Skip to main content
Top
Published in: Molecular Autism 1/2018

Open Access 01-12-2018 | Research

CRISPR/Cas9-induced shank3b mutant zebrafish display autism-like behaviors

Authors: Chun-xue Liu, Chun-yang Li, Chun-chun Hu, Yi Wang, Jia Lin, Yong-hui Jiang, Qiang Li, Xiu Xu

Published in: Molecular Autism | Issue 1/2018

Login to get access

Abstract

Background

Human genetic and genomic studies have supported a strong causal role of SHANK3 deficiency in autism spectrum disorder (ASD). However, the molecular mechanism underlying SHANK3 deficiency resulting in ASD is not fully understood. Recently, the zebrafish has become an attractive organism to model ASD because of its high efficiency of genetic manipulation and robust behavioral phenotypes. The orthologous gene to human SHANK3 is duplicated in the zebrafish genome and has two homologs, shank3a and shank3b. Previous studies have reported shank3 morphants in zebrafish using the morpholino method. Here, we report the generation and characterization of shank3b mutant zebrafish in larval and adult stages using the CRISPR/Cas9 genome editing technique.

Methods

CRISPR/Cas9 was applied to generate a shank3b loss-of-function mutation (shank3b −/− ) in zebrafish. A series of morphological measurements, behavioral tests, and molecular analyses were performed to systematically characterize the behavioral and molecular changes in shank3b mutant zebrafish.

Results

shank3b−/− zebrafish exhibited abnormal morphology in early development. They showed reduced locomotor activity both as larvae and adults, reduced social interaction and time spent near conspecifics, and significant repetitive swimming behaviors. Additionally, the levels of both postsynaptic homer1 and presynaptic synaptophysin were significantly reduced in the adult brain of shank3b-deficient zebrafish.

Conclusions

We generated the first inheritable shank3b mutant zebrafish model using CRISPR/Cas9 gene editing approach. shank3b−/− zebrafish displayed robust autism-like behaviors and altered levels of the synaptic proteins homer1 and synaptophysin. The versatility of zebrafish as a model for studying neurodevelopment and conducting drug screening will likely have a significant contribution to future studies of human SHANK3 function and ASD.
Appendix
Available only for authorised users
Literature
1.
go back to reference Monteiro P, Feng G. SHANK proteins: roles at the synapse and in autism spectrum disorder. Nat Rev Neurosci. 2017;18(3):147–57.CrossRefPubMed Monteiro P, Feng G. SHANK proteins: roles at the synapse and in autism spectrum disorder. Nat Rev Neurosci. 2017;18(3):147–57.CrossRefPubMed
3.
go back to reference Grabrucker AM, Schmeisser MJ, Schoen M, et al. Postsynaptic ProSAP/Shank scaffolds in the cross-hair of synaptopathies. Trends Cell Biol. 2011;21(10):594–603.CrossRefPubMed Grabrucker AM, Schmeisser MJ, Schoen M, et al. Postsynaptic ProSAP/Shank scaffolds in the cross-hair of synaptopathies. Trends Cell Biol. 2011;21(10):594–603.CrossRefPubMed
4.
go back to reference Wang X, Bey AL, Katz BM, et al. Altered mGluR5-Homer scaffolds and corticostriatal connectivity in a Shank3 complete knockout model of autism. Nat Commun. 2016;7:11459.CrossRefPubMedPubMedCentral Wang X, Bey AL, Katz BM, et al. Altered mGluR5-Homer scaffolds and corticostriatal connectivity in a Shank3 complete knockout model of autism. Nat Commun. 2016;7:11459.CrossRefPubMedPubMedCentral
5.
go back to reference Sala C, Vicidomini C, Bigi I, et al. Shank synaptic scaffold proteins: keys to understanding the pathogenesis of autism and other synaptic disorders. J Neurochem. 2015;135(5):849–58.CrossRefPubMed Sala C, Vicidomini C, Bigi I, et al. Shank synaptic scaffold proteins: keys to understanding the pathogenesis of autism and other synaptic disorders. J Neurochem. 2015;135(5):849–58.CrossRefPubMed
6.
go back to reference Verpelli C, Dvoretskova E, Vicidomini C, et al. Importance of Shank3 protein in regulating metabotropic glutamate receptor 5 (mGluR5) expression and signaling at synapses. J Biol Chem. 2011;286(40):34839–50.CrossRefPubMedPubMedCentral Verpelli C, Dvoretskova E, Vicidomini C, et al. Importance of Shank3 protein in regulating metabotropic glutamate receptor 5 (mGluR5) expression and signaling at synapses. J Biol Chem. 2011;286(40):34839–50.CrossRefPubMedPubMedCentral
7.
go back to reference Bonaglia MC, Giorda R, Borgatti R, et al. Disruption of the ProSAP2 gene in a t(12;22)(q24.1;q13.3) is associated with the 22q13.3 deletion syndrome. Am J Hum Genet. 2001;69(2):261–8.CrossRefPubMedPubMedCentral Bonaglia MC, Giorda R, Borgatti R, et al. Disruption of the ProSAP2 gene in a t(12;22)(q24.1;q13.3) is associated with the 22q13.3 deletion syndrome. Am J Hum Genet. 2001;69(2):261–8.CrossRefPubMedPubMedCentral
8.
go back to reference Bonaglia MC, Giorda R, Beri S, et al. Molecular mechanisms generating and stabilizing terminal 22q13 deletions in 44 subjects with Phelan/McDermid syndrome. PLoS Genet. 2011;7(7):e1002173.CrossRefPubMedPubMedCentral Bonaglia MC, Giorda R, Beri S, et al. Molecular mechanisms generating and stabilizing terminal 22q13 deletions in 44 subjects with Phelan/McDermid syndrome. PLoS Genet. 2011;7(7):e1002173.CrossRefPubMedPubMedCentral
9.
10.
go back to reference Betancur C, Buxbaum JD. SHANK3 haploinsufficiency: a “common” but underdiagnosed highly penetrant monogenic cause of autism spectrum disorders. Mol Autism. 2013;4(1):17.CrossRefPubMedPubMedCentral Betancur C, Buxbaum JD. SHANK3 haploinsufficiency: a “common” but underdiagnosed highly penetrant monogenic cause of autism spectrum disorders. Mol Autism. 2013;4(1):17.CrossRefPubMedPubMedCentral
11.
go back to reference Durand CM, Betancur C, Boeckers TM, et al. Mutations in the gene encoding the synaptic scaffolding protein SHANK3 are associated with autism spectrum disorders. Nat Genet. 2007;39(1):25–7.CrossRefPubMed Durand CM, Betancur C, Boeckers TM, et al. Mutations in the gene encoding the synaptic scaffolding protein SHANK3 are associated with autism spectrum disorders. Nat Genet. 2007;39(1):25–7.CrossRefPubMed
12.
go back to reference Mathur P, Guo S. Use of zebrafish as a model to understand mechanisms of addiction and complex neurobehavioral phenotypes. Neurobiol Dis. 2010;40(1):66–72.CrossRefPubMedPubMedCentral Mathur P, Guo S. Use of zebrafish as a model to understand mechanisms of addiction and complex neurobehavioral phenotypes. Neurobiol Dis. 2010;40(1):66–72.CrossRefPubMedPubMedCentral
13.
go back to reference Jaramillo TC, Speed HE, Xuan Z, et al. Altered striatal synaptic function and abnormal behaviour in Shank3 Exon4-9 deletion mouse model of autism. Autism Res. 2016;9(3):350–75.CrossRefPubMed Jaramillo TC, Speed HE, Xuan Z, et al. Altered striatal synaptic function and abnormal behaviour in Shank3 Exon4-9 deletion mouse model of autism. Autism Res. 2016;9(3):350–75.CrossRefPubMed
14.
go back to reference Speed HE, Kouser M, Xuan Z, et al. Autism-associated insertion mutation (InsG) of Shank3 exon 21 causes impaired synaptic transmission and behavioral deficits. J Neurosci. 2015;35(26):9648–65.CrossRefPubMedPubMedCentral Speed HE, Kouser M, Xuan Z, et al. Autism-associated insertion mutation (InsG) of Shank3 exon 21 causes impaired synaptic transmission and behavioral deficits. J Neurosci. 2015;35(26):9648–65.CrossRefPubMedPubMedCentral
15.
go back to reference Lee J, Chung C, Ha S, et al. Shank3-mutant mice lacking exon 9 show altered excitation/inhibition balance, enhanced rearing, and spatial memory deficit. Front Cell Neurosci. 2015;9:94.PubMedPubMedCentral Lee J, Chung C, Ha S, et al. Shank3-mutant mice lacking exon 9 show altered excitation/inhibition balance, enhanced rearing, and spatial memory deficit. Front Cell Neurosci. 2015;9:94.PubMedPubMedCentral
16.
go back to reference Stewart AM, Nguyen M, Wong K, et al. Developing zebrafish models of autism spectrum disorder (ASD). Prog Neuro-Psychopharmacol Biol Psychiatry. 2014;50:27–36.CrossRef Stewart AM, Nguyen M, Wong K, et al. Developing zebrafish models of autism spectrum disorder (ASD). Prog Neuro-Psychopharmacol Biol Psychiatry. 2014;50:27–36.CrossRef
17.
18.
go back to reference Liu C, Peng X, Hu C, et al. Developmental profiling of ASD-related shank3 transcripts and their differential regulation by valproic acid in zebrafish. Dev Genes Evol. 2016;226(6):389–400.CrossRefPubMedPubMedCentral Liu C, Peng X, Hu C, et al. Developmental profiling of ASD-related shank3 transcripts and their differential regulation by valproic acid in zebrafish. Dev Genes Evol. 2016;226(6):389–400.CrossRefPubMedPubMedCentral
19.
go back to reference Kozol RA, Cukier HN, Zou B, et al. Two knockdown models of the autism genes SYNGAP1 and SHANK3 in zebrafish produce similar behavioral phenotypes associated with embryonic disruptions of brain morphogenesis. Hum Mol Genet. 2015;24(14):4006–23.CrossRefPubMedPubMedCentral Kozol RA, Cukier HN, Zou B, et al. Two knockdown models of the autism genes SYNGAP1 and SHANK3 in zebrafish produce similar behavioral phenotypes associated with embryonic disruptions of brain morphogenesis. Hum Mol Genet. 2015;24(14):4006–23.CrossRefPubMedPubMedCentral
20.
go back to reference Gauthier J, Champagne N, Lafrenière RG, et al. De novo mutations in the gene encoding the synaptic scaffolding protein SHANK3 in patients ascertained for schizophrenia. Proc Natl Acad Sci. 2010;107(17):7863–8.CrossRefPubMedPubMedCentral Gauthier J, Champagne N, Lafrenière RG, et al. De novo mutations in the gene encoding the synaptic scaffolding protein SHANK3 in patients ascertained for schizophrenia. Proc Natl Acad Sci. 2010;107(17):7863–8.CrossRefPubMedPubMedCentral
23.
go back to reference Westerfield M. The zebrafish book: a guide for the laboratory use of zebrafish, Brachydanio rerio. Eugene: University of Oregon Press; 1995. Westerfield M. The zebrafish book: a guide for the laboratory use of zebrafish, Brachydanio rerio. Eugene: University of Oregon Press; 1995.
24.
go back to reference Park HC, Kim CH, Bae YK, et al. Analysis of upstream elements in the HuC promoter leads to the establishment of transgenic zebrafish with fluorescent neurons. Dev Biol. 2000;227(2):279–93.CrossRefPubMed Park HC, Kim CH, Bae YK, et al. Analysis of upstream elements in the HuC promoter leads to the establishment of transgenic zebrafish with fluorescent neurons. Dev Biol. 2000;227(2):279–93.CrossRefPubMed
25.
go back to reference Kwan KM, Fujimoto E, Grabher C, et al. The Tol2kit: a multisite gateway-based construction kit for Tol2 transposon transgenesis constructs. Dev Dyn. 2007;236(11):3088–99.CrossRefPubMed Kwan KM, Fujimoto E, Grabher C, et al. The Tol2kit: a multisite gateway-based construction kit for Tol2 transposon transgenesis constructs. Dev Dyn. 2007;236(11):3088–99.CrossRefPubMed
26.
go back to reference Buske C, Gerlai R. Maturation of shoaling behavior is accompanied by changes in the dopaminergic and serotoninergic systems in zebrafish. Dev Psychobiol. 2012;54(1):28–35.CrossRefPubMed Buske C, Gerlai R. Maturation of shoaling behavior is accompanied by changes in the dopaminergic and serotoninergic systems in zebrafish. Dev Psychobiol. 2012;54(1):28–35.CrossRefPubMed
27.
go back to reference Meshalkina DA, N Kizlyk M, V Kysil E, et al. Zebrafish models of autism spectrum disorder. Exp Neurol. 2017;299(Pt A):207–16.PubMed Meshalkina DA, N Kizlyk M, V Kysil E, et al. Zebrafish models of autism spectrum disorder. Exp Neurol. 2017;299(Pt A):207–16.PubMed
28.
29.
30.
go back to reference Arons MH, Thynne CJ, Grabrucker AM, et al. Autism-associated mutations in ProSAP2/Shank3 impair synaptic transmission and neurexin-neuroligin-mediated transsynaptic signaling. J Neurosci. 2012;32(43):14966–78.CrossRefPubMedPubMedCentral Arons MH, Thynne CJ, Grabrucker AM, et al. Autism-associated mutations in ProSAP2/Shank3 impair synaptic transmission and neurexin-neuroligin-mediated transsynaptic signaling. J Neurosci. 2012;32(43):14966–78.CrossRefPubMedPubMedCentral
32.
go back to reference Sarasua SM, Dwivedi A, Boccuto L, et al. Association between deletion size and important phenotypes expands the genomic region of interest in Phelan-McDermid syndrome (22q13 deletion syndrome). J Med Genet. 2011;48(11):761–6.CrossRefPubMed Sarasua SM, Dwivedi A, Boccuto L, et al. Association between deletion size and important phenotypes expands the genomic region of interest in Phelan-McDermid syndrome (22q13 deletion syndrome). J Med Genet. 2011;48(11):761–6.CrossRefPubMed
33.
go back to reference Soorya L, Kolevzon A, Zweifach J, et al. Prospective investigation of autism and genotype-phenotype correlations in 22q13 deletion syndrome and SHANK3 deficiency. Mol. Autism. 2013;4(1):18.CrossRefPubMedPubMedCentral Soorya L, Kolevzon A, Zweifach J, et al. Prospective investigation of autism and genotype-phenotype correlations in 22q13 deletion syndrome and SHANK3 deficiency. Mol. Autism. 2013;4(1):18.CrossRefPubMedPubMedCentral
34.
go back to reference Sarasua SM, Dwivedi A, Boccuto L, et al. 22q13.2q13.32 genomic regions associated with severity of speech delay, developmental delay, and physical features in Phelan-McDermid syndrome. Genet Med. 2014;16(4):318–28.CrossRefPubMed Sarasua SM, Dwivedi A, Boccuto L, et al. 22q13.2q13.32 genomic regions associated with severity of speech delay, developmental delay, and physical features in Phelan-McDermid syndrome. Genet Med. 2014;16(4):318–28.CrossRefPubMed
35.
go back to reference Zhou Y, Kaiser T, Monteiro P, et al. Mice with Shank3 mutations associated with ASD and schizophrenia display both shared and distinct defects. Neuron. 2016;89(1):147–62.CrossRefPubMed Zhou Y, Kaiser T, Monteiro P, et al. Mice with Shank3 mutations associated with ASD and schizophrenia display both shared and distinct defects. Neuron. 2016;89(1):147–62.CrossRefPubMed
36.
go back to reference Yang M, Bozdagi O, Scattoni ML, et al. Reduced excitatory neurotransmission and mild autism-relevant phenotypes in adolescent Shank3 null mutant mice. J Neurosci. 2012;32(19):6525–41.CrossRefPubMedPubMedCentral Yang M, Bozdagi O, Scattoni ML, et al. Reduced excitatory neurotransmission and mild autism-relevant phenotypes in adolescent Shank3 null mutant mice. J Neurosci. 2012;32(19):6525–41.CrossRefPubMedPubMedCentral
37.
go back to reference Hoffman EJ, Turner KJ, Fernandez JM, et al. Estrogens suppress a behavioral phenotype in zebrafish mutants of the autism risk gene, CNTNAP2. Neuron. 2016;89(4):725–33.CrossRefPubMedPubMedCentral Hoffman EJ, Turner KJ, Fernandez JM, et al. Estrogens suppress a behavioral phenotype in zebrafish mutants of the autism risk gene, CNTNAP2. Neuron. 2016;89(4):725–33.CrossRefPubMedPubMedCentral
38.
go back to reference Dadda M, Domenichini A, Piffer L, et al. Early differences in epithalamic left-right asymmetry influence lateralization and personality of adult zebrafish. Behav Brain Res. 2010;206(2):208–15.CrossRefPubMed Dadda M, Domenichini A, Piffer L, et al. Early differences in epithalamic left-right asymmetry influence lateralization and personality of adult zebrafish. Behav Brain Res. 2010;206(2):208–15.CrossRefPubMed
39.
go back to reference Blaser R, Gerlai R. Behavioral phenotyping in zebrafish: comparison of three behavioral quantification methods. Behav Res Methods. 2006;38(3):456–69.CrossRefPubMed Blaser R, Gerlai R. Behavioral phenotyping in zebrafish: comparison of three behavioral quantification methods. Behav Res Methods. 2006;38(3):456–69.CrossRefPubMed
40.
go back to reference Delaney M, Follet C, Ryan N, et al. Social interaction and distribution of female zebrafish (Danio rerio) in a large aquarium. Biol Bull. 2002;203(2):240–1.CrossRefPubMed Delaney M, Follet C, Ryan N, et al. Social interaction and distribution of female zebrafish (Danio rerio) in a large aquarium. Biol Bull. 2002;203(2):240–1.CrossRefPubMed
41.
go back to reference D Amico D, Estivill X, Terriente J. Switching to zebrafish neurobehavioral models: the obsessive–compulsive disorder paradigm. Eur J Pharmacol. 2015;759:142–50.CrossRef D Amico D, Estivill X, Terriente J. Switching to zebrafish neurobehavioral models: the obsessive–compulsive disorder paradigm. Eur J Pharmacol. 2015;759:142–50.CrossRef
42.
43.
go back to reference Vicidomini C, Ponzoni L, Lim D, et al. Pharmacological enhancement of mGlu5 receptors rescues behavioral deficits in SHANK3 knock-out mice. Mol Psychiatry. 2017;22(5):784.CrossRefPubMed Vicidomini C, Ponzoni L, Lim D, et al. Pharmacological enhancement of mGlu5 receptors rescues behavioral deficits in SHANK3 knock-out mice. Mol Psychiatry. 2017;22(5):784.CrossRefPubMed
44.
45.
go back to reference Tu JC, Xiao B, Naisbitt S, et al. Coupling of mGluR/Homer and PSD-95 complexes by the Shank family of postsynaptic density proteins. Neuron. 1999;23(3):583–92.CrossRefPubMed Tu JC, Xiao B, Naisbitt S, et al. Coupling of mGluR/Homer and PSD-95 complexes by the Shank family of postsynaptic density proteins. Neuron. 1999;23(3):583–92.CrossRefPubMed
46.
go back to reference Han Q, Kim YH, Wang X, et al. SHANK3 deficiency impairs heat hyperalgesia and TRPV1 signaling in primary sensory neurons. Neuron. 2016;92(6):1279–93.CrossRefPubMedPubMedCentral Han Q, Kim YH, Wang X, et al. SHANK3 deficiency impairs heat hyperalgesia and TRPV1 signaling in primary sensory neurons. Neuron. 2016;92(6):1279–93.CrossRefPubMedPubMedCentral
Metadata
Title
CRISPR/Cas9-induced shank3b mutant zebrafish display autism-like behaviors
Authors
Chun-xue Liu
Chun-yang Li
Chun-chun Hu
Yi Wang
Jia Lin
Yong-hui Jiang
Qiang Li
Xiu Xu
Publication date
01-12-2018
Publisher
BioMed Central
Published in
Molecular Autism / Issue 1/2018
Electronic ISSN: 2040-2392
DOI
https://doi.org/10.1186/s13229-018-0204-x

Other articles of this Issue 1/2018

Molecular Autism 1/2018 Go to the issue