Skip to main content
Top
Published in: Gut Pathogens 1/2021

Open Access 01-12-2021 | Crohn's Disease | Genome Report

Genome insights of Enterococcus raffinosus CX012922, isolated from the feces of a Crohn’s disease patient

Authors: Hailan Zhao, Yao Peng, Xunchao Cai, Yongjian Zhou, Youlian Zhou, Hongli Huang, Long Xu, Yuqiang Nie

Published in: Gut Pathogens | Issue 1/2021

Login to get access

Abstract

Background

Enterococcus raffinosus is one of the Enterococcus species that often cause nosocomial infections. To date, only one E. raffinosus genome has been completely assembled, and the genomic features have not been characterized. Here, we report the complete genome sequence of the strain CX012922, isolated from the feces of a Crohn’s disease patient, and perform a comparative genome analysis to the relevant Enterococcus spp. strains in silico.

Results

De novo assembly of the sequencing reads of the strain CX012922 generated a circular genome of 2.83 Mb and a circular megaplasmid of 0.98 Mb. Phylogenomic analysis revealed that the strain CX012922 belonged to the E. raffinosus species. By comparative genome analysis, we found that some strains previously identified as E. raffinosus or E. gilvus should be reclassified as novel species. Genome islands (GIs), virulence factors, and antibiotic genes were found in both the genome and the megaplasmid, although pathogenic genes were mainly encoded in the genome. A large proportion of the genes encoded in the megaplasmid were involved in substrate utilization, such as raffinose metabolism. Giant megaplasmids (~1 Mb) equipped with toxin-antitoxin (TA) systems generally formed symbiosis relationships with the genome of E. raffinosus strains.

Conclusions

Enterococcus spp. have a higher species-level diversity than is currently appreciated. The pathogenicity of E. raffinosus is mainly determined by the genome-encoded virulence factors, while the megaplasmid broadens the gene function pool. The symbiosis between the genome and the megaplasmids endows E. raffinosus with large genomic sizes as well as versatile gene functions, especially for their colonization, adaptation, virulence, and pathogenesis in the human gut.
Appendix
Available only for authorised users
Literature
1.
go back to reference Gilmore MS, Clewell DB, Courvalin P, Dunny GM, Murray BE, Rice LB. The enterococci: pathogenesis, molecular biology, and antibiotic resistance. Washington, DC: ASM press. 2002;10:439.CrossRef Gilmore MS, Clewell DB, Courvalin P, Dunny GM, Murray BE, Rice LB. The enterococci: pathogenesis, molecular biology, and antibiotic resistance. Washington, DC: ASM press. 2002;10:439.CrossRef
2.
go back to reference Arias CA, Murray, BE. The rise of the Enterococcus: beyond vancomycin resistance. Nat Rev Microbiol. 2012;10(4):266–278.CrossRef Arias CA, Murray, BE. The rise of the Enterococcus: beyond vancomycin resistance. Nat Rev Microbiol. 2012;10(4):266–278.CrossRef
3.
go back to reference Collins MD, Facklam RR, Farrow JA, Williamson R. Enterococcus raffinosus sp. nov., Enterococcus solitarius sp. nov. and Enterococcus pseudoavium sp. nov. FEMS Microbiol Lett. 1989;57(3):283–288.CrossRef Collins MD, Facklam RR, Farrow JA, Williamson R. Enterococcus raffinosus sp. nov., Enterococcus solitarius sp. nov. and Enterococcus pseudoavium sp. nov. FEMS Microbiol Lett. 1989;57(3):283–288.CrossRef
4.
go back to reference Choi HE, Lee JH, Sim YJ, Jeong HJ, Kim GC. Predictors of prolonged vancomycin-resistant enterococci colonization in acute stroke patients admitted to an intensive care unit: A retrospective cohort study. Medicine (Baltimore). 2021;100(32):e26913.CrossRef Choi HE, Lee JH, Sim YJ, Jeong HJ, Kim GC. Predictors of prolonged vancomycin-resistant enterococci colonization in acute stroke patients admitted to an intensive care unit: A retrospective cohort study. Medicine (Baltimore). 2021;100(32):e26913.CrossRef
5.
go back to reference Santimaleeworagun W, Changpradub D, Hemapanpairoa J, Thunyaharn S. Optimization of linezolid dosing regimens for treatment of vancomycin-resistant enterococci infection. Infect Chemother. 2021. Santimaleeworagun W, Changpradub D, Hemapanpairoa J, Thunyaharn S. Optimization of linezolid dosing regimens for treatment of vancomycin-resistant enterococci infection. Infect Chemother. 2021.
6.
go back to reference Mathur P, Hollowoa B, Lala N, Thanendrarajan S, Matin A, Kothari A, et al. Enterococcus raffinosus infection with atypical hemolytic uremic syndrome in a multiple myeloma patient after autologous stem cell transplant. Hematol Rep. 2017;9(3):7094.CrossRef Mathur P, Hollowoa B, Lala N, Thanendrarajan S, Matin A, Kothari A, et al. Enterococcus raffinosus infection with atypical hemolytic uremic syndrome in a multiple myeloma patient after autologous stem cell transplant. Hematol Rep. 2017;9(3):7094.CrossRef
7.
go back to reference Jolivet S, Fines-Guyon M, Nebbad B, Merle D, Le Pluart C, Brun-Buisson JW, et al. First nosocomial outbreak of vanA-type vancomycin-resistant Enterococcus raffinosus in France. J Hosp Infect. 2016;94(4):346–350.CrossRef Jolivet S, Fines-Guyon M, Nebbad B, Merle D, Le Pluart C, Brun-Buisson JW, et al. First nosocomial outbreak of vanA-type vancomycin-resistant Enterococcus raffinosus in France. J Hosp Infect. 2016;94(4):346–350.CrossRef
8.
go back to reference Samuel J, Coutinho H, Galloway A, Rennison ME, Kaufmann, Neil W. Glycopeptide-resistant Enterococcus raffinosus in a haematology unit: an unusual cause of a nosocomial outbreak. J Hosp Infect. 2008;70(3):294–296.CrossRef Samuel J, Coutinho H, Galloway A, Rennison ME, Kaufmann, Neil W. Glycopeptide-resistant Enterococcus raffinosus in a haematology unit: an unusual cause of a nosocomial outbreak. J Hosp Infect. 2008;70(3):294–296.CrossRef
9.
go back to reference Růžičková M., Vítězová, Kushkevych I. The characterization of Enterococcus genus: resistance mechanisms and inflammatory bowel disease. Open Med-warsaw. 2020;15(1):211–224.CrossRef Růžičková M., Vítězová, Kushkevych I. The characterization of Enterococcus genus: resistance mechanisms and inflammatory bowel disease. Open Med-warsaw. 2020;15(1):211–224.CrossRef
10.
go back to reference Lagier JC, Dubourg G, Million M, Cadoret F, Bilen M, Fenollar F, et al. Culturing the human microbiota and culturomics. Nat Rev Microbiol. 2018;16:540–550.CrossRef Lagier JC, Dubourg G, Million M, Cadoret F, Bilen M, Fenollar F, et al. Culturing the human microbiota and culturomics. Nat Rev Microbiol. 2018;16:540–550.CrossRef
11.
go back to reference Chang Y, Hou F, Pan Z, Huang ZY, Han N, Lei B, Deng HM, et al. Optimization of culturomics strategy in human fecal samples. Front Microbiol. 2019;10:2891.CrossRef Chang Y, Hou F, Pan Z, Huang ZY, Han N, Lei B, Deng HM, et al. Optimization of culturomics strategy in human fecal samples. Front Microbiol. 2019;10:2891.CrossRef
12.
go back to reference De Coster W, D’Hert S, Schultz DT, Cruts M, Van Broeckhoven C. NanoPack: visualizing and processing long-read sequencing data. Bioinformatics. 2018;34:2666–2669.CrossRef De Coster W, D’Hert S, Schultz DT, Cruts M, Van Broeckhoven C. NanoPack: visualizing and processing long-read sequencing data. Bioinformatics. 2018;34:2666–2669.CrossRef
13.
go back to reference Wick RR, Judd LM, Gorrie CL, Holt KE. Unicycler: Resolving bacterial genome assemblies from short and long sequencing reads. PLoS Comput Biol. 2017;13:e1005595.CrossRef Wick RR, Judd LM, Gorrie CL, Holt KE. Unicycler: Resolving bacterial genome assemblies from short and long sequencing reads. PLoS Comput Biol. 2017;13:e1005595.CrossRef
14.
go back to reference Parks DH, Chuvochina M, Waite DW, Rinke C, Skarshewski A, Chaumeil PA,et al. A standardized bacterial taxonomy based on genome phylogeny substantially revises the tree of life. Nat Biotechnol. 2018;36(10):996–1004.CrossRef Parks DH, Chuvochina M, Waite DW, Rinke C, Skarshewski A, Chaumeil PA,et al. A standardized bacterial taxonomy based on genome phylogeny substantially revises the tree of life. Nat Biotechnol. 2018;36(10):996–1004.CrossRef
15.
go back to reference Jain C, Rodriguez-R LM, Phillippy AM, Konstantinidis KT, Aluru S. High throughput ANI analysis of 90 K prokaryotic genomes reveals clear species boundaries. Nat Commun. 2018;9(1):1–8.CrossRef Jain C, Rodriguez-R LM, Phillippy AM, Konstantinidis KT, Aluru S. High throughput ANI analysis of 90 K prokaryotic genomes reveals clear species boundaries. Nat Commun. 2018;9(1):1–8.CrossRef
16.
go back to reference Zuo G, Hao B. CVTree3 web server for whole-genome-based and alignment-free prokaryotic phylogeny and taxonomy. Genom Proteom Bioinf. 2015;13:321–331.CrossRef Zuo G, Hao B. CVTree3 web server for whole-genome-based and alignment-free prokaryotic phylogeny and taxonomy. Genom Proteom Bioinf. 2015;13:321–331.CrossRef
17.
go back to reference Carattoli A, Zankar E, García-Fernández A, Voldby LM. Lund O, Villa L, et al. In silico detection and typing of plasmids using PlasmidFinder and plasmid multilocus sequence typing. Antimicrob Agents CH. 2014;58(7):3895–3903.CrossRef Carattoli A, Zankar E, García-Fernández A, Voldby LM. Lund O, Villa L, et al. In silico detection and typing of plasmids using PlasmidFinder and plasmid multilocus sequence typing. Antimicrob Agents CH. 2014;58(7):3895–3903.CrossRef
18.
go back to reference Tatiana T, Michael DC, Azat B, Vyacheslav C, Nawrocki EP, Zaslavsky L, et al. NCBI prokaryotic genome annotation pipeline. Nucleic Acids Res. 2016;44:6614–6624.CrossRef Tatiana T, Michael DC, Azat B, Vyacheslav C, Nawrocki EP, Zaslavsky L, et al. NCBI prokaryotic genome annotation pipeline. Nucleic Acids Res. 2016;44:6614–6624.CrossRef
19.
go back to reference Jaime HC, Kristoffer F, Pedro CL, Damian S, Juhl JL, Von Mering C, et al. Fast genome-wide functional annotation through orthology assignment by eggNOG-Mapper. Mol Biol Evol. 2016;34:2115–2122. Jaime HC, Kristoffer F, Pedro CL, Damian S, Juhl JL, Von Mering C, et al. Fast genome-wide functional annotation through orthology assignment by eggNOG-Mapper. Mol Biol Evol. 2016;34:2115–2122.
20.
go back to reference Bertelli C, Laird MR, Williams KP, Simon Fraser University Research Computing Group, Lau BY, Hoad G,et al. IslandViewer 4: expanded prediction of genomic islands for larger-scale datasets. Nucleic Acids Res. 2017;45:W30-W35.CrossRef Bertelli C, Laird MR, Williams KP, Simon Fraser University Research Computing Group, Lau BY, Hoad G,et al. IslandViewer 4: expanded prediction of genomic islands for larger-scale datasets. Nucleic Acids Res. 2017;45:W30-W35.CrossRef
21.
go back to reference Chun J, Oren A, Ventosa A, Christensen H, Arahal DR, da Costa, MS, e al. Proposed minimal standards for the use of genome data for the taxonomy of prokaryotes. Int J Syst Evol Microbiol. 2018;68(1):461–466.CrossRef Chun J, Oren A, Ventosa A, Christensen H, Arahal DR, da Costa, MS, e al. Proposed minimal standards for the use of genome data for the taxonomy of prokaryotes. Int J Syst Evol Microbiol. 2018;68(1):461–466.CrossRef
22.
go back to reference Meinhart A, Alonso JC, Strater N, Saenger W. Crystal structure of the plasmid maintenance system epsilon/zeta: functional mechanism of toxin zeta and inactivation by epsilon 2 zeta 2 complex formation. Proc Natl Acad Sci USA. 2003;100(4):1661–6.CrossRef Meinhart A, Alonso JC, Strater N, Saenger W. Crystal structure of the plasmid maintenance system epsilon/zeta: functional mechanism of toxin zeta and inactivation by epsilon 2 zeta 2 complex formation. Proc Natl Acad Sci USA. 2003;100(4):1661–6.CrossRef
23.
go back to reference Saramago M, Bárria C, Arraiano CM, Domingues S. Ribonucleases, antisense RNAs and the control of bacterial plasmids. Plasmid. 2015;78:26–36.CrossRef Saramago M, Bárria C, Arraiano CM, Domingues S. Ribonucleases, antisense RNAs and the control of bacterial plasmids. Plasmid. 2015;78:26–36.CrossRef
Metadata
Title
Genome insights of Enterococcus raffinosus CX012922, isolated from the feces of a Crohn’s disease patient
Authors
Hailan Zhao
Yao Peng
Xunchao Cai
Yongjian Zhou
Youlian Zhou
Hongli Huang
Long Xu
Yuqiang Nie
Publication date
01-12-2021
Publisher
BioMed Central
Published in
Gut Pathogens / Issue 1/2021
Electronic ISSN: 1757-4749
DOI
https://doi.org/10.1186/s13099-021-00468-8

Other articles of this Issue 1/2021

Gut Pathogens 1/2021 Go to the issue
Live Webinar | 27-06-2024 | 18:00 (CEST)

Keynote webinar | Spotlight on medication adherence

Live: Thursday 27th June 2024, 18:00-19:30 (CEST)

WHO estimates that half of all patients worldwide are non-adherent to their prescribed medication. The consequences of poor adherence can be catastrophic, on both the individual and population level.

Join our expert panel to discover why you need to understand the drivers of non-adherence in your patients, and how you can optimize medication adherence in your clinics to drastically improve patient outcomes.

Prof. Kevin Dolgin
Prof. Florian Limbourg
Prof. Anoop Chauhan
Developed by: Springer Medicine
Obesity Clinical Trial Summary

At a glance: The STEP trials

A round-up of the STEP phase 3 clinical trials evaluating semaglutide for weight loss in people with overweight or obesity.

Developed by: Springer Medicine

Highlights from the ACC 2024 Congress

Year in Review: Pediatric cardiology

Watch Dr. Anne Marie Valente present the last year's highlights in pediatric and congenital heart disease in the official ACC.24 Year in Review session.

Year in Review: Pulmonary vascular disease

The last year's highlights in pulmonary vascular disease are presented by Dr. Jane Leopold in this official video from ACC.24.

Year in Review: Valvular heart disease

Watch Prof. William Zoghbi present the last year's highlights in valvular heart disease from the official ACC.24 Year in Review session.

Year in Review: Heart failure and cardiomyopathies

Watch this official video from ACC.24. Dr. Biykem Bozkurt discusses last year's major advances in heart failure and cardiomyopathies.