonnet R, Buc E, et al. Gut microbiota imbalance and colorectal cancer. World J Gastroenterol. 2016;22(2):501–18.PubMedPubMedCentralCrossRef
29.
go back to reference Kaikkonen E, Rantapero T, Zhang Q, Taimen P, Laitinen V, Kallajoki M, et al. ANO7 is associated with aggressive prostate cancer. Int J Cancer. 2018;143(10):2479–87.PubMedPubMedCentralCrossRef Kaikkonen E, Rantapero T, Zhang Q, Taimen P, Laitinen V, Kallajoki M, et al. ANO7 is associated with aggressive prostate cancer. Int J Cancer. 2018;143(10):2479–87.PubMedPubMedCentralCrossRef
30.
go back to reference Kalinen S, Kallonen T, Gunell M, Ettala O, Jambor I, Knaapila J, et al. Gut microbiota signatures associate with prostate cancer risk. medRxiv. 2021;80:134. Kalinen S, Kallonen T, Gunell M, Ettala O, Jambor I, Knaapila J, et al. Gut microbiota signatures associate with prostate cancer risk. medRxiv. 2021;80:134.
31.
go back to reference Sfanos KS, Markowski MC, Peiffer LB, Ernst SE, White JR, Pienta KJ, et al. Compositional differences in gastrointestinal microbiota in prostate cancer patients treated with androgen axis-targeted therapies. Prostate Cancer Prostatic Dis. 2018;21(4):539–48.PubMedPubMedCentralCrossRef Sfanos KS, Markowski MC, Peiffer LB, Ernst SE, White JR, Pienta KJ, et al. Compositional differences in gastrointestinal microbiota in prostate cancer patients treated with androgen axis-targeted therapies. Prostate Cancer Prostatic Dis. 2018;21(4):539–48.PubMedPubMedCentralCrossRef
32.
go back to reference Marco A. De Velasco KS, Yurie Kura, Eri Banno, Naomi Ando, Noriko Sako, Kazuhiro Yoshikawa, Kazuto Nishio, Hirotsugu Uemura, editor Abstract 3340: Prostate cancer alters gut microbiota in mice. AACR Annual Meeting; 2020; Philadelphia. Marco A. De Velasco KS, Yurie Kura, Eri Banno, Naomi Ando, Noriko Sako, Kazuhiro Yoshikawa, Kazuto Nishio, Hirotsugu Uemura, editor Abstract 3340: Prostate cancer alters gut microbiota in mice. AACR Annual Meeting; 2020; Philadelphia.
33.
go back to reference Ferrer-Admetlla A, Sikora M, Laayouni H, Esteve A, Roubinet F, Blancher A, et al. A natural history of FUT2 polymorphism in humans. Mol Biol Evol. 2009;26(9):1993–2003.CrossRef Ferrer-Admetlla A, Sikora M, Laayouni H, Esteve A, Roubinet F, Blancher A, et al. A natural history of FUT2 polymorphism in humans. Mol Biol Evol. 2009;26(9):1993–2003.CrossRef
34.
go back to reference Tong M, McHardy I, Ruegger P, Goudarzi M, Kashyap PC, Haritunians T, et al. Reprograming of gut microbiome energy metabolism by the FUT2 Crohn’s disease risk polymorphism. ISME J. 2014;8(11):2193–206.PubMedPubMedCentralCrossRef Tong M, McHardy I, Ruegger P, Goudarzi M, Kashyap PC, Haritunians T, et al. Reprograming of gut microbiome energy metabolism by the FUT2 Crohn’s disease risk polymorphism. ISME J. 2014;8(11):2193–206.PubMedPubMedCentralCrossRef
35.
go back to reference McGovern DP, Jones MR, Taylor KD, Marciante K, Yan X, Dubinsky M, et al. Fucosyltransferase 2 (FUT2) non-secretor status is associated with Crohn’s disease. Hum Mol Genet. 2010;19(17):3468–76.PubMedPubMedCentralCrossRef McGovern DP, Jones MR, Taylor KD, Marciante K, Yan X, Dubinsky M, et al. Fucosyltransferase 2 (FUT2) non-secretor status is associated with Crohn’s disease. Hum Mol Genet. 2010;19(17):3468–76.PubMedPubMedCentralCrossRef
36.
go back to reference Rausch P, Rehman A, Künzel S, Häsler R, Ott SJ, Schreiber S, et al. Colonic mucosa-associated microbiota is influenced by an interaction of Crohn disease and FUT2 (Secretor) genotype. Proc Natl Acad Sci USA. 2011;108(47):19030–5.PubMedPubMedCentralCrossRef Rausch P, Rehman A, Künzel S, Häsler R, Ott SJ, Schreiber S, et al. Colonic mucosa-associated microbiota is influenced by an interaction of Crohn disease and FUT2 (Secretor) genotype. Proc Natl Acad Sci USA. 2011;108(47):19030–5.PubMedPubMedCentralCrossRef
37.
go back to reference Wacklin P, Tuimala J, Nikkilä J, Sebastian T, Mäkivuokko H, Alakulppi N, et al. Faecal microbiota composition in adults is associated with the FUT2 gene determining the secretor status. PLoS ONE. 2014;9(4):e94863.PubMedPubMedCentralCrossRef Wacklin P, Tuimala J, Nikkilä J, Sebastian T, Mäkivuokko H, Alakulppi N, et al. Faecal microbiota composition in adults is associated with the FUT2 gene determining the secretor status. PLoS ONE. 2014;9(4):e94863.PubMedPubMedCentralCrossRef
38.
go back to reference Rao S, Shi M, Han X, Lam MHB, Chien WT, Zhou K, et al. Genome-wide copy number variation-, validation- and screening study implicates a new copy number polymorphism associated with suicide attempts in major depressive disorder. Gene. 2020;755:144901.PubMedCrossRef Rao S, Shi M, Han X, Lam MHB, Chien WT, Zhou K, et al. Genome-wide copy number variation-, validation- and screening study implicates a new copy number polymorphism associated with suicide attempts in major depressive disorder. Gene. 2020;755:144901.PubMedCrossRef
39.
go back to reference Rausch P, Künzel S, Suwandi A, Grassl GA, Rosenstiel P, Baines JF. Multigenerational influences of the Fut2 gene on the dynamics of the gut microbiota in mice. Front Microbiol. 2017;8:991.PubMedPubMedCentralCrossRef Rausch P, Künzel S, Suwandi A, Grassl GA, Rosenstiel P, Baines JF. Multigenerational influences of the Fut2 gene on the dynamics of the gut microbiota in mice. Front Microbiol. 2017;8:991.PubMedPubMedCentralCrossRef
40.
go back to reference Wacklin P, Mäkivuokko H, Alakulppi N, Nikkilä J, Tenkanen H, Räbinä J, et al. Secretor genotype (FUT2 gene) is strongly associated with the composition of Bifidobacteria in the human intestine. PLoS ONE. 2011;6(5):e20113.PubMedPubMedCentralCrossRef Wacklin P, Mäkivuokko H, Alakulppi N, Nikkilä J, Tenkanen H, Räbinä J, et al. Secretor genotype (FUT2 gene) is strongly associated with the composition of Bifidobacteria in the human intestine. PLoS ONE. 2011;6(5):e20113.PubMedPubMedCentralCrossRef
41.
go back to reference Kumbhare SV, Kumar H, Chowdhury SP, Dhotre DP, Endo A, Mättö J, et al. A cross-sectional comparative study of gut bacterial community of Indian and Finnish children. Sci Rep. 2017;7(1):10555.PubMedPubMedCentralCrossRef Kumbhare SV, Kumar H, Chowdhury SP, Dhotre DP, Endo A, Mättö J, et al. A cross-sectional comparative study of gut bacterial community of Indian and Finnish children. Sci Rep. 2017;7(1):10555.PubMedPubMedCentralCrossRef
42.
go back to reference Neurath MF. Host-microbiota interactions in inflammatory bowel disease. Nat Rev Gastroenterol Hepatol. 2020;17(2):76–7.PubMedCrossRef Neurath MF. Host-microbiota interactions in inflammatory bowel disease. Nat Rev Gastroenterol Hepatol. 2020;17(2):76–7.PubMedCrossRef
43.
go back to reference Holmskov U, Thiel S, Jensenius JC. Collections and ficolins: humoral lectins of the innate immune defense. Annu Rev Immunol. 2003;21:547–78.PubMedCrossRef Holmskov U, Thiel S, Jensenius JC. Collections and ficolins: humoral lectins of the innate immune defense. Annu Rev Immunol. 2003;21:547–78.PubMedCrossRef
44.
go back to reference Nexoe AB, Pilecki B, Von Huth S, Husby S, Pedersen AA, Detlefsen S, et al. Colonic epithelial surfactant protein D expression correlates with inflammation in clinical colonic inflammatory bowel disease. Inflamm Bowel Dis. 2019;25(8):1349–56.PubMedCrossRef Nexoe AB, Pilecki B, Von Huth S, Husby S, Pedersen AA, Detlefsen S, et al. Colonic epithelial surfactant protein D expression correlates with inflammation in clinical colonic inflammatory bowel disease. Inflamm Bowel Dis. 2019;25(8):1349–56.PubMedCrossRef
45.
go back to reference Matsuoka K, Kanai T. The gut microbiota and inflammatory bowel disease. Semin Immunopathol. 2015;37(1):47–55.PubMedCrossRef Matsuoka K, Kanai T. The gut microbiota and inflammatory bowel disease. Semin Immunopathol. 2015;37(1):47–55.PubMedCrossRef
46.
go back to reference Hirano Y, Choi A, Tsuruta M, Jaw JE, Oh Y, Ngan D, et al. Surfactant protein-D deficiency suppresses systemic inflammation and reduces atherosclerosis in ApoE knockout mice. Cardiovasc Res. 2017;113(10):1208–18.PubMedCrossRef Hirano Y, Choi A, Tsuruta M, Jaw JE, Oh Y, Ngan D, et al. Surfactant protein-D deficiency suppresses systemic inflammation and reduces atherosclerosis in ApoE knockout mice. Cardiovasc Res. 2017;113(10):1208–18.PubMedCrossRef
47.
go back to reference Barrow AD, Palarasah Y, Bugatti M, Holehouse AS, Byers DE, Holtzman MJ, et al. OSCAR is a receptor for surfactant protein D that activates TNF-alpha release from human CCR2+ inflammatory monocytes. J Immunol. 2015;194(7):3317–26.PubMedCrossRef Barrow AD, Palarasah Y, Bugatti M, Holehouse AS, Byers DE, Holtzman MJ, et al. OSCAR is a receptor for surfactant protein D that activates TNF-alpha release from human CCR2+ inflammatory monocytes. J Immunol. 2015;194(7):3317–26.PubMedCrossRef
48.
go back to reference Hu F, Zhong Q, Gong J, Qin Y, Cui L, Yuan H. Serum surfactant protein D is associated with atherosclerosis of the carotid artery in patients on maintenance hemodialysis. Clin Lab. 2016;62(1–2):97–104.PubMed Hu F, Zhong Q, Gong J, Qin Y, Cui L, Yuan H. Serum surfactant protein D is associated with atherosclerosis of the carotid artery in patients on maintenance hemodialysis. Clin Lab. 2016;62(1–2):97–104.PubMed
49.
go back to reference Chistiakov DA, Melnichenko AA, Myasoedova VA, Grechko AV, Orekhov AN. Role of lipids and intraplaque hypoxia in the formation of neovascularization in atherosclerosis. Ann Med. 2017;49(8):661–77.PubMedCrossRef Chistiakov DA, Melnichenko AA, Myasoedova VA, Grechko AV, Orekhov AN. Role of lipids and intraplaque hypoxia in the formation of neovascularization in atherosclerosis. Ann Med. 2017;49(8):661–77.PubMedCrossRef
50.
go back to reference Sorensen GL. Surfactant protein d in respiratory and non-respiratory diseases. Front Med (Lausanne). 2018;5:18.CrossRef Sorensen GL. Surfactant protein d in respiratory and non-respiratory diseases. Front Med (Lausanne). 2018;5:18.CrossRef
51.
go back to reference Colmorten KB, Nexoe AB, Sorensen GL. The dual role of surfactant protein-D in vascular inflammation and development of cardiovascular disease. Front Immunol. 2019;10:2264.PubMedPubMedCentralCrossRef Colmorten KB, Nexoe AB, Sorensen GL. The dual role of surfactant protein-D in vascular inflammation and development of cardiovascular disease. Front Immunol. 2019;10:2264.PubMedPubMedCentralCrossRef
52.
go back to reference Klionsky DJ, Abdel-Aziz AK, Abdelfatah S, Abdellatif M, Abdoli A, Abel S, et al. Guidelines for the use and interpretation of assays for monitoring autophagy (4th edition)(1). Autophagy. 2021;17(1):1–382.CrossRef Klionsky DJ, Abdel-Aziz AK, Abdelfatah S, Abdellatif M, Abdoli A, Abel S, et al. Guidelines for the use and interpretation of assays for monitoring autophagy (4th edition)(1). Autophagy. 2021;17(1):1–382.CrossRef
53.
go back to reference Xue Y, Li Q, Park CG, Klena JD, Anisimov AP, Sun Z, et al. Proteus mirabilis targets atherosclerosis plaques in human coronary arteries via DC-SIGN (CD209). Front Immunol. 2020;11:579010.PubMedCrossRef Xue Y, Li Q, Park CG, Klena JD, Anisimov AP, Sun Z, et al. Proteus mirabilis targets atherosclerosis plaques in human coronary arteries via DC-SIGN (CD209). Front Immunol. 2020;11:579010.PubMedCrossRef
54.
go back to reference Li F, Zhang T, He Y, Gu W, Yang X, Zhao R, et al. Inflammation inhibition and gut microbiota regulation by TSG to combat atherosclerosis in ApoE(−/−) mice. J Ethnopharmacol. 2020;247:112232.PubMedCrossRef Li F, Zhang T, He Y, Gu W, Yang X, Zhao R, et al. Inflammation inhibition and gut microbiota regulation by TSG to combat atherosclerosis in ApoE(−/−) mice. J Ethnopharmacol. 2020;247:112232.PubMedCrossRef
55.
go back to reference Liu Y, Jiang Q, Liu Z, Shen S, Ai J, Zhu Y, et al. Alteration of gut microbiota relates to metabolic disorders in primary aldosteronism patients. Front Endocrinol (Lausanne). 2021;12:667951.PubMedPubMedCentralCrossRef Liu Y, Jiang Q, Liu Z, Shen S, Ai J, Zhu Y, et al. Alteration of gut microbiota relates to metabolic disorders in primary aldosteronism patients. Front Endocrinol (Lausanne). 2021;12:667951.PubMedPubMedCentralCrossRef
56.
go back to reference Bier A, Braun T, Khasbab R, Di Segni A, Grossman E, Haberman Y, et al. A high salt diet modulates the gut microbiota and short chain fatty acids production in a salt-sensitive hypertension rat model. Nutrients. 2018;10(9). Bier A, Braun T, Khasbab R, Di Segni A, Grossman E, Haberman Y, et al. A high salt diet modulates the gut microbiota and short chain fatty acids production in a salt-sensitive hypertension rat model. Nutrients. 2018;10(9).
57.
go back to reference Mazidi M, Shekoohi N, Covic A, Mikhailidis DP, Banach M. Adverse impact of Desulfovibrio spp. and beneficial role of Anaerostipes spp. on renal function: insights from a mendelian randomization analysis. Nutrients. 2020;12(8). Mazidi M, Shekoohi N, Covic A, Mikhailidis DP, Banach M. Adverse impact of Desulfovibrio spp. and beneficial role of Anaerostipes spp. on renal function: insights from a mendelian randomization analysis. Nutrients. 2020;12(8).
Metadata
Title
Transcriptome-wide association study identified candidate genes associated with gut microbiota
Authors
Chuyu Pan
Yujie Ning
Yumeng Jia
Shiqiang Cheng
Yan Wen
Xuena Yang
Peilin Meng
Chun’e Li
Huijie Zhang
Yujing Chen
Jingxi Zhang
Zhen Zhang
Feng Zhang
Publication date
01-12-2021
Publisher
BioMed Central
Published in
Gut Pathogens / Issue 1/2021
Electronic ISSN: 1757-4749
DOI
https://doi.org/10.1186/s13099-021-00474-w

Other articles of this Issue 1/2021

Gut Pathogens 1/2021 Go to the issue
Obesity Clinical Trial Summary

At a glance: The STEP trials

A round-up of the STEP phase 3 clinical trials evaluating semaglutide for weight loss in people with overweight or obesity.

Developed by: Springer Medicine

Highlights from the ACC 2024 Congress

Year in Review: Pediatric cardiology

Watch Dr. Anne Marie Valente present the last year's highlights in pediatric and congenital heart disease in the official ACC.24 Year in Review session.

Year in Review: Pulmonary vascular disease

The last year's highlights in pulmonary vascular disease are presented by Dr. Jane Leopold in this official video from ACC.24.

Year in Review: Valvular heart disease

Watch Prof. William Zoghbi present the last year's highlights in valvular heart disease from the official ACC.24 Year in Review session.

Year in Review: Heart failure and cardiomyopathies

Watch this official video from ACC.24. Dr. Biykem Bozkurt discuss last year's major advances in heart failure and cardiomyopathies.