Skip to main content
Top
Published in: Diabetologia 5/2018

01-05-2018 | Article

Coxsackievirus B1 infections are associated with the initiation of insulin-driven autoimmunity that progresses to type 1 diabetes

Authors: Amir-Babak Sioofy-Khojine, Jussi Lehtonen, Noora Nurminen, Olli H. Laitinen, Sami Oikarinen, Heini Huhtala, Outi Pakkanen, Tanja Ruokoranta, Minna M. Hankaniemi, Jorma Toppari, Mari Vähä-Mäkilä, Jorma Ilonen, Riitta Veijola, Mikael Knip, Heikki Hyöty

Published in: Diabetologia | Issue 5/2018

Login to get access

Abstract

Aims/hypothesis

Islet autoimmunity usually starts with the appearance of autoantibodies against either insulin (IAA) or GAD65 (GADA). This categorises children with preclinical type 1 diabetes into two immune phenotypes, which differ in their genetic background and may have different aetiology. The aim was to study whether Coxsackievirus group B (CVB) infections, which have been linked to the initiation of islet autoimmunity, are associated with either of these two phenotypes in children with HLA-conferred susceptibility to type 1 diabetes.

Methods

All samples were from children in the Finnish Type 1 Diabetes Prediction and Prevention (DIPP) study. Individuals are recruited to the DIPP study from the general population of new-born infants who carry defined HLA genotypes associated with susceptibility to type 1 diabetes. Our study cohort included 91 children who developed IAA and 78 children who developed GADA as their first appearing single autoantibody and remained persistently seropositive for islet autoantibodies, along with 181 and 151 individually matched autoantibody negative control children, respectively. Seroconversion to positivity for neutralising antibodies was detected as the surrogate marker of CVB infections in serial follow-up serum samples collected before and at the appearance of islet autoantibodies in each individual.

Results

CVB1 infections were associated with the appearance of IAA as the first autoantibody (OR 2.4 [95% CI 1.4, 4.2], corrected p = 0.018). CVB5 infection also tended to be associated with the appearance of IAA, however, this did not reach statistical significance (OR 2.3, [0.7, 7.5], p = 0.163); no other CVB types were associated with increased risk of IAA. Children who had signs of a CVB1 infection either alone or prior to infections by other CVBs were at the highest risk for developing IAA (OR 5.3 [95% CI 2.4, 11.7], p < 0.001). None of the CVBs were associated with the appearance of GADA.

Conclusions/interpretation

CVB1 infections may contribute to the initiation of islet autoimmunity being particularly important in the insulin-driven autoimmune process.
Appendix
Available only for authorised users
Literature
1.
go back to reference Arvan P, Pietropaolo M, Ostrov D, Rhodes CJ (2012) Islet autoantigens: structure, function, localization, and regulation. Cold Spring Harb Perspect Med 2:a007658 Arvan P, Pietropaolo M, Ostrov D, Rhodes CJ (2012) Islet autoantigens: structure, function, localization, and regulation. Cold Spring Harb Perspect Med 2:a007658
2.
go back to reference Eizirik DL, Colli ML, Ortis F (2009) The role of inflammation in insulitis and beta-cell loss in type 1 diabetes. Nat Rev Endocrinol 5:219–226CrossRefPubMed Eizirik DL, Colli ML, Ortis F (2009) The role of inflammation in insulitis and beta-cell loss in type 1 diabetes. Nat Rev Endocrinol 5:219–226CrossRefPubMed
3.
go back to reference Kutlu B, Burdick D, Baxter D et al (2009) Detailed transcriptome atlas of the pancreatic beta cell. BMC Med Genet 2:3-8794-2-3 Kutlu B, Burdick D, Baxter D et al (2009) Detailed transcriptome atlas of the pancreatic beta cell. BMC Med Genet 2:3-8794-2-3
4.
go back to reference Wang C, Mao R, Van de Casteele M, Pipeleers D, Ling Z (2007) Glucagon-like peptide-1 stimulates GABA formation by pancreatic beta-cells at the level of glutamate decarboxylase. Am J Physiol Endocrinol Metab 292:E1201–E1206CrossRefPubMed Wang C, Mao R, Van de Casteele M, Pipeleers D, Ling Z (2007) Glucagon-like peptide-1 stimulates GABA formation by pancreatic beta-cells at the level of glutamate decarboxylase. Am J Physiol Endocrinol Metab 292:E1201–E1206CrossRefPubMed
5.
go back to reference Ilonen J, Hammais A, Laine AP et al (2013) Patterns of beta-cell autoantibody appearance and genetic associations during the first years of life. Diabetes 62:3636–3640CrossRefPubMedCentralPubMed Ilonen J, Hammais A, Laine AP et al (2013) Patterns of beta-cell autoantibody appearance and genetic associations during the first years of life. Diabetes 62:3636–3640CrossRefPubMedCentralPubMed
6.
go back to reference Krischer JP, Lynch KF, Schatz DA et al (2015) The 6 year incidence of diabetes-associated autoantibodies in genetically at-risk children: the TEDDY study. Diabetologia 58:980–987CrossRefPubMedCentralPubMed Krischer JP, Lynch KF, Schatz DA et al (2015) The 6 year incidence of diabetes-associated autoantibodies in genetically at-risk children: the TEDDY study. Diabetologia 58:980–987CrossRefPubMedCentralPubMed
7.
go back to reference Laitinen OH, Honkanen H, Pakkanen O et al (2014) Coxsackievirus B1 is associated with induction of beta-cell autoimmunity that portends type 1 diabetes. Diabetes 63:446–455CrossRefPubMed Laitinen OH, Honkanen H, Pakkanen O et al (2014) Coxsackievirus B1 is associated with induction of beta-cell autoimmunity that portends type 1 diabetes. Diabetes 63:446–455CrossRefPubMed
8.
go back to reference Oikarinen S, Tauriainen S, Hober D et al (2014) Virus antibody survey in different European populations indicates risk association between coxsackievirus B1 and type 1 diabetes. Diabetes 63:655–662CrossRefPubMed Oikarinen S, Tauriainen S, Hober D et al (2014) Virus antibody survey in different European populations indicates risk association between coxsackievirus B1 and type 1 diabetes. Diabetes 63:655–662CrossRefPubMed
9.
go back to reference Nanto-Salonen K, Kupila A, Simell S et al (2008) Nasal insulin to prevent type 1 diabetes in children with HLA genotypes and autoantibodies conferring increased risk of disease: a double-blind, randomised controlled trial. Lancet 372:1746–1755CrossRefPubMed Nanto-Salonen K, Kupila A, Simell S et al (2008) Nasal insulin to prevent type 1 diabetes in children with HLA genotypes and autoantibodies conferring increased risk of disease: a double-blind, randomised controlled trial. Lancet 372:1746–1755CrossRefPubMed
10.
go back to reference Ilonen J, Kiviniemi M, Lempainen J et al (2016) Genetic susceptibility to type 1 diabetes in childhood - estimation of HLA class II associated disease risk and class II effect in various phases of islet autoimmunity. Pediatr Diabetes 17(Suppl 22):8–16CrossRefPubMed Ilonen J, Kiviniemi M, Lempainen J et al (2016) Genetic susceptibility to type 1 diabetes in childhood - estimation of HLA class II associated disease risk and class II effect in various phases of islet autoimmunity. Pediatr Diabetes 17(Suppl 22):8–16CrossRefPubMed
11.
12.
go back to reference World Health Organization. Department of Noncommunicable Disease Surveillance. (1999) Definition, diagnosis and classification of diabetes mellitus and its complications : report of a WHO consultation. Part 1, Diagnosis and classification of diabetes mellitus. World Health Organization, Department of Noncommunicable Disease Surveillance, Geneva World Health Organization. Department of Noncommunicable Disease Surveillance. (1999) Definition, diagnosis and classification of diabetes mellitus and its complications : report of a WHO consultation. Part 1, Diagnosis and classification of diabetes mellitus. World Health Organization, Department of Noncommunicable Disease Surveillance, Geneva
13.
go back to reference Lonnrot M, Lynch KF, Elding Larsson H et al (2017) Correction to: respiratory infections are temporally associated with initiation of type 1 diabetes autoimmunity: the TEDDY study. Diabetologia 61:254CrossRef Lonnrot M, Lynch KF, Elding Larsson H et al (2017) Correction to: respiratory infections are temporally associated with initiation of type 1 diabetes autoimmunity: the TEDDY study. Diabetologia 61:254CrossRef
14.
go back to reference Oikarinen M, Tauriainen S, Honkanen T et al (2008) Analysis of pancreas tissue in a child positive for islet cell antibodies. Diabetologia 51:1796–1802CrossRefPubMed Oikarinen M, Tauriainen S, Honkanen T et al (2008) Analysis of pancreas tissue in a child positive for islet cell antibodies. Diabetologia 51:1796–1802CrossRefPubMed
15.
go back to reference Sarmiento L, Frisk G, Anagandula M, Cabrera-Rode E, Roivainen M, Cilio CM (2013) Expression of innate immunity genes and damage of primary human pancreatic islets by epidemic strains of Echovirus: implication for post-virus islet autoimmunity. PLoS One 8:e77850CrossRefPubMedCentralPubMed Sarmiento L, Frisk G, Anagandula M, Cabrera-Rode E, Roivainen M, Cilio CM (2013) Expression of innate immunity genes and damage of primary human pancreatic islets by epidemic strains of Echovirus: implication for post-virus islet autoimmunity. PLoS One 8:e77850CrossRefPubMedCentralPubMed
16.
go back to reference Frisk G, Diderholm H (2000) Tissue culture of isolated human pancreatic islets infected with different strains of coxsackievirus B4: assessment of virus replication and effects on islet morphology and insulin release. Int J Exp Diabetes Res 1:165–175CrossRefPubMedCentralPubMed Frisk G, Diderholm H (2000) Tissue culture of isolated human pancreatic islets infected with different strains of coxsackievirus B4: assessment of virus replication and effects on islet morphology and insulin release. Int J Exp Diabetes Res 1:165–175CrossRefPubMedCentralPubMed
17.
go back to reference Hodik M, Anagandula M, Fuxe J et al (2016) Coxsackie-adenovirus receptor expression is enhanced in pancreas from patients with type 1 diabetes. BMJ Open Diabetes Res Care 4:e000219CrossRefPubMedCentralPubMed Hodik M, Anagandula M, Fuxe J et al (2016) Coxsackie-adenovirus receptor expression is enhanced in pancreas from patients with type 1 diabetes. BMJ Open Diabetes Res Care 4:e000219CrossRefPubMedCentralPubMed
18.
go back to reference Jenson AB, Rosenberg HS, Notkins AL (1980) Pancreatic islet-cell damage in children with fatal viral infections. Lancet 2:354–358PubMed Jenson AB, Rosenberg HS, Notkins AL (1980) Pancreatic islet-cell damage in children with fatal viral infections. Lancet 2:354–358PubMed
19.
go back to reference Ujevich MM, Jaffe R (1980) Pancreatic islet cell damage. Its occurrence in neonatal coxsackievirus encephalomyocarditis. Arch Pathol Lab Med 104:438–441PubMed Ujevich MM, Jaffe R (1980) Pancreatic islet cell damage. Its occurrence in neonatal coxsackievirus encephalomyocarditis. Arch Pathol Lab Med 104:438–441PubMed
20.
go back to reference Dotta F, Censini S, van Halteren AG et al (2007) Coxsackie B4 virus infection of beta cells and natural killer cell insulitis in recent-onset type 1 diabetic patients. Proc Natl Acad Sci U S A 104:5115–5120CrossRefPubMedCentralPubMed Dotta F, Censini S, van Halteren AG et al (2007) Coxsackie B4 virus infection of beta cells and natural killer cell insulitis in recent-onset type 1 diabetic patients. Proc Natl Acad Sci U S A 104:5115–5120CrossRefPubMedCentralPubMed
21.
go back to reference Richardson SJ, Leete P, Bone AJ, Foulis AK, Morgan NG (2013) Expression of the enteroviral capsid protein VP1 in the islet cells of patients with type 1 diabetes is associated with induction of protein kinase R and downregulation of Mcl-1. Diabetologia 56:185–193CrossRefPubMed Richardson SJ, Leete P, Bone AJ, Foulis AK, Morgan NG (2013) Expression of the enteroviral capsid protein VP1 in the islet cells of patients with type 1 diabetes is associated with induction of protein kinase R and downregulation of Mcl-1. Diabetologia 56:185–193CrossRefPubMed
22.
go back to reference Krogvold L, Edwin B, Buanes T et al (2015) Detection of a low-grade enteroviral infection in the islets of langerhans of living patients newly diagnosed with type 1 diabetes. Diabetes 64:1682–1687CrossRefPubMed Krogvold L, Edwin B, Buanes T et al (2015) Detection of a low-grade enteroviral infection in the islets of langerhans of living patients newly diagnosed with type 1 diabetes. Diabetes 64:1682–1687CrossRefPubMed
23.
go back to reference Klingel K, Hohenadl C, Canu A et al (1992) Ongoing enterovirus-induced myocarditis is associated with persistent heart muscle infection: quantitative analysis of virus replication, tissue damage, and inflammation. Proc Natl Acad Sci U S A 89:314–318CrossRefPubMedCentralPubMed Klingel K, Hohenadl C, Canu A et al (1992) Ongoing enterovirus-induced myocarditis is associated with persistent heart muscle infection: quantitative analysis of virus replication, tissue damage, and inflammation. Proc Natl Acad Sci U S A 89:314–318CrossRefPubMedCentralPubMed
24.
go back to reference Andreoletti L, Hober D, Becquart P et al (1997) Experimental CVB3-induced chronic myocarditis in two murine strains: evidence of interrelationships between virus replication and myocardial damage in persistent cardiac infection. J Med Virol 52:206–214CrossRefPubMed Andreoletti L, Hober D, Becquart P et al (1997) Experimental CVB3-induced chronic myocarditis in two murine strains: evidence of interrelationships between virus replication and myocardial damage in persistent cardiac infection. J Med Virol 52:206–214CrossRefPubMed
25.
go back to reference Klingel K, Stephan S, Sauter M et al (1996) Pathogenesis of murine enterovirus myocarditis: virus dissemination and immune cell targets. J Virol 70:8888–8895PubMedCentralPubMed Klingel K, Stephan S, Sauter M et al (1996) Pathogenesis of murine enterovirus myocarditis: virus dissemination and immune cell targets. J Virol 70:8888–8895PubMedCentralPubMed
26.
go back to reference Chapman NM, Kim KS, Drescher KM, Oka K, Tracy S (2008) 5′ terminal deletions in the genome of a coxsackievirus B2 strain occurred naturally in human heart. Virology 375:480–491CrossRefPubMedCentralPubMed Chapman NM, Kim KS, Drescher KM, Oka K, Tracy S (2008) 5′ terminal deletions in the genome of a coxsackievirus B2 strain occurred naturally in human heart. Virology 375:480–491CrossRefPubMedCentralPubMed
27.
go back to reference Kim KS, Tracy S, Tapprich W et al (2005) 5′-terminal deletions occur in coxsackievirus B3 during replication in murine hearts and cardiac myocyte cultures and correlate with encapsidation of negative-strand viral RNA. J Virol 79:7024–7041CrossRefPubMedCentralPubMed Kim KS, Tracy S, Tapprich W et al (2005) 5′-terminal deletions occur in coxsackievirus B3 during replication in murine hearts and cardiac myocyte cultures and correlate with encapsidation of negative-strand viral RNA. J Virol 79:7024–7041CrossRefPubMedCentralPubMed
28.
go back to reference Oka K, Oohira K, Yatabe Y et al (2005) Fulminant myocarditis demonstrating uncommon morphology—a report of two autopsy cases. Virchows Arch 446:259–264CrossRefPubMed Oka K, Oohira K, Yatabe Y et al (2005) Fulminant myocarditis demonstrating uncommon morphology—a report of two autopsy cases. Virchows Arch 446:259–264CrossRefPubMed
29.
go back to reference Ashton MP, Eugster A, Walther D et al (2016) Incomplete immune response to coxsackie B viruses associates with early autoimmunity against insulin. Sci Rep 6:32899CrossRefPubMedCentralPubMed Ashton MP, Eugster A, Walther D et al (2016) Incomplete immune response to coxsackie B viruses associates with early autoimmunity against insulin. Sci Rep 6:32899CrossRefPubMedCentralPubMed
30.
go back to reference Landau BJ, Whittier PS, Finkelstein SD et al (1990) Induction of heterotypic virus resistance in adult inbred mice immunized with a variant of Coxsackievirus B3. Microb Pathog 8:289–298CrossRefPubMed Landau BJ, Whittier PS, Finkelstein SD et al (1990) Induction of heterotypic virus resistance in adult inbred mice immunized with a variant of Coxsackievirus B3. Microb Pathog 8:289–298CrossRefPubMed
31.
go back to reference Kutubuddin M, Simons J, Chow M (1992) Identification of T-helper epitopes in the VP1 capsid protein of poliovirus. J Virol 66:3042–3047PubMedCentralPubMed Kutubuddin M, Simons J, Chow M (1992) Identification of T-helper epitopes in the VP1 capsid protein of poliovirus. J Virol 66:3042–3047PubMedCentralPubMed
32.
go back to reference Mahon BP, Katrak K, Mills KH (1992) Antigenic sequences of poliovirus recognized by T cells: serotype-specific epitopes on VP1 and VP3 and cross-reactive epitopes on VP4 defined by using CD4+ T-cell clones. J Virol 66:7012–7020PubMedCentralPubMed Mahon BP, Katrak K, Mills KH (1992) Antigenic sequences of poliovirus recognized by T cells: serotype-specific epitopes on VP1 and VP3 and cross-reactive epitopes on VP4 defined by using CD4+ T-cell clones. J Virol 66:7012–7020PubMedCentralPubMed
33.
go back to reference Katrak K, Mahon BP, Minor PD, Mills KH (1991) Cellular and humoral immune responses to poliovirus in mice: a role for helper T cells in heterotypic immunity to poliovirus. J Gen Virol 72(Pt 5):1093–1098CrossRefPubMed Katrak K, Mahon BP, Minor PD, Mills KH (1991) Cellular and humoral immune responses to poliovirus in mice: a role for helper T cells in heterotypic immunity to poliovirus. J Gen Virol 72(Pt 5):1093–1098CrossRefPubMed
34.
go back to reference Beck MA, Tracy SM (1989) Murine cell-mediated immune response recognizes an enterovirus group-specific antigen(s). J Virol 63:4148–4156PubMedCentralPubMed Beck MA, Tracy SM (1989) Murine cell-mediated immune response recognizes an enterovirus group-specific antigen(s). J Virol 63:4148–4156PubMedCentralPubMed
35.
go back to reference Wang KG, Sun LZ, Jubelt B, Waltenbaugh C (1989) Cell-mediated immune responses to poliovirus. I. Conditions for induction, characterization of effector cells, and cross-reactivity between serotypes for delayed hypersensitivity and T cell proliferative responses. Cell Immunol 119:252–262CrossRefPubMed Wang KG, Sun LZ, Jubelt B, Waltenbaugh C (1989) Cell-mediated immune responses to poliovirus. I. Conditions for induction, characterization of effector cells, and cross-reactivity between serotypes for delayed hypersensitivity and T cell proliferative responses. Cell Immunol 119:252–262CrossRefPubMed
36.
go back to reference Drescher KM, von Herrath M, Tracy S (2015) Enteroviruses, hygiene and type 1 diabetes: toward a preventive vaccine. Rev Med Virol 25:19–32CrossRefPubMed Drescher KM, von Herrath M, Tracy S (2015) Enteroviruses, hygiene and type 1 diabetes: toward a preventive vaccine. Rev Med Virol 25:19–32CrossRefPubMed
37.
go back to reference Yoon JW, Austin M, Onodera T, Notkins AL (1979) Isolation of a virus from the pancreas of a child with diabetic ketoacidosis. N Engl J Med 300:1173–1179CrossRefPubMed Yoon JW, Austin M, Onodera T, Notkins AL (1979) Isolation of a virus from the pancreas of a child with diabetic ketoacidosis. N Engl J Med 300:1173–1179CrossRefPubMed
38.
go back to reference Lukashev AN, Lashkevich VA, Ivanova OE, Koroleva GA, Hinkkanen AE, Ilonen J (2005) Recombination in circulating human enterovirus B: independent evolution of structural and non-structural genome regions. J Gen Virol 86:3281–3290CrossRefPubMed Lukashev AN, Lashkevich VA, Ivanova OE, Koroleva GA, Hinkkanen AE, Ilonen J (2005) Recombination in circulating human enterovirus B: independent evolution of structural and non-structural genome regions. J Gen Virol 86:3281–3290CrossRefPubMed
39.
go back to reference Hamalainen S, Nurminen N, Ahlfors H et al (2014) Coxsackievirus B1 reveals strain specific differences in plasmacytoid dendritic cell mediated immunogenicity. J Med Virol 86:1412–1420CrossRefPubMed Hamalainen S, Nurminen N, Ahlfors H et al (2014) Coxsackievirus B1 reveals strain specific differences in plasmacytoid dendritic cell mediated immunogenicity. J Med Virol 86:1412–1420CrossRefPubMed
40.
go back to reference Anagandula M, Richardson SJ, Oberste MS et al (2014) Infection of human islets of langerhans with two strains of Coxsackie B virus serotype 1: assessment of virus replication, degree of cell death and induction of genes involved in the innate immunity pathway. J Med Virol 86:1402–1411CrossRefPubMed Anagandula M, Richardson SJ, Oberste MS et al (2014) Infection of human islets of langerhans with two strains of Coxsackie B virus serotype 1: assessment of virus replication, degree of cell death and induction of genes involved in the innate immunity pathway. J Med Virol 86:1402–1411CrossRefPubMed
41.
go back to reference Viskari HR, Koskela P, Lonnrot M et al (2000) Can enterovirus infections explain the increasing incidence of type 1 diabetes? Diabetes Care 23:414–416CrossRefPubMed Viskari HR, Koskela P, Lonnrot M et al (2000) Can enterovirus infections explain the increasing incidence of type 1 diabetes? Diabetes Care 23:414–416CrossRefPubMed
42.
go back to reference Honkanen H, Oikarinen S, Nurminen N et al (2017) Detection of enteroviruses in stools precedes islet autoimmunity by several months: possible evidence for slowly operating mechanisms in virus-induced autoimmunity. Diabetologia 60:424–431CrossRefPubMed Honkanen H, Oikarinen S, Nurminen N et al (2017) Detection of enteroviruses in stools precedes islet autoimmunity by several months: possible evidence for slowly operating mechanisms in virus-induced autoimmunity. Diabetologia 60:424–431CrossRefPubMed
43.
go back to reference Oikarinen S, Martiskainen M, Tauriainen S et al (2011) Enterovirus RNA in blood is linked to the development of type 1 diabetes. Diabetes 60:276–279CrossRefPubMed Oikarinen S, Martiskainen M, Tauriainen S et al (2011) Enterovirus RNA in blood is linked to the development of type 1 diabetes. Diabetes 60:276–279CrossRefPubMed
44.
go back to reference Sedgwick P (2014) Nested case-control studies: advantages and disadvantages. BMJ 348:g1532CrossRef Sedgwick P (2014) Nested case-control studies: advantages and disadvantages. BMJ 348:g1532CrossRef
Metadata
Title
Coxsackievirus B1 infections are associated with the initiation of insulin-driven autoimmunity that progresses to type 1 diabetes
Authors
Amir-Babak Sioofy-Khojine
Jussi Lehtonen
Noora Nurminen
Olli H. Laitinen
Sami Oikarinen
Heini Huhtala
Outi Pakkanen
Tanja Ruokoranta
Minna M. Hankaniemi
Jorma Toppari
Mari Vähä-Mäkilä
Jorma Ilonen
Riitta Veijola
Mikael Knip
Heikki Hyöty
Publication date
01-05-2018
Publisher
Springer Berlin Heidelberg
Published in
Diabetologia / Issue 5/2018
Print ISSN: 0012-186X
Electronic ISSN: 1432-0428
DOI
https://doi.org/10.1007/s00125-018-4561-y

Other articles of this Issue 5/2018

Diabetologia 5/2018 Go to the issue
Live Webinar | 27-06-2024 | 18:00 (CEST)

Keynote webinar | Spotlight on medication adherence

Live: Thursday 27th June 2024, 18:00-19:30 (CEST)

WHO estimates that half of all patients worldwide are non-adherent to their prescribed medication. The consequences of poor adherence can be catastrophic, on both the individual and population level.

Join our expert panel to discover why you need to understand the drivers of non-adherence in your patients, and how you can optimize medication adherence in your clinics to drastically improve patient outcomes.

Prof. Kevin Dolgin
Prof. Florian Limbourg
Prof. Anoop Chauhan
Developed by: Springer Medicine
Obesity Clinical Trial Summary

At a glance: The STEP trials

A round-up of the STEP phase 3 clinical trials evaluating semaglutide for weight loss in people with overweight or obesity.

Developed by: Springer Medicine

Highlights from the ACC 2024 Congress

Year in Review: Pediatric cardiology

Watch Dr. Anne Marie Valente present the last year's highlights in pediatric and congenital heart disease in the official ACC.24 Year in Review session.

Year in Review: Pulmonary vascular disease

The last year's highlights in pulmonary vascular disease are presented by Dr. Jane Leopold in this official video from ACC.24.

Year in Review: Valvular heart disease

Watch Prof. William Zoghbi present the last year's highlights in valvular heart disease from the official ACC.24 Year in Review session.

Year in Review: Heart failure and cardiomyopathies

Watch this official video from ACC.24. Dr. Biykem Bozkurt discusses last year's major advances in heart failure and cardiomyopathies.